mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-17 09:14:19 +08:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
867 lines
18 KiB
C
867 lines
18 KiB
C
/* Include in trace.c */
|
|
|
|
#include <linux/stringify.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
|
|
static inline int trace_valid_entry(struct trace_entry *entry)
|
|
{
|
|
switch (entry->type) {
|
|
case TRACE_FN:
|
|
case TRACE_CTX:
|
|
case TRACE_WAKE:
|
|
case TRACE_STACK:
|
|
case TRACE_PRINT:
|
|
case TRACE_SPECIAL:
|
|
case TRACE_BRANCH:
|
|
case TRACE_GRAPH_ENT:
|
|
case TRACE_GRAPH_RET:
|
|
case TRACE_HW_BRANCHES:
|
|
case TRACE_KSYM:
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int trace_test_buffer_cpu(struct trace_array *tr, int cpu)
|
|
{
|
|
struct ring_buffer_event *event;
|
|
struct trace_entry *entry;
|
|
unsigned int loops = 0;
|
|
|
|
while ((event = ring_buffer_consume(tr->buffer, cpu, NULL))) {
|
|
entry = ring_buffer_event_data(event);
|
|
|
|
/*
|
|
* The ring buffer is a size of trace_buf_size, if
|
|
* we loop more than the size, there's something wrong
|
|
* with the ring buffer.
|
|
*/
|
|
if (loops++ > trace_buf_size) {
|
|
printk(KERN_CONT ".. bad ring buffer ");
|
|
goto failed;
|
|
}
|
|
if (!trace_valid_entry(entry)) {
|
|
printk(KERN_CONT ".. invalid entry %d ",
|
|
entry->type);
|
|
goto failed;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
failed:
|
|
/* disable tracing */
|
|
tracing_disabled = 1;
|
|
printk(KERN_CONT ".. corrupted trace buffer .. ");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Test the trace buffer to see if all the elements
|
|
* are still sane.
|
|
*/
|
|
static int trace_test_buffer(struct trace_array *tr, unsigned long *count)
|
|
{
|
|
unsigned long flags, cnt = 0;
|
|
int cpu, ret = 0;
|
|
|
|
/* Don't allow flipping of max traces now */
|
|
local_irq_save(flags);
|
|
arch_spin_lock(&ftrace_max_lock);
|
|
|
|
cnt = ring_buffer_entries(tr->buffer);
|
|
|
|
/*
|
|
* The trace_test_buffer_cpu runs a while loop to consume all data.
|
|
* If the calling tracer is broken, and is constantly filling
|
|
* the buffer, this will run forever, and hard lock the box.
|
|
* We disable the ring buffer while we do this test to prevent
|
|
* a hard lock up.
|
|
*/
|
|
tracing_off();
|
|
for_each_possible_cpu(cpu) {
|
|
ret = trace_test_buffer_cpu(tr, cpu);
|
|
if (ret)
|
|
break;
|
|
}
|
|
tracing_on();
|
|
arch_spin_unlock(&ftrace_max_lock);
|
|
local_irq_restore(flags);
|
|
|
|
if (count)
|
|
*count = cnt;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void warn_failed_init_tracer(struct tracer *trace, int init_ret)
|
|
{
|
|
printk(KERN_WARNING "Failed to init %s tracer, init returned %d\n",
|
|
trace->name, init_ret);
|
|
}
|
|
#ifdef CONFIG_FUNCTION_TRACER
|
|
|
|
#ifdef CONFIG_DYNAMIC_FTRACE
|
|
|
|
/* Test dynamic code modification and ftrace filters */
|
|
int trace_selftest_startup_dynamic_tracing(struct tracer *trace,
|
|
struct trace_array *tr,
|
|
int (*func)(void))
|
|
{
|
|
int save_ftrace_enabled = ftrace_enabled;
|
|
int save_tracer_enabled = tracer_enabled;
|
|
unsigned long count;
|
|
char *func_name;
|
|
int ret;
|
|
|
|
/* The ftrace test PASSED */
|
|
printk(KERN_CONT "PASSED\n");
|
|
pr_info("Testing dynamic ftrace: ");
|
|
|
|
/* enable tracing, and record the filter function */
|
|
ftrace_enabled = 1;
|
|
tracer_enabled = 1;
|
|
|
|
/* passed in by parameter to fool gcc from optimizing */
|
|
func();
|
|
|
|
/*
|
|
* Some archs *cough*PowerPC*cough* add characters to the
|
|
* start of the function names. We simply put a '*' to
|
|
* accommodate them.
