mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-12 16:54:42 +08:00
17b9e388c6
Adjust the timing of the fscrypt keyring destruction, to prepare for btrfs's fscrypt support. Also document that CephFS supports fscrypt now. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQSacvsUNc7UX4ntmEPzXCl4vpKOKwUCZZx4UBQcZWJpZ2dlcnNA Z29vZ2xlLmNvbQAKCRDzXCl4vpKOK85+AQCBHoG6R5UuPqafoDtabcCpxRW/ZHdo WzOwjvHz1/tq5AEApogvjPI/3v2gelLnG9ZrXUBZMWZN6W0LQbH/k1VHjQ8= =nvWY -----END PGP SIGNATURE----- Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/linux Pull fscrypt updates from Eric Biggers: "Adjust the timing of the fscrypt keyring destruction, to prepare for btrfs's fscrypt support. Also document that CephFS supports fscrypt now" * tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/linux: fs: move fscrypt keyring destruction to after ->put_super f2fs: move release of block devices to after kill_block_super() fscrypt: document that CephFS supports fscrypt now fscrypt: update comment for do_remove_key() fscrypt.rst: update definition of struct fscrypt_context_v2
2216 lines
58 KiB
C
2216 lines
58 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/fs/super.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* super.c contains code to handle: - mount structures
|
|
* - super-block tables
|
|
* - filesystem drivers list
|
|
* - mount system call
|
|
* - umount system call
|
|
* - ustat system call
|
|
*
|
|
* GK 2/5/95 - Changed to support mounting the root fs via NFS
|
|
*
|
|
* Added kerneld support: Jacques Gelinas and Bjorn Ekwall
|
|
* Added change_root: Werner Almesberger & Hans Lermen, Feb '96
|
|
* Added options to /proc/mounts:
|
|
* Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
|
|
* Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
|
|
* Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/security.h>
|
|
#include <linux/writeback.h> /* for the emergency remount stuff */
|
|
#include <linux/idr.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/rculist_bl.h>
|
|
#include <linux/fscrypt.h>
|
|
#include <linux/fsnotify.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/user_namespace.h>
|
|
#include <linux/fs_context.h>
|
|
#include <uapi/linux/mount.h>
|
|
#include "internal.h"
|
|
|
|
static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
|
|
|
|
static LIST_HEAD(super_blocks);
|
|
static DEFINE_SPINLOCK(sb_lock);
|
|
|
|
static char *sb_writers_name[SB_FREEZE_LEVELS] = {
|
|
"sb_writers",
|
|
"sb_pagefaults",
|
|
"sb_internal",
|
|
};
|
|
|
|
static inline void __super_lock(struct super_block *sb, bool excl)
|
|
{
|
|
if (excl)
|
|
down_write(&sb->s_umount);
|
|
else
|
|
down_read(&sb->s_umount);
|
|
}
|
|
|
|
static inline void super_unlock(struct super_block *sb, bool excl)
|
|
{
|
|
if (excl)
|
|
up_write(&sb->s_umount);
|
|
else
|
|
up_read(&sb->s_umount);
|
|
}
|
|
|
|
static inline void __super_lock_excl(struct super_block *sb)
|
|
{
|
|
__super_lock(sb, true);
|
|
}
|
|
|
|
static inline void super_unlock_excl(struct super_block *sb)
|
|
{
|
|
super_unlock(sb, true);
|
|
}
|
|
|
|
static inline void super_unlock_shared(struct super_block *sb)
|
|
{
|
|
super_unlock(sb, false);
|
|
}
|
|
|
|
static bool super_flags(const struct super_block *sb, unsigned int flags)
|
|
{
|
|
/*
|
|
* Pairs with smp_store_release() in super_wake() and ensures
|
|
* that we see @flags after we're woken.
|
|
*/
|
|
return smp_load_acquire(&sb->s_flags) & flags;
|
|
}
|
|
|
|
/**
|
|
* super_lock - wait for superblock to become ready and lock it
|
|
* @sb: superblock to wait for
|
|
* @excl: whether exclusive access is required
|
|
*
|
|
* If the superblock has neither passed through vfs_get_tree() or
|
|
* generic_shutdown_super() yet wait for it to happen. Either superblock
|
|
* creation will succeed and SB_BORN is set by vfs_get_tree() or we're
|
|
* woken and we'll see SB_DYING.
|
|
*
|
|
* The caller must have acquired a temporary reference on @sb->s_count.
|
|
*
|
|
* Return: The function returns true if SB_BORN was set and with
|
|
* s_umount held. The function returns false if SB_DYING was
|
|
* set and without s_umount held.
