linux/fs/bcachefs/movinggc.c
Kent Overstreet d4bf5eecd7 bcachefs: Use bch2_err_str() in error messages
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
2023-10-22 17:09:36 -04:00

462 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Moving/copying garbage collector
*
* Copyright 2012 Google, Inc.
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "btree_iter.h"
#include "btree_update.h"
#include "buckets.h"
#include "clock.h"
#include "disk_groups.h"
#include "errcode.h"
#include "error.h"
#include "extents.h"
#include "eytzinger.h"
#include "io.h"
#include "keylist.h"
#include "move.h"
#include "movinggc.h"
#include "super-io.h"
#include "trace.h"
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/math64.h>
#include <linux/sched/task.h>
#include <linux/sort.h>
#include <linux/wait.h>
static int bucket_offset_cmp(const void *_l, const void *_r, size_t size)
{
const struct copygc_heap_entry *l = _l;
const struct copygc_heap_entry *r = _r;
return cmp_int(l->dev, r->dev) ?:
cmp_int(l->offset, r->offset);
}
static bool copygc_pred(struct bch_fs *c, void *arg,
struct bkey_s_c k,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
copygc_heap *h = &c->copygc_heap;
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p = { 0 };
unsigned i = 0;
/*
* We need to use the journal reserve here, because
* - journal reclaim depends on btree key cache
* flushing to make forward progress,
* - which has to make forward progress when the
* journal is pre-reservation full,
* - and depends on allocation - meaning allocator and
* copygc
*/
data_opts->rewrite_ptrs = 0;
data_opts->target = io_opts->background_target;
data_opts->extra_replicas = 0;
data_opts->btree_insert_flags = BTREE_INSERT_USE_RESERVE|
JOURNAL_WATERMARK_copygc;
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
struct copygc_heap_entry search = {
.dev = p.ptr.dev,
.offset = p.ptr.offset,
};
ssize_t eytz;
if (p.ptr.cached)
continue;
eytz = eytzinger0_find_le(h->data, h->used,
sizeof(h->data[0]),
bucket_offset_cmp, &search);
#if 0
/* eytzinger search verify code: */
ssize_t j = -1, k;
for (k = 0; k < h->used; k++)
if (h->data[k].offset <= ptr->offset &&
(j < 0 || h->data[k].offset > h->data[j].offset))
j = k;
BUG_ON(i != j);
#endif
if (eytz >= 0 &&
p.ptr.dev == h->data[eytz].dev &&
p.ptr.offset < h->data[eytz].offset + ca->mi.bucket_size &&
p.ptr.gen == h->data[eytz].gen)
data_opts->rewrite_ptrs |= 1U << i;
i++;
}
return data_opts->rewrite_ptrs != 0;
}
static inline int fragmentation_cmp(copygc_heap *heap,
struct copygc_heap_entry l,
struct copygc_heap_entry r)
{
return cmp_int(l.fragmentation, r.fragmentation);
}
static int walk_buckets_to_copygc(struct bch_fs *c)
{
copygc_heap *h = &c->copygc_heap;
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
struct bch_alloc_v4 a;
int ret;
bch2_trans_init(&trans, c, 0, 0);
for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN,
BTREE_ITER_PREFETCH, k, ret) {
struct bch_dev *ca = bch_dev_bkey_exists(c, iter.pos.inode);
struct copygc_heap_entry e;
bch2_alloc_to_v4(k, &a);
if (a.data_type != BCH_DATA_user ||
a.dirty_sectors >= ca->mi.bucket_size ||
bch2_bucket_is_open(c, iter.pos.inode, iter.pos.offset))
continue;
e = (struct copygc_heap_entry) {
.dev = iter.pos.inode,
.gen = a.gen,
.replicas = 1 + a.stripe_redundancy,
.fragmentation = div_u64((u64) a.dirty_sectors * (1ULL << 31),
ca->mi.bucket_size),
.sectors = a.dirty_sectors,
.offset = bucket_to_sector(ca, iter.pos.offset),
};
heap_add_or_replace(h, e, -fragmentation_cmp, NULL);
}
bch2_trans_iter_exit(&trans, &iter);
bch2_trans_exit(&trans);
return ret;
}
static int bucket_inorder_cmp(const void *_l, const void *_r)
{