|
|
*/
|
|
func_name = "*" __stringify(DYN_FTRACE_TEST_NAME);
|
|
|
|
/* filter only on our function */
|
|
ftrace_set_filter(func_name, strlen(func_name), 1);
|
|
|
|
/* enable tracing */
|
|
ret = tracer_init(trace, tr);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
goto out;
|
|
}
|
|
|
|
/* Sleep for a 1/10 of a second */
|
|
msleep(100);
|
|
|
|
/* we should have nothing in the buffer */
|
|
ret = trace_test_buffer(tr, &count);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (count) {
|
|
ret = -1;
|
|
printk(KERN_CONT ".. filter did not filter .. ");
|
|
goto out;
|
|
}
|
|
|
|
/* call our function again */
|
|
func();
|
|
|
|
/* sleep again */
|
|
msleep(100);
|
|
|
|
/* stop the tracing. */
|
|
tracing_stop();
|
|
ftrace_enabled = 0;
|
|
|
|
/* check the trace buffer */
|
|
ret = trace_test_buffer(tr, &count);
|
|
trace->reset(tr);
|
|
tracing_start();
|
|
|
|
/* we should only have one item */
|
|
if (!ret && count != 1) {
|
|
printk(KERN_CONT ".. filter failed count=%ld ..", count);
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
ftrace_enabled = save_ftrace_enabled;
|
|
tracer_enabled = save_tracer_enabled;
|
|
|
|
/* Enable tracing on all functions again */
|
|
ftrace_set_filter(NULL, 0, 1);
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
# define trace_selftest_startup_dynamic_tracing(trace, tr, func) ({ 0; })
|
|
#endif /* CONFIG_DYNAMIC_FTRACE */
|
|
|
|
/*
|
|
* Simple verification test of ftrace function tracer.
|
|
* Enable ftrace, sleep 1/10 second, and then read the trace
|
|
* buffer to see if all is in order.
|
|
*/
|
|
int
|
|
trace_selftest_startup_function(struct tracer *trace, struct trace_array *tr)
|
|
{
|
|
int save_ftrace_enabled = ftrace_enabled;
|
|
int save_tracer_enabled = tracer_enabled;
|
|
unsigned long count;
|
|
int ret;
|
|
|
|
/* make sure msleep has been recorded */
|
|
msleep(1);
|
|
|
|
/* start the tracing */
|
|
ftrace_enabled = 1;
|
|
tracer_enabled = 1;
|
|
|
|
ret = tracer_init(trace, tr);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
goto out;
|
|
}
|
|
|
|
/* Sleep for a 1/10 of a second */
|
|
msleep(100);
|
|
/* stop the tracing. */
|
|
tracing_stop();
|
|
ftrace_enabled = 0;
|
|
|
|
/* check the trace buffer */
|
|
ret = trace_test_buffer(tr, &count);
|
|
trace->reset(tr);
|
|
tracing_start();
|
|
|
|
if (!ret && !count) {
|
|
printk(KERN_CONT ".. no entries found ..");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
ret = trace_selftest_startup_dynamic_tracing(trace, tr,
|
|
DYN_FTRACE_TEST_NAME);
|
|
|
|
out:
|
|
ftrace_enabled = save_ftrace_enabled;
|
|
tracer_enabled = save_tracer_enabled;
|
|
|
|
/* kill ftrace totally if we failed */
|
|
if (ret)
|
|
ftrace_kill();
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_FUNCTION_TRACER */
|
|
|
|
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
|
|
/* Maximum number of functions to trace before diagnosing a hang */
|
|
#define GRAPH_MAX_FUNC_TEST 100000000
|
|
|
|
static void __ftrace_dump(bool disable_tracing);
|
|
static unsigned int graph_hang_thresh;
|
|
|
|
/* Wrap the real function entry probe to avoid possible hanging */
|
|
static int trace_graph_entry_watchdog(struct ftrace_graph_ent *trace)
|
|
{
|
|
/* This is harmlessly racy, we want to approximately detect a hang */
|
|
if (unlikely(++graph_hang_thresh > GRAPH_MAX_FUNC_TEST)) {
|
|
ftrace_graph_stop();
|
|
printk(KERN_WARNING "BUG: Function graph tracer hang!\n");
|
|
if (ftrace_dump_on_oops)
|
|
__ftrace_dump(false);
|
|
return 0;
|
|
}
|
|
|
|
return trace_graph_entry(trace);
|
|
}
|
|
|
|
/*
|
|
* Pretty much the same than for the function tracer from which the selftest
|
|
* has been borrowed.
