linux/drivers/base/power/main.c
Tomeu Vizoso aa8e54b559 PM / sleep: Go direct_complete if driver has no callbacks
If a suitable prepare callback cannot be found for a given device and
its driver has no PM callbacks at all, assume that it can go direct to
complete when the system goes to sleep.

The reason for this is that there's lots of devices in a system that do
no PM at all and there's no reason for them to prevent their ancestors
to do direct_complete if they can support it.

Signed-off-by: Tomeu Vizoso <tomeu.vizoso@collabora.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-01-08 01:12:06 +01:00

1774 lines
44 KiB
C

/*
* drivers/base/power/main.c - Where the driver meets power management.
*
* Copyright (c) 2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
*
* This file is released under the GPLv2
*
*
* The driver model core calls device_pm_add() when a device is registered.
* This will initialize the embedded device_pm_info object in the device
* and add it to the list of power-controlled devices. sysfs entries for
* controlling device power management will also be added.
*
* A separate list is used for keeping track of power info, because the power
* domain dependencies may differ from the ancestral dependencies that the
* subsystem list maintains.
*/
#include <linux/device.h>
#include <linux/kallsyms.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/pm-trace.h>
#include <linux/pm_wakeirq.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/async.h>
#include <linux/suspend.h>
#include <trace/events/power.h>
#include <linux/cpufreq.h>
#include <linux/cpuidle.h>
#include <linux/timer.h>
#include "../base.h"
#include "power.h"
typedef int (*pm_callback_t)(struct device *);
/*
* The entries in the dpm_list list are in a depth first order, simply
* because children are guaranteed to be discovered after parents, and
* are inserted at the back of the list on discovery.
*
* Since device_pm_add() may be called with a device lock held,
* we must never try to acquire a device lock while holding
* dpm_list_mutex.
*/
LIST_HEAD(dpm_list);
static LIST_HEAD(dpm_prepared_list);
static LIST_HEAD(dpm_suspended_list);
static LIST_HEAD(dpm_late_early_list);
static LIST_HEAD(dpm_noirq_list);
struct suspend_stats suspend_stats;
static DEFINE_MUTEX(dpm_list_mtx);
static pm_message_t pm_transition;
static int async_error;
static char *pm_verb(int event)
{
switch (event) {
case PM_EVENT_SUSPEND:
return "suspend";
case PM_EVENT_RESUME:
return "resume";
case PM_EVENT_FREEZE:
return "freeze";
case PM_EVENT_QUIESCE:
return "quiesce";
case PM_EVENT_HIBERNATE:
return "hibernate";
case PM_EVENT_THAW:
return "thaw";
case PM_EVENT_RESTORE:
return "restore";
case PM_EVENT_RECOVER:
return "recover";
default:
return "(unknown PM event)";
}
}
/**
* device_pm_sleep_init - Initialize system suspend-related device fields.
* @dev: Device object being initialized.
*/
void device_pm_sleep_init(struct device *dev)
{
dev->power.is_prepared = false;
dev->power.is_suspended = false;
dev->power.is_noirq_suspended = false;
dev->power.is_late_suspended = false;
init_completion(&dev->power.completion);
complete_all(&dev->power.completion);
dev->power.wakeup = NULL;
INIT_LIST_HEAD(&dev->power.entry);
}
/**
* device_pm_lock - Lock the list of active devices used by the PM core.
*/
void device_pm_lock(void)
{
mutex_lock(&dpm_list_mtx);
}
/**
* device_pm_unlock - Unlock the list of active devices used by the PM core.
*/
void device_pm_unlock(void)
{
mutex_unlock(&dpm_list_mtx);
}
/**
* device_pm_add - Add a device to the PM core's list of active devices.
* @dev: Device to add to the list.
*/
void device_pm_add(struct device *dev)
{
pr_debug("PM: Adding info for %s:%s\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
device_pm_check_callbacks(dev);
mutex_lock(&dpm_list_mtx);
if (dev->parent && dev->parent->power.is_prepared)
dev_warn(dev, "parent %s should not be sleeping\n",
dev_name(dev->parent));
list_add_tail(&dev->power.entry, &dpm_list);
mutex_unlock(&dpm_list_mtx);
}
/**
* device_pm_remove - Remove a device from the PM core's list of active devices.
* @dev: Device to be removed from the list.
*/
void device_pm_remove(struct device *dev)
{
pr_debug("PM: Removing info for %s:%s\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
complete_all(&dev->power.completion);
mutex_lock(&dpm_list_mtx);
list_del_init(&dev->power.entry);
mutex_unlock(&dpm_list_mtx);
device_wakeup_disable(dev);
pm_runtime_remove(dev);
device_pm_check_callbacks(dev);
}
/**
* device_pm_move_before - Move device in the PM core's list of active devices.