const struct copygc_heap_entry *l = _l;
const struct copygc_heap_entry *r = _r;
return cmp_int(l->dev, r->dev) ?: cmp_int(l->offset, r->offset);
}
static int check_copygc_was_done(struct bch_fs *c,
u64 *sectors_not_moved,
u64 *buckets_not_moved)
{
copygc_heap *h = &c->copygc_heap;
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
struct bch_alloc_v4 a;
struct copygc_heap_entry *i;
int ret = 0;
sort(h->data, h->used, sizeof(h->data[0]), bucket_inorder_cmp, NULL);
bch2_trans_init(&trans, c, 0, 0);
bch2_trans_iter_init(&trans, &iter, BTREE_ID_alloc, POS_MIN, 0);
for (i = h->data; i < h->data + h->used; i++) {
struct bch_dev *ca = bch_dev_bkey_exists(c, i->dev);
bch2_btree_iter_set_pos(&iter, POS(i->dev, sector_to_bucket(ca, i->offset)));
ret = lockrestart_do(&trans,
bkey_err(k = bch2_btree_iter_peek_slot(&iter)));
if (ret)
break;
bch2_alloc_to_v4(k, &a);
if (a.gen == i->gen && a.dirty_sectors) {
*sectors_not_moved += a.dirty_sectors;
*buckets_not_moved += 1;
}
}
bch2_trans_iter_exit(&trans, &iter);
bch2_trans_exit(&trans);
return ret;
}
static int bch2_copygc(struct bch_fs *c)
{
copygc_heap *h = &c->copygc_heap;
struct copygc_heap_entry e, *i;
struct bch_move_stats move_stats;
u64 sectors_to_move = 0, sectors_to_write = 0, sectors_not_moved = 0;
u64 sectors_reserved = 0;
u64 buckets_to_move, buckets_not_moved = 0;
struct bch_dev *ca;
unsigned dev_idx;
size_t heap_size = 0;
int ret;
bch_move_stats_init(&move_stats, "copygc");
/*
* Find buckets with lowest sector counts, skipping completely
* empty buckets, by building a maxheap sorted by sector count,
* and repeatedly replacing the maximum element until all
* buckets have been visited.
*/
h->used = 0;
for_each_rw_member(ca, c, dev_idx)
heap_size += ca->mi.nbuckets >> 7;
if (h->size < heap_size) {
free_heap(&c->copygc_heap);
if (!init_heap(&c->copygc_heap, heap_size, GFP_KERNEL)) {
bch_err(c, "error allocating copygc heap");
return 0;
}
}
for_each_rw_member(ca, c, dev_idx) {
struct bch_dev_usage usage = bch2_dev_usage_read(ca);
u64 avail = max_t(s64, 0,
usage.d[BCH_DATA_free].buckets +
usage.d[BCH_DATA_need_discard].buckets -
ca->nr_open_buckets -
bch2_dev_buckets_reserved(ca, RESERVE_movinggc));
avail = min(avail, ca->mi.nbuckets >> 6);
sectors_reserved += avail * ca->mi.bucket_size;
}
ret = walk_buckets_to_copygc(c);
if (ret) {
bch2_fs_fatal_error(c, "error walking buckets to copygc!");
return ret;
}
if (!h->used) {
s64 wait = S64_MAX, dev_wait;
u64 dev_min_wait_fragmented = 0;
u64 dev_min_wait_allowed = 0;
int dev_min_wait = -1;
for_each_rw_member(ca, c, dev_idx) {
struct bch_dev_usage usage = bch2_dev_usage_read(ca);
s64 allowed = ((__dev_buckets_available(ca, usage, RESERVE_none) *
ca->mi.bucket_size) >> 1);
s64 fragmented = usage.d[BCH_DATA_user].fragmented;
dev_wait = max(0LL, allowed - fragmented);
if (dev_min_wait < 0 || dev_wait < wait) {
dev_min_wait = dev_idx;
dev_min_wait_fragmented = fragmented;
dev_min_wait_allowed = allowed;
}
}
bch_err_ratelimited(c, "copygc requested to run but found no buckets to move! dev %u fragmented %llu allowed %llu",
dev_min_wait, dev_min_wait_fragmented, dev_min_wait_allowed);
return 0;
}
/*
* Our btree node allocations also come out of RESERVE_movingc:
*/
sectors_reserved = (sectors_reserved * 3) / 4;
if (!sectors_reserved) {
bch2_fs_fatal_error(c, "stuck, ran out of copygc reserve!");
return -1;
}
for (i = h->data; i < h->data + h->used; i++) {
sectors_to_move += i->sectors;
sectors_to_write += i->sectors * i->replicas;
}
while (sectors_to_write > sectors_reserved) {
BUG_ON(!heap_pop(h, e, -fragmentation_cmp, NULL));
sectors_to_write -= e.sectors * e.replicas;
}
buckets_to_move = h->used;