|
|
*/
|
|
int
|
|
trace_selftest_startup_function_graph(struct tracer *trace,
|
|
struct trace_array *tr)
|
|
{
|
|
int ret;
|
|
unsigned long count;
|
|
|
|
/*
|
|
* Simulate the init() callback but we attach a watchdog callback
|
|
* to detect and recover from possible hangs
|
|
*/
|
|
tracing_reset_online_cpus(tr);
|
|
set_graph_array(tr);
|
|
ret = register_ftrace_graph(&trace_graph_return,
|
|
&trace_graph_entry_watchdog);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
goto out;
|
|
}
|
|
tracing_start_cmdline_record();
|
|
|
|
/* Sleep for a 1/10 of a second */
|
|
msleep(100);
|
|
|
|
/* Have we just recovered from a hang? */
|
|
if (graph_hang_thresh > GRAPH_MAX_FUNC_TEST) {
|
|
tracing_selftest_disabled = true;
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
tracing_stop();
|
|
|
|
/* check the trace buffer */
|
|
ret = trace_test_buffer(tr, &count);
|
|
|
|
trace->reset(tr);
|
|
tracing_start();
|
|
|
|
if (!ret && !count) {
|
|
printk(KERN_CONT ".. no entries found ..");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* Don't test dynamic tracing, the function tracer already did */
|
|
|
|
out:
|
|
/* Stop it if we failed */
|
|
if (ret)
|
|
ftrace_graph_stop();
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
|
|
|
|
|
|
#ifdef CONFIG_IRQSOFF_TRACER
|
|
int
|
|
trace_selftest_startup_irqsoff(struct tracer *trace, struct trace_array *tr)
|
|
{
|
|
unsigned long save_max = tracing_max_latency;
|
|
unsigned long count;
|
|
int ret;
|
|
|
|
/* start the tracing */
|
|
ret = tracer_init(trace, tr);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* reset the max latency */
|
|
tracing_max_latency = 0;
|
|
/* disable interrupts for a bit */
|
|
local_irq_disable();
|
|
udelay(100);
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* Stop the tracer to avoid a warning subsequent
|
|
* to buffer flipping failure because tracing_stop()
|
|
* disables the tr and max buffers, making flipping impossible
|
|
* in case of parallels max irqs off latencies.
|
|
*/
|
|
trace->stop(tr);
|
|
/* stop the tracing. */
|
|
tracing_stop();
|
|
/* check both trace buffers */
|
|
ret = trace_test_buffer(tr, NULL);
|
|
if (!ret)
|
|
ret = trace_test_buffer(&max_tr, &count);
|
|
trace->reset(tr);
|
|
tracing_start();
|
|
|
|
if (!ret && !count) {
|
|
printk(KERN_CONT ".. no entries found ..");
|
|
ret = -1;
|
|
}
|
|
|
|
tracing_max_latency = save_max;
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_IRQSOFF_TRACER */
|
|
|
|
#ifdef CONFIG_PREEMPT_TRACER
|
|
int
|
|
trace_selftest_startup_preemptoff(struct tracer *trace, struct trace_array *tr)
|
|
{
|
|
unsigned long save_max = tracing_max_latency;
|
|
unsigned long count;
|
|
int ret;
|
|
|
|
/*
|
|
* Now that the big kernel lock is no longer preemptable,
|
|
* and this is called with the BKL held, it will always
|
|
* fail. If preemption is already disabled, simply
|
|
* pass the test. When the BKL is removed, or becomes
|
|
* preemptible again, we will once again test this,
|
|
* so keep it in.
