linux/sound/soc/sof/debug.c
Hui Wang 9037c3bde6
ASoC: SOF: debug: Fix a potential issue on string buffer termination
The function simple_write_to_buffer() doesn't add string termination
at the end of buf, we need to handle it on our own. This change refers
to the function tokenize_input() in debug.c and the function
sof_dfsentry_trace_filter_write() in trace.c.

Fixes: 091c12e1f5 ("ASoC: SOF: debug: add new debugfs entries for IPC flood test")
Reviewed-by: Kai Vehmanen <kai.vehmanen@linux.intel.com>
Signed-off-by: Hui Wang <hui.wang@canonical.com>
Link: https://lore.kernel.org/r/20210208103857.75705-1-hui.wang@canonical.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2021-02-08 11:39:06 +00:00

825 lines
20 KiB
C

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
//
// This file is provided under a dual BSD/GPLv2 license. When using or
// redistributing this file, you may do so under either license.
//
// Copyright(c) 2018 Intel Corporation. All rights reserved.
//
// Author: Liam Girdwood <liam.r.girdwood@linux.intel.com>
//
// Generic debug routines used to export DSP MMIO and memories to userspace
// for firmware debugging.
//
#include <linux/debugfs.h>
#include <linux/io.h>
#include <linux/pm_runtime.h>
#include <sound/sof/ext_manifest.h>
#include <sound/sof/debug.h>
#include "sof-priv.h"
#include "ops.h"
#if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_PROBES)
#include "probe.h"
/**
* strsplit_u32 - Split string into sequence of u32 tokens
* @buf: String to split into tokens.
* @delim: String containing delimiter characters.
* @tkns: Returned u32 sequence pointer.
* @num_tkns: Returned number of tokens obtained.
*/
static int
strsplit_u32(char **buf, const char *delim, u32 **tkns, size_t *num_tkns)
{
char *s;
u32 *data, *tmp;
size_t count = 0;
size_t cap = 32;
int ret = 0;
*tkns = NULL;
*num_tkns = 0;
data = kcalloc(cap, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
while ((s = strsep(buf, delim)) != NULL) {
ret = kstrtouint(s, 0, data + count);
if (ret)
goto exit;
if (++count >= cap) {
cap *= 2;
tmp = krealloc(data, cap * sizeof(*data), GFP_KERNEL);
if (!tmp) {
ret = -ENOMEM;
goto exit;
}
data = tmp;
}
}
if (!count)
goto exit;
*tkns = kmemdup(data, count * sizeof(*data), GFP_KERNEL);
if (*tkns == NULL) {
ret = -ENOMEM;
goto exit;
}
*num_tkns = count;
exit:
kfree(data);
return ret;
}
static int tokenize_input(const char __user *from, size_t count,
loff_t *ppos, u32 **tkns, size_t *num_tkns)
{
char *buf;
int ret;
buf = kmalloc(count + 1, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = simple_write_to_buffer(buf, count, ppos, from, count);
if (ret != count) {
ret = ret >= 0 ? -EIO : ret;
goto exit;
}
buf[count] = '\0';
ret = strsplit_u32((char **)&buf, ",", tkns, num_tkns);
exit:
kfree(buf);
return ret;
}
static ssize_t probe_points_read(struct file *file,
char __user *to, size_t count, loff_t *ppos)
{
struct snd_sof_dfsentry *dfse = file->private_data;
struct snd_sof_dev *sdev = dfse->sdev;
struct sof_probe_point_desc *desc;
size_t num_desc, len = 0;
char *buf;
int i, ret;
if (sdev->extractor_stream_tag == SOF_PROBE_INVALID_NODE_ID) {
dev_warn(sdev->dev, "no extractor stream running\n");
return -ENOENT;
}
buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = sof_ipc_probe_points_info(sdev, &desc, &num_desc);
if (ret < 0)
goto exit;
for (i = 0; i < num_desc; i++) {
ret = snprintf(buf + len, PAGE_SIZE - len,