* @deva: Device to move in dpm_list.
* @devb: Device @deva should come before.
*/
void device_pm_move_before(struct device *deva, struct device *devb)
{
pr_debug("PM: Moving %s:%s before %s:%s\n",
deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
/* Delete deva from dpm_list and reinsert before devb. */
list_move_tail(&deva->power.entry, &devb->power.entry);
}
/**
* device_pm_move_after - Move device in the PM core's list of active devices.
* @deva: Device to move in dpm_list.
* @devb: Device @deva should come after.
*/
void device_pm_move_after(struct device *deva, struct device *devb)
{
pr_debug("PM: Moving %s:%s after %s:%s\n",
deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
/* Delete deva from dpm_list and reinsert after devb. */
list_move(&deva->power.entry, &devb->power.entry);
}
/**
* device_pm_move_last - Move device to end of the PM core's list of devices.
* @dev: Device to move in dpm_list.
*/
void device_pm_move_last(struct device *dev)
{
pr_debug("PM: Moving %s:%s to end of list\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
list_move_tail(&dev->power.entry, &dpm_list);
}
static ktime_t initcall_debug_start(struct device *dev)
{
ktime_t calltime = ktime_set(0, 0);
if (pm_print_times_enabled) {
pr_info("calling %s+ @ %i, parent: %s\n",
dev_name(dev), task_pid_nr(current),
dev->parent ? dev_name(dev->parent) : "none");
calltime = ktime_get();
}
return calltime;
}
static void initcall_debug_report(struct device *dev, ktime_t calltime,
int error, pm_message_t state, char *info)
{
ktime_t rettime;
s64 nsecs;
rettime = ktime_get();
nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
if (pm_print_times_enabled) {
pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
error, (unsigned long long)nsecs >> 10);
}
}
/**
* dpm_wait - Wait for a PM operation to complete.
* @dev: Device to wait for.
* @async: If unset, wait only if the device's power.async_suspend flag is set.
*/
static void dpm_wait(struct device *dev, bool async)
{
if (!dev)
return;
if (async || (pm_async_enabled && dev->power.async_suspend))
wait_for_completion(&dev->power.completion);
}
static int dpm_wait_fn(struct device *dev, void *async_ptr)
{
dpm_wait(dev, *((bool *)async_ptr));
return 0;
}
static void dpm_wait_for_children(struct device *dev, bool async)
{
device_for_each_child(dev, &async, dpm_wait_fn);
}
/**
* pm_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
*/
static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend;
case PM_EVENT_RESUME:
return ops->resume;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze;
case PM_EVENT_HIBERNATE:
return ops->poweroff;
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw;
break;
case PM_EVENT_RESTORE:
return ops->restore;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
}
return NULL;
}
/**
* pm_late_early_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
pm_message_t state)
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend_late;
case PM_EVENT_RESUME:
return ops->resume_early;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze_late;
case PM_EVENT_HIBERNATE:
return ops->poweroff_late;
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw_early;
case PM_EVENT_RESTORE:
return ops->restore_early;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
}
return NULL;
}
/**
* pm_noirq_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
*/
static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend_noirq;
case PM_EVENT_RESUME:
return ops->resume_noirq;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze_noirq;
case PM_EVENT_HIBERNATE:
return ops->poweroff_noirq;
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw_noirq;
case PM_EVENT_RESTORE:
return ops->restore_noirq;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
}
return NULL;
}
static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
{
dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
", may wakeup" : "");
}
static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
int error)
{
printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
dev_name(dev), pm_verb(state.event), info, error);
}
static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
{
ktime_t calltime;
u64 usecs64;
int usecs;
calltime = ktime_get();
usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
do_div(usecs64, NSEC_PER_USEC);
usecs = usecs64;
if (usecs == 0)
usecs = 1;
pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
info ?: "", info ? " " : "", pm_verb(state.event),
usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
}
static int dpm_run_callback(pm_callback_t cb, struct device *dev,
pm_message_t state, char *info)
{
ktime_t calltime;
int error;
if (!cb)
return 0;
calltime = initcall_debug_start(dev);
pm_dev_dbg(dev, state, info);
trace_device_pm_callback_start(dev, info, state.event);
error = cb(dev);
trace_device_pm_callback_end(dev, error);
suspend_report_result(cb, error);
initcall_debug_report(dev, calltime, error, state, info);
return error;
}
#ifdef CONFIG_DPM_WATCHDOG
struct dpm_watchdog {
struct device *dev;
struct task_struct *tsk;
struct timer_list timer;
};
#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
struct dpm_watchdog wd
/**
* dpm_watchdog_handler - Driver suspend / resume watchdog handler.