|
|
*/
|
|
if (preempt_count()) {
|
|
printk(KERN_CONT "can not test ... force ");
|
|
return 0;
|
|
}
|
|
|
|
/* start the tracing */
|
|
ret = tracer_init(trace, tr);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* reset the max latency */
|
|
tracing_max_latency = 0;
|
|
/* disable preemption for a bit */
|
|
preempt_disable();
|
|
udelay(100);
|
|
preempt_enable();
|
|
|
|
/*
|
|
* Stop the tracer to avoid a warning subsequent
|
|
* to buffer flipping failure because tracing_stop()
|
|
* disables the tr and max buffers, making flipping impossible
|
|
* in case of parallels max preempt off latencies.
|
|
*/
|
|
trace->stop(tr);
|
|
/* stop the tracing. */
|
|
tracing_stop();
|
|
/* check both trace buffers */
|
|
ret = trace_test_buffer(tr, NULL);
|
|
if (!ret)
|
|
ret = trace_test_buffer(&max_tr, &count);
|
|
trace->reset(tr);
|
|
tracing_start();
|
|
|
|
if (!ret && !count) {
|
|
printk(KERN_CONT ".. no entries found ..");
|
|
ret = -1;
|
|
}
|
|
|
|
tracing_max_latency = save_max;
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_PREEMPT_TRACER */
|
|
|
|
#if defined(CONFIG_IRQSOFF_TRACER) && defined(CONFIG_PREEMPT_TRACER)
|
|
int
|
|
trace_selftest_startup_preemptirqsoff(struct tracer *trace, struct trace_array *tr)
|
|
{
|
|
unsigned long save_max = tracing_max_latency;
|
|
unsigned long count;
|
|
int ret;
|
|
|
|
/*
|
|
* Now that the big kernel lock is no longer preemptable,
|
|
* and this is called with the BKL held, it will always
|
|
* fail. If preemption is already disabled, simply
|
|
* pass the test. When the BKL is removed, or becomes
|
|
* preemptible again, we will once again test this,
|
|
* so keep it in.
|
|
*/
|
|
if (preempt_count()) {
|
|
printk(KERN_CONT "can not test ... force ");
|
|
return 0;
|
|
}
|
|
|
|
/* start the tracing */
|
|
ret = tracer_init(trace, tr);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
goto out_no_start;
|
|
}
|
|
|
|
/* reset the max latency */
|
|
tracing_max_latency = 0;
|
|
|
|
/* disable preemption and interrupts for a bit */
|
|
preempt_disable();
|
|
local_irq_disable();
|
|
udelay(100);
|
|
preempt_enable();
|
|
/* reverse the order of preempt vs irqs */
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* Stop the tracer to avoid a warning subsequent
|
|
* to buffer flipping failure because tracing_stop()
|
|
* disables the tr and max buffers, making flipping impossible
|
|
* in case of parallels max irqs/preempt off latencies.
|
|
*/
|
|
trace->stop(tr);
|
|
/* stop the tracing. */
|
|
tracing_stop();
|
|
/* check both trace buffers */
|
|
ret = trace_test_buffer(tr, NULL);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = trace_test_buffer(&max_tr, &count);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!ret && !count) {
|
|
printk(KERN_CONT ".. no entries found ..");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* do the test by disabling interrupts first this time */
|
|
tracing_max_latency = 0;
|
|
tracing_start();
|
|
trace->start(tr);
|
|
|
|
preempt_disable();
|
|
local_irq_disable();
|
|
udelay(100);
|
|
preempt_enable();
|
|
/* reverse the order of preempt vs irqs */
|
|
local_irq_enable();
|
|
|
|
trace->stop(tr);
|
|
/* stop the tracing. */
|
|
tracing_stop();
|
|
/* check both trace buffers */
|
|
ret = trace_test_buffer(tr, NULL);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = trace_test_buffer(&max_tr, &count);
|
|
|
|
if (!ret && !count) {
|
|
printk(KERN_CONT ".. no entries found ..");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
tracing_start();
|
|
out_no_start:
|
|
trace->reset(tr);
|
|
tracing_max_latency = save_max;
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_IRQSOFF_TRACER && CONFIG_PREEMPT_TRACER */
|
|
|
|
#ifdef CONFIG_NOP_TRACER
|
|
int
|
|
trace_selftest_startup_nop(struct tracer *trace, struct trace_array *tr)
|
|
{
|
|
/* What could possibly go wrong? */
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_TRACER
|
|
static int trace_wakeup_test_thread(void *data)
|
|
{
|
|
/* Make this a RT thread, doesn't need to be too high */
|
|
struct sched_param param = { .sched_priority = 5 };
|
|
struct completion *x = data;
|
|
|
|
sched_setscheduler(current, SCHED_FIFO, ¶m);
|
|
|
|
/* Make it know we have a new prio */
|
|
complete(x);
|
|
|
|
/* now go to sleep and let the test wake us up */
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
|
|
/* we are awake, now wait to disappear */
|
|
while (!kthread_should_stop()) {
|
|
/*
|
|
* This is an RT task, do short sleeps to let
|
|
* others run.