"Id: %#010x Purpose: %d Node id: %#x\n",
desc[i].buffer_id, desc[i].purpose, desc[i].stream_tag);
if (ret < 0)
goto free_desc;
len += ret;
}
ret = simple_read_from_buffer(to, count, ppos, buf, len);
free_desc:
kfree(desc);
exit:
kfree(buf);
return ret;
}
static ssize_t probe_points_write(struct file *file,
const char __user *from, size_t count, loff_t *ppos)
{
struct snd_sof_dfsentry *dfse = file->private_data;
struct snd_sof_dev *sdev = dfse->sdev;
struct sof_probe_point_desc *desc;
size_t num_tkns, bytes;
u32 *tkns;
int ret;
if (sdev->extractor_stream_tag == SOF_PROBE_INVALID_NODE_ID) {
dev_warn(sdev->dev, "no extractor stream running\n");
return -ENOENT;
}
ret = tokenize_input(from, count, ppos, &tkns, &num_tkns);
if (ret < 0)
return ret;
bytes = sizeof(*tkns) * num_tkns;
if (!num_tkns || (bytes % sizeof(*desc))) {
ret = -EINVAL;
goto exit;
}
desc = (struct sof_probe_point_desc *)tkns;
ret = sof_ipc_probe_points_add(sdev,
desc, bytes / sizeof(*desc));
if (!ret)
ret = count;
exit:
kfree(tkns);
return ret;
}
static const struct file_operations probe_points_fops = {
.open = simple_open,
.read = probe_points_read,
.write = probe_points_write,
.llseek = default_llseek,
};
static ssize_t probe_points_remove_write(struct file *file,
const char __user *from, size_t count, loff_t *ppos)
{
struct snd_sof_dfsentry *dfse = file->private_data;
struct snd_sof_dev *sdev = dfse->sdev;
size_t num_tkns;
u32 *tkns;
int ret;
if (sdev->extractor_stream_tag == SOF_PROBE_INVALID_NODE_ID) {
dev_warn(sdev->dev, "no extractor stream running\n");
return -ENOENT;
}
ret = tokenize_input(from, count, ppos, &tkns, &num_tkns);
if (ret < 0)
return ret;
if (!num_tkns) {
ret = -EINVAL;
goto exit;
}
ret = sof_ipc_probe_points_remove(sdev, tkns, num_tkns);
if (!ret)
ret = count;
exit:
kfree(tkns);
return ret;
}
static const struct file_operations probe_points_remove_fops = {
.open = simple_open,
.write = probe_points_remove_write,
.llseek = default_llseek,
};
static int snd_sof_debugfs_probe_item(struct snd_sof_dev *sdev,
const char *name, mode_t mode,
const struct file_operations *fops)
{
struct snd_sof_dfsentry *dfse;
dfse = devm_kzalloc(sdev->dev, sizeof(*dfse), GFP_KERNEL);
if (!dfse)
return -ENOMEM;
dfse->type = SOF_DFSENTRY_TYPE_BUF;
dfse->sdev = sdev;
debugfs_create_file(name, mode, sdev->debugfs_root, dfse, fops);
/* add to dfsentry list */
list_add(&dfse->list, &sdev->dfsentry_list);
return 0;
}
#endif
#if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_IPC_FLOOD_TEST)
#define MAX_IPC_FLOOD_DURATION_MS 1000
#define MAX_IPC_FLOOD_COUNT 10000
#define IPC_FLOOD_TEST_RESULT_LEN 512
static int sof_debug_ipc_flood_test(struct snd_sof_dev *sdev,
struct snd_sof_dfsentry *dfse,
bool flood_duration_test,
unsigned long ipc_duration_ms,
unsigned long ipc_count)
{
struct sof_ipc_cmd_hdr hdr;
struct sof_ipc_reply reply;
u64 min_response_time = U64_MAX;
ktime_t start, end, test_end;
u64 avg_response_time = 0;
u64 max_response_time = 0;
u64 ipc_response_time;
int i = 0;
int ret;
/* configure test IPC */
hdr.cmd = SOF_IPC_GLB_TEST_MSG | SOF_IPC_TEST_IPC_FLOOD;
hdr.size = sizeof(hdr);
/* set test end time for duration flood test */
if (flood_duration_test)
test_end = ktime_get_ns() + ipc_duration_ms * NSEC_PER_MSEC;
/* send test IPC's */
while (1) {
start = ktime_get();
ret = sof_ipc_tx_message(sdev->ipc, hdr.cmd, &hdr, hdr.size,
&reply, sizeof(reply));
end = ktime_get();
if (ret < 0)
break;