|
|
*/
|
|
static __must_check bool super_lock(struct super_block *sb, bool excl)
|
|
{
|
|
lockdep_assert_not_held(&sb->s_umount);
|
|
|
|
/* wait until the superblock is ready or dying */
|
|
wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));
|
|
|
|
/* Don't pointlessly acquire s_umount. */
|
|
if (super_flags(sb, SB_DYING))
|
|
return false;
|
|
|
|
__super_lock(sb, excl);
|
|
|
|
/*
|
|
* Has gone through generic_shutdown_super() in the meantime.
|
|
* @sb->s_root is NULL and @sb->s_active is 0. No one needs to
|
|
* grab a reference to this. Tell them so.
|
|
*/
|
|
if (sb->s_flags & SB_DYING) {
|
|
super_unlock(sb, excl);
|
|
return false;
|
|
}
|
|
|
|
WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
|
|
return true;
|
|
}
|
|
|
|
/* wait and try to acquire read-side of @sb->s_umount */
|
|
static inline bool super_lock_shared(struct super_block *sb)
|
|
{
|
|
return super_lock(sb, false);
|
|
}
|
|
|
|
/* wait and try to acquire write-side of @sb->s_umount */
|
|
static inline bool super_lock_excl(struct super_block *sb)
|
|
{
|
|
return super_lock(sb, true);
|
|
}
|
|
|
|
/* wake waiters */
|
|
#define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
|
|
static void super_wake(struct super_block *sb, unsigned int flag)
|
|
{
|
|
WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
|
|
WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
|
|
|
|
/*
|
|
* Pairs with smp_load_acquire() in super_lock() to make sure
|
|
* all initializations in the superblock are seen by the user
|
|
* seeing SB_BORN sent.
|
|
*/
|
|
smp_store_release(&sb->s_flags, sb->s_flags | flag);
|
|
/*
|
|
* Pairs with the barrier in prepare_to_wait_event() to make sure
|
|
* ___wait_var_event() either sees SB_BORN set or
|
|
* waitqueue_active() check in wake_up_var() sees the waiter.
|
|
*/
|
|
smp_mb();
|
|
wake_up_var(&sb->s_flags);
|
|
}
|
|
|
|
/*
|
|
* One thing we have to be careful of with a per-sb shrinker is that we don't
|
|
* drop the last active reference to the superblock from within the shrinker.
|
|
* If that happens we could trigger unregistering the shrinker from within the
|
|
* shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
|
|
* take a passive reference to the superblock to avoid this from occurring.
|
|
*/
|
|
static unsigned long super_cache_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct super_block *sb;
|
|
long fs_objects = 0;
|
|
long total_objects;
|
|
long freed = 0;
|
|
long dentries;
|
|
long inodes;
|
|
|
|
sb = shrink->private_data;
|
|
|
|
/*
|
|
* Deadlock avoidance. We may hold various FS locks, and we don't want
|
|
* to recurse into the FS that called us in clear_inode() and friends..
|
|
*/
|
|
if (!(sc->gfp_mask & __GFP_FS))
|
|
return SHRINK_STOP;
|
|
|
|
if (!super_trylock_shared(sb))
|
|
return SHRINK_STOP;
|
|
|
|
if (sb->s_op->nr_cached_objects)
|
|
fs_objects = sb->s_op->nr_cached_objects(sb, sc);
|
|
|
|
inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
|
|
dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
|
|
total_objects = dentries + inodes + fs_objects + 1;
|
|
if (!total_objects)
|
|
total_objects = 1;
|
|
|
|
/* proportion the scan between the caches */
|
|
dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
|
|
inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
|
|
fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
|
|
|
|
/*
|
|
* prune the dcache first as the icache is pinned by it, then
|
|
* prune the icache, followed by the filesystem specific caches
|
|
*
|
|
* Ensure that we always scan at least one object - memcg kmem
|
|
* accounting uses this to fully empty the caches.
|
|
*/
|
|
sc->nr_to_scan = dentries + 1;
|
|
freed = prune_dcache_sb(sb, sc);
|
|
sc->nr_to_scan = inodes + 1;
|
|
freed += prune_icache_sb(sb, sc);
|
|
|
|
if (fs_objects) {
|
|
sc->nr_to_scan = fs_objects + 1;
|
|
freed += sb->s_op->free_cached_objects(sb, sc);
|
|
}
|
|
|
|
super_unlock_shared(sb);
|
|
return freed;
|
|
}
|
|
|
|
static unsigned long super_cache_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct super_block *sb;
|
|
long total_objects = 0;
|
|
|
|
sb = shrink->private_data;
|
|
|
|
/*
|
|
* We don't call super_trylock_shared() here as it is a scalability
|
|
* bottleneck, so we're exposed to partial setup state. The shrinker
|
|
* rwsem does not protect filesystem operations backing
|
|
* list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
|
|
* change between super_cache_count and super_cache_scan, so we really
|
|
* don't need locks here.