if (!buckets_to_move) {
bch_err_ratelimited(c, "copygc cannot run - sectors_reserved %llu!",
sectors_reserved);
return 0;
}
eytzinger0_sort(h->data, h->used,
sizeof(h->data[0]),
bucket_offset_cmp, NULL);
ret = bch2_move_data(c,
0, POS_MIN,
BTREE_ID_NR, POS_MAX,
NULL,
&move_stats,
writepoint_ptr(&c->copygc_write_point),
false,
copygc_pred, NULL);
if (ret < 0)
bch_err(c, "error from bch2_move_data() in copygc: %s", bch2_err_str(ret));
if (ret)
return ret;
ret = check_copygc_was_done(c, &sectors_not_moved, &buckets_not_moved);
if (ret) {
bch_err(c, "error %i from check_copygc_was_done()", ret);
return ret;
}
if (sectors_not_moved)
bch_warn_ratelimited(c,
"copygc finished but %llu/%llu sectors, %llu/%llu buckets not moved (move stats: moved %llu sectors, raced %llu keys, %llu sectors)",
sectors_not_moved, sectors_to_move,
buckets_not_moved, buckets_to_move,
atomic64_read(&move_stats.sectors_moved),
atomic64_read(&move_stats.keys_raced),
atomic64_read(&move_stats.sectors_raced));
trace_copygc(c,
atomic64_read(&move_stats.sectors_moved), sectors_not_moved,
buckets_to_move, buckets_not_moved);
return 0;
}
/*
* Copygc runs when the amount of fragmented data is above some arbitrary
* threshold:
*
* The threshold at the limit - when the device is full - is the amount of space
* we reserved in bch2_recalc_capacity; we can't have more than that amount of
* disk space stranded due to fragmentation and store everything we have
* promised to store.
*
* But we don't want to be running copygc unnecessarily when the device still
* has plenty of free space - rather, we want copygc to smoothly run every so
* often and continually reduce the amount of fragmented space as the device
* fills up. So, we increase the threshold by half the current free space.
*/
unsigned long bch2_copygc_wait_amount(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned dev_idx;
s64 wait = S64_MAX, fragmented_allowed, fragmented;
for_each_rw_member(ca, c, dev_idx) {
struct bch_dev_usage usage = bch2_dev_usage_read(ca);
fragmented_allowed = ((__dev_buckets_available(ca, usage, RESERVE_none) *
ca->mi.bucket_size) >> 1);
fragmented = usage.d[BCH_DATA_user].fragmented;
wait = min(wait, max(0LL, fragmented_allowed - fragmented));
}
return wait;
}
static int bch2_copygc_thread(void *arg)
{
struct bch_fs *c = arg;
struct io_clock *clock = &c->io_clock[WRITE];
u64 last, wait;
int ret = 0;
set_freezable();
while (!ret && !kthread_should_stop()) {
cond_resched();
if (kthread_wait_freezable(c->copy_gc_enabled))
break;
last = atomic64_read(&clock->now);
wait = bch2_copygc_wait_amount(c);
if (wait > clock->max_slop) {
trace_copygc_wait(c, wait, last + wait);
c->copygc_wait = last + wait;
bch2_kthread_io_clock_wait(clock, last + wait,
MAX_SCHEDULE_TIMEOUT);
continue;
}
c->copygc_wait = 0;
c->copygc_running = true;
ret = bch2_copygc(c);
c->copygc_running = false;
wake_up(&c->copygc_running_wq);
}
return 0;
}
void bch2_copygc_stop(struct bch_fs *c)
{
if (c->copygc_thread) {
kthread_stop(c->copygc_thread);
put_task_struct(c->copygc_thread);
}
c->copygc_thread = NULL;
}
int bch2_copygc_start(struct bch_fs *c)
{
struct task_struct *t;
int ret;
if (c->copygc_thread)
return 0;
if (c->opts.nochanges)
return 0;
if (bch2_fs_init_fault("copygc_start"))
return -ENOMEM;
t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name);
ret = PTR_ERR_OR_ZERO(t);
if (ret) {
bch_err(c, "error creating copygc thread: %s", bch2_err_str(ret));
return ret;
}
get_task_struct(t);
c->copygc_thread = t;
wake_up_process(c->copygc_thread);
return 0;
}
void bch2_fs_copygc_init(struct bch_fs *c)
{
init_waitqueue_head(&c->copygc_running_wq);
c->copygc_running = false;
}