/* compute min and max response times */
ipc_response_time = ktime_to_ns(ktime_sub(end, start));
min_response_time = min(min_response_time, ipc_response_time);
max_response_time = max(max_response_time, ipc_response_time);
/* sum up response times */
avg_response_time += ipc_response_time;
i++;
/* test complete? */
if (flood_duration_test) {
if (ktime_to_ns(end) >= test_end)
break;
} else {
if (i == ipc_count)
break;
}
}
if (ret < 0)
dev_err(sdev->dev,
"error: ipc flood test failed at %d iterations\n", i);
/* return if the first IPC fails */
if (!i)
return ret;
/* compute average response time */
do_div(avg_response_time, i);
/* clear previous test output */
memset(dfse->cache_buf, 0, IPC_FLOOD_TEST_RESULT_LEN);
if (flood_duration_test) {
dev_dbg(sdev->dev, "IPC Flood test duration: %lums\n",
ipc_duration_ms);
snprintf(dfse->cache_buf, IPC_FLOOD_TEST_RESULT_LEN,
"IPC Flood test duration: %lums\n", ipc_duration_ms);
}
dev_dbg(sdev->dev,
"IPC Flood count: %d, Avg response time: %lluns\n",
i, avg_response_time);
dev_dbg(sdev->dev, "Max response time: %lluns\n",
max_response_time);
dev_dbg(sdev->dev, "Min response time: %lluns\n",
min_response_time);
/* format output string */
snprintf(dfse->cache_buf + strlen(dfse->cache_buf),
IPC_FLOOD_TEST_RESULT_LEN - strlen(dfse->cache_buf),
"IPC Flood count: %d\nAvg response time: %lluns\n",
i, avg_response_time);
snprintf(dfse->cache_buf + strlen(dfse->cache_buf),
IPC_FLOOD_TEST_RESULT_LEN - strlen(dfse->cache_buf),
"Max response time: %lluns\nMin response time: %lluns\n",
max_response_time, min_response_time);
return ret;
}
#endif
static ssize_t sof_dfsentry_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
#if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_IPC_FLOOD_TEST)
struct snd_sof_dfsentry *dfse = file->private_data;
struct snd_sof_dev *sdev = dfse->sdev;
unsigned long ipc_duration_ms = 0;
bool flood_duration_test = false;
unsigned long ipc_count = 0;
struct dentry *dentry;
int err;
#endif
size_t size;
char *string;
int ret;
string = kzalloc(count+1, GFP_KERNEL);
if (!string)
return -ENOMEM;
size = simple_write_to_buffer(string, count, ppos, buffer, count);
ret = size;
#if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_IPC_FLOOD_TEST)
/*
* write op is only supported for ipc_flood_count or
* ipc_flood_duration_ms debugfs entries atm.
* ipc_flood_count floods the DSP with the number of IPC's specified.
* ipc_duration_ms test floods the DSP for the time specified
* in the debugfs entry.
*/
dentry = file->f_path.dentry;
if (strcmp(dentry->d_name.name, "ipc_flood_count") &&
strcmp(dentry->d_name.name, "ipc_flood_duration_ms")) {
ret = -EINVAL;
goto out;
}
if (!strcmp(dentry->d_name.name, "ipc_flood_duration_ms"))
flood_duration_test = true;
/* test completion criterion */
if (flood_duration_test)
ret = kstrtoul(string, 0, &ipc_duration_ms);
else
ret = kstrtoul(string, 0, &ipc_count);
if (ret < 0)
goto out;
/* limit max duration/ipc count for flood test */
if (flood_duration_test) {
if (!ipc_duration_ms) {
ret = size;
goto out;
}
/* find the minimum. min() is not used to avoid warnings */
if (ipc_duration_ms > MAX_IPC_FLOOD_DURATION_MS)
ipc_duration_ms = MAX_IPC_FLOOD_DURATION_MS;
} else {
if (!ipc_count) {
ret = size;
goto out;
}
/* find the minimum. min() is not used to avoid warnings */
if (ipc_count > MAX_IPC_FLOOD_COUNT)
ipc_count = MAX_IPC_FLOOD_COUNT;
}
ret = pm_runtime_get_sync(sdev->dev);