* @data: Watchdog object address.
*
* Called when a driver has timed out suspending or resuming.
* There's not much we can do here to recover so panic() to
* capture a crash-dump in pstore.
*/
static void dpm_watchdog_handler(unsigned long data)
{
struct dpm_watchdog *wd = (void *)data;
dev_emerg(wd->dev, "**** DPM device timeout ****\n");
show_stack(wd->tsk, NULL);
panic("%s %s: unrecoverable failure\n",
dev_driver_string(wd->dev), dev_name(wd->dev));
}
/**
* dpm_watchdog_set - Enable pm watchdog for given device.
* @wd: Watchdog. Must be allocated on the stack.
* @dev: Device to handle.
*/
static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
{
struct timer_list *timer = &wd->timer;
wd->dev = dev;
wd->tsk = current;
init_timer_on_stack(timer);
/* use same timeout value for both suspend and resume */
timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
timer->function = dpm_watchdog_handler;
timer->data = (unsigned long)wd;
add_timer(timer);
}
/**
* dpm_watchdog_clear - Disable suspend/resume watchdog.
* @wd: Watchdog to disable.
*/
static void dpm_watchdog_clear(struct dpm_watchdog *wd)
{
struct timer_list *timer = &wd->timer;
del_timer_sync(timer);
destroy_timer_on_stack(timer);
}
#else
#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
#define dpm_watchdog_set(x, y)
#define dpm_watchdog_clear(x)
#endif
/*------------------------- Resume routines -------------------------*/
/**
* device_resume_noirq - Execute an "early resume" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being resumed asynchronously.
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
*/
static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
TRACE_DEVICE(dev);
TRACE_RESUME(0);
if (dev->power.syscore || dev->power.direct_complete)
goto Out;
if (!dev->power.is_noirq_suspended)
goto Out;
dpm_wait(dev->parent, async);
if (dev->pm_domain) {
info = "noirq power domain ";
callback = pm_noirq_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "noirq type ";
callback = pm_noirq_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "noirq class ";
callback = pm_noirq_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "noirq bus ";
callback = pm_noirq_op(dev->bus->pm, state);
}
if (!callback && dev->driver && dev->driver->pm) {
info = "noirq driver ";
callback = pm_noirq_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
dev->power.is_noirq_suspended = false;
Out:
complete_all(&dev->power.completion);
TRACE_RESUME(error);
return error;
}
static bool is_async(struct device *dev)
{
return dev->power.async_suspend && pm_async_enabled
&& !pm_trace_is_enabled();
}
static void async_resume_noirq(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume_noirq(dev, pm_transition, true);
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
/**
* dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
* @state: PM transition of the system being carried out.
*
* Call the "noirq" resume handlers for all devices in dpm_noirq_list and
* enable device drivers to receive interrupts.
*/
void dpm_resume_noirq(pm_message_t state)
{
struct device *dev;
ktime_t starttime = ktime_get();
trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
mutex_lock(&dpm_list_mtx);
pm_transition = state;
/*
* Advanced the async threads upfront,
* in case the starting of async threads is
* delayed by non-async resuming devices.
*/
list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_resume_noirq, dev);
}
}
while (!list_empty(&dpm_noirq_list)) {
dev = to_device(dpm_noirq_list.next);
get_device(dev);
list_move_tail(&dev->power.entry, &dpm_late_early_list);
mutex_unlock(&dpm_list_mtx);
if (!is_async(dev)) {
int error;
error = device_resume_noirq(dev, state, false);
if (error) {
suspend_stats.failed_resume_noirq++;
dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, state, " noirq", error);
}
}
mutex_lock(&dpm_list_mtx);
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
dpm_show_time(starttime, state, "noirq");
resume_device_irqs();
device_wakeup_disarm_wake_irqs();
cpuidle_resume();
trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
}
/**
* device_resume_early - Execute an "early resume" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being resumed asynchronously.