|
|
*/
|
|
msleep(100);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
trace_selftest_startup_wakeup(struct tracer *trace, struct trace_array *tr)
|
|
{
|
|
unsigned long save_max = tracing_max_latency;
|
|
struct task_struct *p;
|
|
struct completion isrt;
|
|
unsigned long count;
|
|
int ret;
|
|
|
|
init_completion(&isrt);
|
|
|
|
/* create a high prio thread */
|
|
p = kthread_run(trace_wakeup_test_thread, &isrt, "ftrace-test");
|
|
if (IS_ERR(p)) {
|
|
printk(KERN_CONT "Failed to create ftrace wakeup test thread ");
|
|
return -1;
|
|
}
|
|
|
|
/* make sure the thread is running at an RT prio */
|
|
wait_for_completion(&isrt);
|
|
|
|
/* start the tracing */
|
|
ret = tracer_init(trace, tr);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* reset the max latency */
|
|
tracing_max_latency = 0;
|
|
|
|
/* sleep to let the RT thread sleep too */
|
|
msleep(100);
|
|
|
|
/*
|
|
* Yes this is slightly racy. It is possible that for some
|
|
* strange reason that the RT thread we created, did not
|
|
* call schedule for 100ms after doing the completion,
|
|
* and we do a wakeup on a task that already is awake.
|
|
* But that is extremely unlikely, and the worst thing that
|
|
* happens in such a case, is that we disable tracing.
|
|
* Honestly, if this race does happen something is horrible
|
|
* wrong with the system.
|
|
*/
|
|
|
|
wake_up_process(p);
|
|
|
|
/* give a little time to let the thread wake up */
|
|
msleep(100);
|
|
|
|
/* stop the tracing. */
|
|
tracing_stop();
|
|
/* check both trace buffers */
|
|
ret = trace_test_buffer(tr, NULL);
|
|
if (!ret)
|
|
ret = trace_test_buffer(&max_tr, &count);
|
|
|
|
|
|
trace->reset(tr);
|
|
tracing_start();
|
|
|
|
tracing_max_latency = save_max;
|
|
|
|
/* kill the thread */
|
|
kthread_stop(p);
|
|
|
|
if (!ret && !count) {
|
|
printk(KERN_CONT ".. no entries found ..");
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_SCHED_TRACER */
|
|
|
|
#ifdef CONFIG_CONTEXT_SWITCH_TRACER
|
|
int
|
|
trace_selftest_startup_sched_switch(struct tracer *trace, struct trace_array *tr)
|
|
{
|
|
unsigned long count;
|
|
int ret;
|
|
|
|
/* start the tracing */
|
|
ret = tracer_init(trace, tr);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Sleep for a 1/10 of a second */
|
|
msleep(100);
|
|
/* stop the tracing. */
|
|
tracing_stop();
|
|
/* check the trace buffer */
|
|
ret = trace_test_buffer(tr, &count);
|
|
trace->reset(tr);
|
|
tracing_start();
|
|
|
|
if (!ret && !count) {
|
|
printk(KERN_CONT ".. no entries found ..");
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_CONTEXT_SWITCH_TRACER */
|
|
|
|
#ifdef CONFIG_SYSPROF_TRACER
|
|
int
|
|
trace_selftest_startup_sysprof(struct tracer *trace, struct trace_array *tr)
|
|
{
|
|
unsigned long count;
|
|
int ret;
|
|
|
|
/* start the tracing */
|
|
ret = tracer_init(trace, tr);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Sleep for a 1/10 of a second */
|
|
msleep(100);
|
|
/* stop the tracing. */
|
|
tracing_stop();
|
|
/* check the trace buffer */
|
|
ret = trace_test_buffer(tr, &count);
|
|
trace->reset(tr);
|
|
tracing_start();
|
|
|
|
if (!ret && !count) {
|
|
printk(KERN_CONT ".. no entries found ..");