if (ret < 0 && ret != -EACCES) {
dev_err_ratelimited(sdev->dev,
"error: debugfs write failed to resume %d\n",
ret);
pm_runtime_put_noidle(sdev->dev);
goto out;
}
/* flood test */
ret = sof_debug_ipc_flood_test(sdev, dfse, flood_duration_test,
ipc_duration_ms, ipc_count);
pm_runtime_mark_last_busy(sdev->dev);
err = pm_runtime_put_autosuspend(sdev->dev);
if (err < 0)
dev_err_ratelimited(sdev->dev,
"error: debugfs write failed to idle %d\n",
err);
/* return size if test is successful */
if (ret >= 0)
ret = size;
out:
#endif
kfree(string);
return ret;
}
static ssize_t sof_dfsentry_read(struct file *file, char __user *buffer,
size_t count, loff_t *ppos)
{
struct snd_sof_dfsentry *dfse = file->private_data;
struct snd_sof_dev *sdev = dfse->sdev;
loff_t pos = *ppos;
size_t size_ret;
int skip = 0;
int size;
u8 *buf;
#if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_IPC_FLOOD_TEST)
struct dentry *dentry;
dentry = file->f_path.dentry;
if ((!strcmp(dentry->d_name.name, "ipc_flood_count") ||
!strcmp(dentry->d_name.name, "ipc_flood_duration_ms")) &&
dfse->cache_buf) {
if (*ppos)
return 0;
count = strlen(dfse->cache_buf);
size_ret = copy_to_user(buffer, dfse->cache_buf, count);
if (size_ret)
return -EFAULT;
*ppos += count;
return count;
}
#endif
size = dfse->size;
/* validate position & count */
if (pos < 0)
return -EINVAL;
if (pos >= size || !count)
return 0;
/* find the minimum. min() is not used since it adds sparse warnings */
if (count > size - pos)
count = size - pos;
/* align io read start to u32 multiple */
pos = ALIGN_DOWN(pos, 4);
/* intermediate buffer size must be u32 multiple */
size = ALIGN(count, 4);
/* if start position is unaligned, read extra u32 */
if (unlikely(pos != *ppos)) {
skip = *ppos - pos;
if (pos + size + 4 < dfse->size)
size += 4;
}
buf = kzalloc(size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
if (dfse->type == SOF_DFSENTRY_TYPE_IOMEM) {
#if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_ENABLE_DEBUGFS_CACHE)
/*
* If the DSP is active: copy from IO.
* If the DSP is suspended:
* - Copy from IO if the memory is always accessible.
* - Otherwise, copy from cached buffer.
*/
if (pm_runtime_active(sdev->dev) ||
dfse->access_type == SOF_DEBUGFS_ACCESS_ALWAYS) {
memcpy_fromio(buf, dfse->io_mem + pos, size);
} else {
dev_info(sdev->dev,
"Copying cached debugfs data\n");
memcpy(buf, dfse->cache_buf + pos, size);
}
#else
/* if the DSP is in D3 */
if (!pm_runtime_active(sdev->dev) &&
dfse->access_type == SOF_DEBUGFS_ACCESS_D0_ONLY) {
dev_err(sdev->dev,
"error: debugfs entry cannot be read in DSP D3\n");
kfree(buf);
return -EINVAL;
}
memcpy_fromio(buf, dfse->io_mem + pos, size);
#endif
} else {
memcpy(buf, ((u8 *)(dfse->buf) + pos), size);
}
/* copy to userspace */
size_ret = copy_to_user(buffer, buf + skip, count);
kfree(buf);
/* update count & position if copy succeeded */
if (size_ret)
return -EFAULT;
*ppos = pos + count;
return count;
}
static const struct file_operations sof_dfs_fops = {
.open = simple_open,
.read = sof_dfsentry_read,
.llseek = default_llseek,
.write = sof_dfsentry_write,
};
/* create FS entry for debug files that can expose DSP memories, registers */
int snd_sof_debugfs_io_item(struct snd_sof_dev *sdev,
void __iomem *base, size_t size,
const char *name,
enum sof_debugfs_access_type access_type)
{
struct snd_sof_dfsentry *dfse;
if (!sdev)
return -EINVAL;
dfse = devm_kzalloc(sdev->dev, sizeof(*dfse), GFP_KERNEL);