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static int device_resume_early(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
TRACE_DEVICE(dev);
TRACE_RESUME(0);
if (dev->power.syscore || dev->power.direct_complete)
goto Out;
if (!dev->power.is_late_suspended)
goto Out;
dpm_wait(dev->parent, async);
if (dev->pm_domain) {
info = "early power domain ";
callback = pm_late_early_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "early type ";
callback = pm_late_early_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "early class ";
callback = pm_late_early_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "early bus ";
callback = pm_late_early_op(dev->bus->pm, state);
}
if (!callback && dev->driver && dev->driver->pm) {
info = "early driver ";
callback = pm_late_early_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
dev->power.is_late_suspended = false;
Out:
TRACE_RESUME(error);
pm_runtime_enable(dev);
complete_all(&dev->power.completion);
return error;
}
static void async_resume_early(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume_early(dev, pm_transition, true);
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
/**
* dpm_resume_early - Execute "early resume" callbacks for all devices.
* @state: PM transition of the system being carried out.
*/
void dpm_resume_early(pm_message_t state)
{
struct device *dev;
ktime_t starttime = ktime_get();
trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
mutex_lock(&dpm_list_mtx);
pm_transition = state;
/*
* Advanced the async threads upfront,
* in case the starting of async threads is
* delayed by non-async resuming devices.
*/
list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_resume_early, dev);
}
}
while (!list_empty(&dpm_late_early_list)) {
dev = to_device(dpm_late_early_list.next);
get_device(dev);
list_move_tail(&dev->power.entry, &dpm_suspended_list);
mutex_unlock(&dpm_list_mtx);
if (!is_async(dev)) {
int error;
error = device_resume_early(dev, state, false);
if (error) {
suspend_stats.failed_resume_early++;
dpm_save_failed_step(SUSPEND_RESUME_EARLY);
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, state, " early", error);
}
}
mutex_lock(&dpm_list_mtx);
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
dpm_show_time(starttime, state, "early");
trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
}
/**
* dpm_resume_start - Execute "noirq" and "early" device callbacks.
* @state: PM transition of the system being carried out.
*/
void dpm_resume_start(pm_message_t state)
{
dpm_resume_noirq(state);
dpm_resume_early(state);
}
EXPORT_SYMBOL_GPL(dpm_resume_start);
/**
* device_resume - Execute "resume" callbacks for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being resumed asynchronously.
*/
static int device_resume(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
DECLARE_DPM_WATCHDOG_ON_STACK(wd);
TRACE_DEVICE(dev);
TRACE_RESUME(0);
if (dev->power.syscore)
goto Complete;
if (dev->power.direct_complete) {
/* Match the pm_runtime_disable() in __device_suspend(). */
pm_runtime_enable(dev);
goto Complete;
}
dpm_wait(dev->parent, async);
dpm_watchdog_set(&wd, dev);
device_lock(dev);
/*
* This is a fib. But we'll allow new children to be added below
* a resumed device, even if the device hasn't been completed yet.
*/
dev->power.is_prepared = false;
if (!dev->power.is_suspended)
goto Unlock;
if (dev->pm_domain) {
info = "power domain ";
callback = pm_op(&dev->pm_domain->ops, state);
goto Driver;
}
if (dev->type && dev->type->pm) {
info = "type ";
callback = pm_op(dev->type->pm, state);
goto Driver;
}
if (dev->class) {
if (dev->class->pm) {
info = "class ";
callback = pm_op(dev->class->pm, state);
goto Driver;
} else if (dev->class->resume) {
info = "legacy class ";
callback = dev->class->resume;
goto End;
}
}
if (dev->bus) {
if (dev->bus->pm) {
info = "bus ";
callback = pm_op(dev->bus->pm, state);
} else if (dev->bus->resume) {
info = "legacy bus ";
callback = dev->bus->resume;
goto End;
}
}
Driver:
if (!callback && dev->driver && dev->driver->pm) {
info = "driver ";
callback = pm_op(dev->driver->pm, state);
}
End:
error = dpm_run_callback(callback, dev, state, info);
dev->power.is_suspended = false;
Unlock:
device_unlock(dev);
dpm_watchdog_clear(&wd);
Complete:
complete_all(&dev->power.completion);
TRACE_RESUME(error);
return error;
}
static void async_resume(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume(dev, pm_transition, true);
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
/**
* dpm_resume - Execute "resume" callbacks for non-sysdev devices.
* @state: PM transition of the system being carried out.
*
* Execute the appropriate "resume" callback for all devices whose status
* indicates that they are suspended.