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_SYSPROF_TRACER */
|
|
|
|
#ifdef CONFIG_BRANCH_TRACER
|
|
int
|
|
trace_selftest_startup_branch(struct tracer *trace, struct trace_array *tr)
|
|
{
|
|
unsigned long count;
|
|
int ret;
|
|
|
|
/* start the tracing */
|
|
ret = tracer_init(trace, tr);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Sleep for a 1/10 of a second */
|
|
msleep(100);
|
|
/* stop the tracing. */
|
|
tracing_stop();
|
|
/* check the trace buffer */
|
|
ret = trace_test_buffer(tr, &count);
|
|
trace->reset(tr);
|
|
tracing_start();
|
|
|
|
if (!ret && !count) {
|
|
printk(KERN_CONT ".. no entries found ..");
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_BRANCH_TRACER */
|
|
|
|
#ifdef CONFIG_HW_BRANCH_TRACER
|
|
int
|
|
trace_selftest_startup_hw_branches(struct tracer *trace,
|
|
struct trace_array *tr)
|
|
{
|
|
struct trace_iterator *iter;
|
|
struct tracer tracer;
|
|
unsigned long count;
|
|
int ret;
|
|
|
|
if (!trace->open) {
|
|
printk(KERN_CONT "missing open function...");
|
|
return -1;
|
|
}
|
|
|
|
ret = tracer_init(trace, tr);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The hw-branch tracer needs to collect the trace from the various
|
|
* cpu trace buffers - before tracing is stopped.
|
|
*/
|
|
iter = kzalloc(sizeof(*iter), GFP_KERNEL);
|
|
if (!iter)
|
|
return -ENOMEM;
|
|
|
|
memcpy(&tracer, trace, sizeof(tracer));
|
|
|
|
iter->trace = &tracer;
|
|
iter->tr = tr;
|
|
iter->pos = -1;
|
|
mutex_init(&iter->mutex);
|
|
|
|
trace->open(iter);
|
|
|
|
mutex_destroy(&iter->mutex);
|
|
kfree(iter);
|
|
|
|
tracing_stop();
|
|
|
|
ret = trace_test_buffer(tr, &count);
|
|
trace->reset(tr);
|
|
tracing_start();
|
|
|
|
if (!ret && !count) {
|
|
printk(KERN_CONT "no entries found..");
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_HW_BRANCH_TRACER */
|
|
|
|
#ifdef CONFIG_KSYM_TRACER
|
|
static int ksym_selftest_dummy;
|
|
|
|
int
|
|
trace_selftest_startup_ksym(struct tracer *trace, struct trace_array *tr)
|
|
{
|
|
unsigned long count;
|
|
int ret;
|
|
|
|
/* start the tracing */
|
|
ret = tracer_init(trace, tr);
|
|
if (ret) {
|
|
warn_failed_init_tracer(trace, ret);
|
|
return ret;
|
|
}
|
|
|
|
ksym_selftest_dummy = 0;
|
|
/* Register the read-write tracing request */
|
|
|
|
ret = process_new_ksym_entry("ksym_selftest_dummy",
|
|
HW_BREAKPOINT_R | HW_BREAKPOINT_W,
|
|
(unsigned long)(&ksym_selftest_dummy));
|
|
|
|
if (ret < 0) {
|
|
printk(KERN_CONT "ksym_trace read-write startup test failed\n");
|
|
goto ret_path;
|
|
}
|
|
/* Perform a read and a write operation over the dummy variable to
|
|
* trigger the tracer
|
|
*/
|
|
if (ksym_selftest_dummy == 0)
|
|
ksym_selftest_dummy++;
|
|
|
|
/* stop the tracing. */
|
|
tracing_stop();
|
|
/* check the trace buffer */
|
|
ret = trace_test_buffer(tr, &count);
|
|
trace->reset(tr);
|
|
tracing_start();
|
|
|
|
/* read & write operations - one each is performed on the dummy variable
|
|
* triggering two entries in the trace buffer
|
|
*/
|
|
if (!ret && count != 2) {
|
|
printk(KERN_CONT "Ksym tracer startup test failed");
|
|
ret = -1;
|
|
}
|
|
|
|
ret_path:
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_KSYM_TRACER */
|
|
|