if (!dfse)
return -ENOMEM;
dfse->type = SOF_DFSENTRY_TYPE_IOMEM;
dfse->io_mem = base;
dfse->size = size;
dfse->sdev = sdev;
dfse->access_type = access_type;
#if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_ENABLE_DEBUGFS_CACHE)
/*
* allocate cache buffer that will be used to save the mem window
* contents prior to suspend
*/
if (access_type == SOF_DEBUGFS_ACCESS_D0_ONLY) {
dfse->cache_buf = devm_kzalloc(sdev->dev, size, GFP_KERNEL);
if (!dfse->cache_buf)
return -ENOMEM;
}
#endif
debugfs_create_file(name, 0444, sdev->debugfs_root, dfse,
&sof_dfs_fops);
/* add to dfsentry list */
list_add(&dfse->list, &sdev->dfsentry_list);
return 0;
}
EXPORT_SYMBOL_GPL(snd_sof_debugfs_io_item);
/* create FS entry for debug files to expose kernel memory */
int snd_sof_debugfs_buf_item(struct snd_sof_dev *sdev,
void *base, size_t size,
const char *name, mode_t mode)
{
struct snd_sof_dfsentry *dfse;
if (!sdev)
return -EINVAL;
dfse = devm_kzalloc(sdev->dev, sizeof(*dfse), GFP_KERNEL);
if (!dfse)
return -ENOMEM;
dfse->type = SOF_DFSENTRY_TYPE_BUF;
dfse->buf = base;
dfse->size = size;
dfse->sdev = sdev;
#if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_IPC_FLOOD_TEST)
/*
* cache_buf is unused for SOF_DFSENTRY_TYPE_BUF debugfs entries.
* So, use it to save the results of the last IPC flood test.
*/
dfse->cache_buf = devm_kzalloc(sdev->dev, IPC_FLOOD_TEST_RESULT_LEN,
GFP_KERNEL);
if (!dfse->cache_buf)
return -ENOMEM;
#endif
debugfs_create_file(name, mode, sdev->debugfs_root, dfse,
&sof_dfs_fops);
/* add to dfsentry list */
list_add(&dfse->list, &sdev->dfsentry_list);
return 0;
}
EXPORT_SYMBOL_GPL(snd_sof_debugfs_buf_item);
static int memory_info_update(struct snd_sof_dev *sdev, char *buf, size_t buff_size)
{
struct sof_ipc_cmd_hdr msg = {
.size = sizeof(struct sof_ipc_cmd_hdr),
.cmd = SOF_IPC_GLB_DEBUG | SOF_IPC_DEBUG_MEM_USAGE,
};
struct sof_ipc_dbg_mem_usage *reply;
int len;
int ret;
int i;
reply = kmalloc(SOF_IPC_MSG_MAX_SIZE, GFP_KERNEL);
if (!reply)
return -ENOMEM;
ret = pm_runtime_get_sync(sdev->dev);
if (ret < 0 && ret != -EACCES) {
pm_runtime_put_noidle(sdev->dev);
dev_err(sdev->dev, "error: enabling device failed: %d\n", ret);
goto error;
}
ret = sof_ipc_tx_message(sdev->ipc, msg.cmd, &msg, msg.size, reply, SOF_IPC_MSG_MAX_SIZE);
pm_runtime_mark_last_busy(sdev->dev);
pm_runtime_put_autosuspend(sdev->dev);
if (ret < 0 || reply->rhdr.error < 0) {
ret = min(ret, reply->rhdr.error);
dev_err(sdev->dev, "error: reading memory info failed, %d\n", ret);
goto error;
}
if (struct_size(reply, elems, reply->num_elems) != reply->rhdr.hdr.size) {
dev_err(sdev->dev, "error: invalid memory info ipc struct size, %d\n",
reply->rhdr.hdr.size);
ret = -EINVAL;
goto error;
}
for (i = 0, len = 0; i < reply->num_elems; i++) {
ret = snprintf(buf + len, buff_size - len, "zone %d.%d used %#8x free %#8x\n",
reply->elems[i].zone, reply->elems[i].id,
reply->elems[i].used, reply->elems[i].free);
if (ret < 0)
goto error;
len += ret;
}
ret = len;
error:
kfree(reply);
return ret;
}
static ssize_t memory_info_read(struct file *file, char __user *to, size_t count, loff_t *ppos)
{
struct snd_sof_dfsentry *dfse = file->private_data;
struct snd_sof_dev *sdev = dfse->sdev;
int data_length;
/* read memory info from FW only once for each file read */
if (!*ppos) {
dfse->buf_data_size = 0;
data_length = memory_info_update(sdev, dfse->buf, dfse->size);
if (data_length < 0)
return data_length;