*/
void dpm_resume(pm_message_t state)
{
struct device *dev;
ktime_t starttime = ktime_get();
trace_suspend_resume(TPS("dpm_resume"), state.event, true);
might_sleep();
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_resume, dev);
}
}
while (!list_empty(&dpm_suspended_list)) {
dev = to_device(dpm_suspended_list.next);
get_device(dev);
if (!is_async(dev)) {
int error;
mutex_unlock(&dpm_list_mtx);
error = device_resume(dev, state, false);
if (error) {
suspend_stats.failed_resume++;
dpm_save_failed_step(SUSPEND_RESUME);
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, state, "", error);
}
mutex_lock(&dpm_list_mtx);
}
if (!list_empty(&dev->power.entry))
list_move_tail(&dev->power.entry, &dpm_prepared_list);
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
dpm_show_time(starttime, state, NULL);
cpufreq_resume();
trace_suspend_resume(TPS("dpm_resume"), state.event, false);
}
/**
* device_complete - Complete a PM transition for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
*/
static void device_complete(struct device *dev, pm_message_t state)
{
void (*callback)(struct device *) = NULL;
char *info = NULL;
if (dev->power.syscore)
return;
device_lock(dev);
if (dev->pm_domain) {
info = "completing power domain ";
callback = dev->pm_domain->ops.complete;
} else if (dev->type && dev->type->pm) {
info = "completing type ";
callback = dev->type->pm->complete;
} else if (dev->class && dev->class->pm) {
info = "completing class ";
callback = dev->class->pm->complete;
} else if (dev->bus && dev->bus->pm) {
info = "completing bus ";
callback = dev->bus->pm->complete;
}
if (!callback && dev->driver && dev->driver->pm) {
info = "completing driver ";
callback = dev->driver->pm->complete;
}
if (callback) {
pm_dev_dbg(dev, state, info);
callback(dev);
}
device_unlock(dev);
pm_runtime_put(dev);
}
/**
* dpm_complete - Complete a PM transition for all non-sysdev devices.
* @state: PM transition of the system being carried out.
*
* Execute the ->complete() callbacks for all devices whose PM status is not
* DPM_ON (this allows new devices to be registered).
*/
void dpm_complete(pm_message_t state)
{
struct list_head list;
trace_suspend_resume(TPS("dpm_complete"), state.event, true);
might_sleep();
INIT_LIST_HEAD(&list);
mutex_lock(&dpm_list_mtx);
while (!list_empty(&dpm_prepared_list)) {
struct device *dev = to_device(dpm_prepared_list.prev);
get_device(dev);
dev->power.is_prepared = false;
list_move(&dev->power.entry, &list);
mutex_unlock(&dpm_list_mtx);
trace_device_pm_callback_start(dev, "", state.event);
device_complete(dev, state);
trace_device_pm_callback_end(dev, 0);
mutex_lock(&dpm_list_mtx);
put_device(dev);
}
list_splice(&list, &dpm_list);
mutex_unlock(&dpm_list_mtx);
/* Allow device probing and trigger re-probing of deferred devices */
device_unblock_probing();
trace_suspend_resume(TPS("dpm_complete"), state.event, false);
}
/**
* dpm_resume_end - Execute "resume" callbacks and complete system transition.
* @state: PM transition of the system being carried out.
*
* Execute "resume" callbacks for all devices and complete the PM transition of
* the system.
*/
void dpm_resume_end(pm_message_t state)
{
dpm_resume(state);
dpm_complete(state);
}
EXPORT_SYMBOL_GPL(dpm_resume_end);
/*------------------------- Suspend routines -------------------------*/
/**
* resume_event - Return a "resume" message for given "suspend" sleep state.
* @sleep_state: PM message representing a sleep state.
*
* Return a PM message representing the resume event corresponding to given
* sleep state.
*/
static pm_message_t resume_event(pm_message_t sleep_state)
{
switch (sleep_state.event) {
case PM_EVENT_SUSPEND:
return PMSG_RESUME;
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return PMSG_RECOVER;
case PM_EVENT_HIBERNATE:
return PMSG_RESTORE;
}
return PMSG_ON;
}
/**
* device_suspend_noirq - Execute a "late suspend" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being suspended asynchronously.
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
*/
static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
if (async_error)
goto Complete;
if (pm_wakeup_pending()) {
async_error = -EBUSY;
goto Complete;
}
if (dev->power.syscore || dev->power.direct_complete)
goto Complete;
dpm_wait_for_children(dev, async);
if (dev->pm_domain) {
info = "noirq power domain ";
callback = pm_noirq_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "noirq type ";
callback = pm_noirq_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "noirq class ";
callback = pm_noirq_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "noirq bus ";
callback = pm_noirq_op(dev->bus->pm, state);
}
if (!callback && dev->driver && dev->driver->pm) {
info = "noirq driver ";
callback = pm_noirq_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
if (!error)
dev->power.is_noirq_suspended = true;
else
async_error = error;
Complete:
complete_all(&dev->power.completion);
TRACE_SUSPEND(error);
return error;
}
static void async_suspend_noirq(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend_noirq(dev, pm_transition, true);
if (error) {
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, pm_transition, " async", error);
}
put_device(dev);
}
static int device_suspend_noirq(struct device *dev)
{
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_suspend_noirq, dev);
return 0;
}
return __device_suspend_noirq(dev, pm_transition, false);
}
/**
* dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
* @state: PM transition of the system being carried out.
*
* Prevent device drivers from receiving interrupts and call the "noirq" suspend
* handlers for all non-sysdev devices.
*/
int dpm_suspend_noirq(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
cpuidle_pause();
device_wakeup_arm_wake_irqs();
suspend_device_irqs();
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
while (!list_empty(&dpm_late_early_list)) {
struct device *dev = to_device(dpm_late_early_list.prev);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
error = device_suspend_noirq(dev);
mutex_lock(&dpm_list_mtx);
if (error) {
pm_dev_err(dev, state, " noirq", error);
dpm_save_failed_dev(dev_name(dev));
put_device(dev);
break;
}
if (!list_empty(&dev->power.entry))
list_move(&dev->power.entry, &dpm_noirq_list);
put_device(dev);
if (async_error)
break;
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
if (!error)
error = async_error;
if (error) {
suspend_stats.failed_suspend_noirq++;
dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
dpm_resume_noirq(resume_event(state));
} else {
dpm_show_time(starttime, state, "noirq");
}
trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
return error;
}
/**
* device_suspend_late - Execute a "late suspend" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being suspended asynchronously.
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
__pm_runtime_disable(dev, false);
if (async_error)
goto Complete;
if (pm_wakeup_pending()) {
async_error = -EBUSY;
goto Complete;
}
if (dev->power.syscore || dev->power.direct_complete)
goto Complete;
dpm_wait_for_children(dev, async);
if (dev->pm_domain) {
info = "late power domain ";
callback = pm_late_early_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "late type ";
callback = pm_late_early_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "late class ";
callback = pm_late_early_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "late bus ";
callback = pm_late_early_op(dev->bus->pm, state);
}
if (!callback && dev->driver && dev->driver->pm) {
info = "late driver ";
callback = pm_late_early_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
if (!error)
dev->power.is_late_suspended = true;
else
async_error = error;
Complete:
TRACE_SUSPEND(error);
complete_all(&dev->power.completion);
return error;
}
static void async_suspend_late(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend_late(dev, pm_transition, true);
if (error) {
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, pm_transition, " async", error);
}
put_device(dev);
}
static int device_suspend_late(struct device *dev)
{
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_suspend_late, dev);
return 0;
}
return __device_suspend_late(dev, pm_transition, false);
}
/**
* dpm_suspend_late - Execute "late suspend" callbacks for all devices.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend_late(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
while (!list_empty(&dpm_suspended_list)) {
struct device *dev = to_device(dpm_suspended_list.prev);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
error = device_suspend_late(dev);
mutex_lock(&dpm_list_mtx);
if (error) {
pm_dev_err(dev, state, " late", error);
dpm_save_failed_dev(dev_name(dev));
put_device(dev);
break;
}
if (!list_empty(&dev->power.entry))
list_move(&dev->power.entry, &dpm_late_early_list);
put_device(dev);
if (async_error)
break;
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
if (!error)
error = async_error;
if (error) {
suspend_stats.failed_suspend_late++;
dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
dpm_resume_early(resume_event(state));
} else {
dpm_show_time(starttime, state, "late");
}
trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
return error;
}
/**
* dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend_end(pm_message_t state)
{
int error = dpm_suspend_late(state);
if (error)
return error;
error = dpm_suspend_noirq(state);
if (error) {
dpm_resume_early(resume_event(state));
return error;
}
return 0;
}
EXPORT_SYMBOL_GPL(dpm_suspend_end);
/**
* legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
* @dev: Device to suspend.
* @state: PM transition of the system being carried out.
* @cb: Suspend callback to execute.
* @info: string description of caller.
*/
static int legacy_suspend(struct device *dev, pm_message_t state,
int (*cb)(struct device *dev, pm_message_t state),
char *info)
{
int error;
ktime_t calltime;
calltime = initcall_debug_start(dev);
trace_device_pm_callback_start(dev, info, state.event);
error = cb(dev, state);
trace_device_pm_callback_end(dev, error);
suspend_report_result(cb, error);
initcall_debug_report(dev, calltime, error, state, info);
return error;
}
/**
* device_suspend - Execute "suspend" callbacks for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being suspended asynchronously.