dfse->buf_data_size = data_length;
}
return simple_read_from_buffer(to, count, ppos, dfse->buf, dfse->buf_data_size);
}
static int memory_info_open(struct inode *inode, struct file *file)
{
struct snd_sof_dfsentry *dfse = inode->i_private;
struct snd_sof_dev *sdev = dfse->sdev;
file->private_data = dfse;
/* allocate buffer memory only in first open run, to save memory when unused */
if (!dfse->buf) {
dfse->buf = devm_kmalloc(sdev->dev, PAGE_SIZE, GFP_KERNEL);
if (!dfse->buf)
return -ENOMEM;
dfse->size = PAGE_SIZE;
}
return 0;
}
static const struct file_operations memory_info_fops = {
.open = memory_info_open,
.read = memory_info_read,
.llseek = default_llseek,
};
int snd_sof_dbg_memory_info_init(struct snd_sof_dev *sdev)
{
struct snd_sof_dfsentry *dfse;
dfse = devm_kzalloc(sdev->dev, sizeof(*dfse), GFP_KERNEL);
if (!dfse)
return -ENOMEM;
/* don't allocate buffer before first usage, to save memory when unused */
dfse->type = SOF_DFSENTRY_TYPE_BUF;
dfse->sdev = sdev;
debugfs_create_file("memory_info", 0444, sdev->debugfs_root, dfse, &memory_info_fops);
/* add to dfsentry list */
list_add(&dfse->list, &sdev->dfsentry_list);
return 0;
}
EXPORT_SYMBOL_GPL(snd_sof_dbg_memory_info_init);
int snd_sof_dbg_init(struct snd_sof_dev *sdev)
{
const struct snd_sof_dsp_ops *ops = sof_ops(sdev);
const struct snd_sof_debugfs_map *map;
int i;
int err;
/* use "sof" as top level debugFS dir */
sdev->debugfs_root = debugfs_create_dir("sof", NULL);
/* init dfsentry list */
INIT_LIST_HEAD(&sdev->dfsentry_list);
/* create debugFS files for platform specific MMIO/DSP memories */
for (i = 0; i < ops->debug_map_count; i++) {
map = &ops->debug_map[i];
err = snd_sof_debugfs_io_item(sdev, sdev->bar[map->bar] +
map->offset, map->size,
map->name, map->access_type);
/* errors are only due to memory allocation, not debugfs */
if (err < 0)
return err;
}
#if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_PROBES)
err = snd_sof_debugfs_probe_item(sdev, "probe_points",
0644, &probe_points_fops);
if (err < 0)
return err;
err = snd_sof_debugfs_probe_item(sdev, "probe_points_remove",
0200, &probe_points_remove_fops);
if (err < 0)
return err;
#endif
#if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_IPC_FLOOD_TEST)
/* create read-write ipc_flood_count debugfs entry */
err = snd_sof_debugfs_buf_item(sdev, NULL, 0,
"ipc_flood_count", 0666);
/* errors are only due to memory allocation, not debugfs */
if (err < 0)
return err;
/* create read-write ipc_flood_duration_ms debugfs entry */
err = snd_sof_debugfs_buf_item(sdev, NULL, 0,
"ipc_flood_duration_ms", 0666);
/* errors are only due to memory allocation, not debugfs */
if (err < 0)
return err;
#endif
return 0;
}
EXPORT_SYMBOL_GPL(snd_sof_dbg_init);
void snd_sof_free_debug(struct snd_sof_dev *sdev)
{
debugfs_remove_recursive(sdev->debugfs_root);
}
EXPORT_SYMBOL_GPL(snd_sof_free_debug);
void snd_sof_handle_fw_exception(struct snd_sof_dev *sdev)
{
if (IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_RETAIN_DSP_CONTEXT) ||
(sof_core_debug & SOF_DBG_RETAIN_CTX)) {
/* should we prevent DSP entering D3 ? */
dev_info(sdev->dev, "info: preventing DSP entering D3 state to preserve context\n");
pm_runtime_get_noresume(sdev->dev);
}
/* dump vital information to the logs */
snd_sof_dsp_dbg_dump(sdev, SOF_DBG_DUMP_REGS | SOF_DBG_DUMP_MBOX);
snd_sof_ipc_dump(sdev);
snd_sof_trace_notify_for_error(sdev);
}
EXPORT_SYMBOL(snd_sof_handle_fw_exception);