*/
static int __device_suspend(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
DECLARE_DPM_WATCHDOG_ON_STACK(wd);
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
dpm_wait_for_children(dev, async);
if (async_error)
goto Complete;
/*
* If a device configured to wake up the system from sleep states
* has been suspended at run time and there's a resume request pending
* for it, this is equivalent to the device signaling wakeup, so the
* system suspend operation should be aborted.
*/
if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
pm_wakeup_event(dev, 0);
if (pm_wakeup_pending()) {
async_error = -EBUSY;
goto Complete;
}
if (dev->power.syscore)
goto Complete;
if (dev->power.direct_complete) {
if (pm_runtime_status_suspended(dev)) {
pm_runtime_disable(dev);
if (pm_runtime_status_suspended(dev))
goto Complete;
pm_runtime_enable(dev);
}
dev->power.direct_complete = false;
}
dpm_watchdog_set(&wd, dev);
device_lock(dev);
if (dev->pm_domain) {
info = "power domain ";
callback = pm_op(&dev->pm_domain->ops, state);
goto Run;
}
if (dev->type && dev->type->pm) {
info = "type ";
callback = pm_op(dev->type->pm, state);
goto Run;
}
if (dev->class) {
if (dev->class->pm) {
info = "class ";
callback = pm_op(dev->class->pm, state);
goto Run;
} else if (dev->class->suspend) {
pm_dev_dbg(dev, state, "legacy class ");
error = legacy_suspend(dev, state, dev->class->suspend,
"legacy class ");
goto End;
}
}
if (dev->bus) {
if (dev->bus->pm) {
info = "bus ";
callback = pm_op(dev->bus->pm, state);
} else if (dev->bus->suspend) {
pm_dev_dbg(dev, state, "legacy bus ");
error = legacy_suspend(dev, state, dev->bus->suspend,
"legacy bus ");
goto End;
}
}
Run:
if (!callback && dev->driver && dev->driver->pm) {
info = "driver ";
callback = pm_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
End:
if (!error) {
struct device *parent = dev->parent;
dev->power.is_suspended = true;
if (parent) {
spin_lock_irq(&parent->power.lock);
dev->parent->power.direct_complete = false;
if (dev->power.wakeup_path
&& !dev->parent->power.ignore_children)
dev->parent->power.wakeup_path = true;
spin_unlock_irq(&parent->power.lock);
}
}
device_unlock(dev);
dpm_watchdog_clear(&wd);
Complete:
complete_all(&dev->power.completion);
if (error)
async_error = error;
TRACE_SUSPEND(error);
return error;
}
static void async_suspend(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend(dev, pm_transition, true);
if (error) {
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, pm_transition, " async", error);
}
put_device(dev);
}
static int device_suspend(struct device *dev)
{
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_suspend, dev);
return 0;
}
return __device_suspend(dev, pm_transition, false);
}
/**
* dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
might_sleep();
cpufreq_suspend();
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
while (!list_empty(&dpm_prepared_list)) {
struct device *dev = to_device(dpm_prepared_list.prev);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
error = device_suspend(dev);
mutex_lock(&dpm_list_mtx);
if (error) {
pm_dev_err(dev, state, "", error);
dpm_save_failed_dev(dev_name(dev));
put_device(dev);
break;
}
if (!list_empty(&dev->power.entry))
list_move(&dev->power.entry, &dpm_suspended_list);
put_device(dev);
if (async_error)
break;
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
if (!error)
error = async_error;
if (error) {
suspend_stats.failed_suspend++;
dpm_save_failed_step(SUSPEND_SUSPEND);
} else
dpm_show_time(starttime, state, NULL);
trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
return error;
}
/**
* device_prepare - Prepare a device for system power transition.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
*
* Execute the ->prepare() callback(s) for given device. No new children of the
* device may be registered after this function has returned.
*/
static int device_prepare(struct device *dev, pm_message_t state)
{
int (*callback)(struct device *) = NULL;
char *info = NULL;
int ret = 0;
if (dev->power.syscore)
return 0;
/*
* If a device's parent goes into runtime suspend at the wrong time,
* it won't be possible to resume the device. To prevent this we
* block runtime suspend here, during the prepare phase, and allow
* it again during the complete phase.
*/
pm_runtime_get_noresume(dev);
device_lock(dev);
dev->power.wakeup_path = device_may_wakeup(dev);
if (dev->power.no_pm_callbacks) {
ret = 1; /* Let device go direct_complete */
goto unlock;
}
if (dev->pm_domain) {
info = "preparing power domain ";
callback = dev->pm_domain->ops.prepare;
} else if (dev->type && dev->type->pm) {
info = "preparing type ";
callback = dev->type->pm->prepare;
} else if (dev->class && dev->class->pm) {
info = "preparing class ";
callback = dev->class->pm->prepare;
} else if (dev->bus && dev->bus->pm) {
info = "preparing bus ";
callback = dev->bus->pm->prepare;
}
if (!callback && dev->driver && dev->driver->pm) {
info = "preparing driver ";
callback = dev->driver->pm->prepare;
}
if (callback)
ret = callback(dev);
unlock:
device_unlock(dev);
if (ret < 0) {
suspend_report_result(callback, ret);
pm_runtime_put(dev);
return ret;
}
/*
* A positive return value from ->prepare() means "this device appears
* to be runtime-suspended and its state is fine, so if it really is
* runtime-suspended, you can leave it in that state provided that you
* will do the same thing with all of its descendants". This only
* applies to suspend transitions, however.
*/
spin_lock_irq(&dev->power.lock);
dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
spin_unlock_irq(&dev->power.lock);
return 0;
}
/**
* dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
* @state: PM transition of the system being carried out.
*
* Execute the ->prepare() callback(s) for all devices.
*/
int dpm_prepare(pm_message_t state)
{
int error = 0;
trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
might_sleep();
/*
* Give a chance for the known devices to complete their probes, before
* disable probing of devices. This sync point is important at least
* at boot time + hibernation restore.
*/
wait_for_device_probe();
/*
* It is unsafe if probing of devices will happen during suspend or
* hibernation and system behavior will be unpredictable in this case.
* So, let's prohibit device's probing here and defer their probes
* instead. The normal behavior will be restored in dpm_complete().
*/
device_block_probing();
mutex_lock(&dpm_list_mtx);
while (!list_empty(&dpm_list)) {
struct device *dev = to_device(dpm_list.next);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
trace_device_pm_callback_start(dev, "", state.event);
error = device_prepare(dev, state);
trace_device_pm_callback_end(dev, error);
mutex_lock(&dpm_list_mtx);
if (error) {
if (error == -EAGAIN) {
put_device(dev);
error = 0;
continue;
}
printk(KERN_INFO "PM: Device %s not prepared "
"for power transition: code %d\n",
dev_name(dev), error);
put_device(dev);
break;
}
dev->power.is_prepared = true;
if (!list_empty(&dev->power.entry))
list_move_tail(&dev->power.entry, &dpm_prepared_list);
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
return error;
}
/**
* dpm_suspend_start - Prepare devices for PM transition and suspend them.
* @state: PM transition of the system being carried out.
*
* Prepare all non-sysdev devices for system PM transition and execute "suspend"
* callbacks for them.
*/
int dpm_suspend_start(pm_message_t state)
{
int error;
error = dpm_prepare(state);
if (error) {
suspend_stats.failed_prepare++;
dpm_save_failed_step(SUSPEND_PREPARE);
} else
error = dpm_suspend(state);
return error;
}
EXPORT_SYMBOL_GPL(dpm_suspend_start);
void __suspend_report_result(const char *function, void *fn, int ret)
{
if (ret)
printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
}
EXPORT_SYMBOL_GPL(__suspend_report_result);
/**
* device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
* @dev: Device to wait for.
* @subordinate: Device that needs to wait for @dev.
*/
int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
{
dpm_wait(dev, subordinate->power.async_suspend);
return async_error;
}
EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
/**
* dpm_for_each_dev - device iterator.
* @data: data for the callback.
* @fn: function to be called for each device.
*
* Iterate over devices in dpm_list, and call @fn for each device,
* passing it @data.
*/
void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
{
struct device *dev;
if (!fn)
return;
device_pm_lock();
list_for_each_entry(dev, &dpm_list, power.entry)
fn(dev, data);
device_pm_unlock();
}
EXPORT_SYMBOL_GPL(dpm_for_each_dev);
static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
{
if (!ops)
return true;
return !ops->prepare &&
!ops->suspend &&
!ops->suspend_late &&
!ops->suspend_noirq &&
!ops->resume_noirq &&
!ops->resume_early &&
!ops->resume &&
!ops->complete;
}
void device_pm_check_callbacks(struct device *dev)
{
spin_lock_irq(&dev->power.lock);
dev->power.no_pm_callbacks =
(!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
(!dev->driver || pm_ops_is_empty(dev->driver->pm));
spin_unlock_irq(&dev->power.lock);
}