|
|
*
|
|
* However, if we are currently mounting the superblock, the underlying
|
|
* filesystem might be in a state of partial construction and hence it
|
|
* is dangerous to access it. super_trylock_shared() uses a SB_BORN check
|
|
* to avoid this situation, so do the same here. The memory barrier is
|
|
* matched with the one in mount_fs() as we don't hold locks here.
|
|
*/
|
|
if (!(sb->s_flags & SB_BORN))
|
|
return 0;
|
|
smp_rmb();
|
|
|
|
if (sb->s_op && sb->s_op->nr_cached_objects)
|
|
total_objects = sb->s_op->nr_cached_objects(sb, sc);
|
|
|
|
total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
|
|
total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
|
|
|
|
if (!total_objects)
|
|
return SHRINK_EMPTY;
|
|
|
|
total_objects = vfs_pressure_ratio(total_objects);
|
|
return total_objects;
|
|
}
|
|
|
|
static void destroy_super_work(struct work_struct *work)
|
|
{
|
|
struct super_block *s = container_of(work, struct super_block,
|
|
destroy_work);
|
|
int i;
|
|
|
|
for (i = 0; i < SB_FREEZE_LEVELS; i++)
|
|
percpu_free_rwsem(&s->s_writers.rw_sem[i]);
|
|
kfree(s);
|
|
}
|
|
|
|
static void destroy_super_rcu(struct rcu_head *head)
|
|
{
|
|
struct super_block *s = container_of(head, struct super_block, rcu);
|
|
INIT_WORK(&s->destroy_work, destroy_super_work);
|
|
schedule_work(&s->destroy_work);
|
|
}
|
|
|
|
/* Free a superblock that has never been seen by anyone */
|
|
static void destroy_unused_super(struct super_block *s)
|
|
{
|
|
if (!s)
|
|
return;
|
|
super_unlock_excl(s);
|
|
list_lru_destroy(&s->s_dentry_lru);
|
|
list_lru_destroy(&s->s_inode_lru);
|
|
security_sb_free(s);
|
|
put_user_ns(s->s_user_ns);
|
|
kfree(s->s_subtype);
|
|
shrinker_free(s->s_shrink);
|
|
/* no delays needed */
|
|
destroy_super_work(&s->destroy_work);
|
|
}
|
|
|
|
/**
|
|
* alloc_super - create new superblock
|
|
* @type: filesystem type superblock should belong to
|
|
* @flags: the mount flags
|
|
* @user_ns: User namespace for the super_block
|
|
*
|
|
* Allocates and initializes a new &struct super_block. alloc_super()
|
|
* returns a pointer new superblock or %NULL if allocation had failed.
|
|
*/
|
|
static struct super_block *alloc_super(struct file_system_type *type, int flags,
|
|
struct user_namespace *user_ns)
|
|
{
|
|
struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
|
|
static const struct super_operations default_op;
|
|
int i;
|
|
|
|
if (!s)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&s->s_mounts);
|
|
s->s_user_ns = get_user_ns(user_ns);
|
|
init_rwsem(&s->s_umount);
|
|
lockdep_set_class(&s->s_umount, &type->s_umount_key);
|
|
/*
|
|
* sget() can have s_umount recursion.
|
|
*
|
|
* When it cannot find a suitable sb, it allocates a new
|
|
* one (this one), and tries again to find a suitable old
|
|
* one.
|
|
*
|
|
* In case that succeeds, it will acquire the s_umount
|
|
* lock of the old one. Since these are clearly distrinct
|
|
* locks, and this object isn't exposed yet, there's no
|
|
* risk of deadlocks.
|
|
*
|
|
* Annotate this by putting this lock in a different
|
|
* subclass.
|
|
*/
|
|
down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
|
|
|
|
if (security_sb_alloc(s))
|
|
goto fail;
|
|
|
|
for (i = 0; i < SB_FREEZE_LEVELS; i++) {
|
|
if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
|
|
sb_writers_name[i],
|
|
&type->s_writers_key[i]))
|
|
goto fail;
|
|
}
|
|
s->s_bdi = &noop_backing_dev_info;
|
|
s->s_flags = flags;
|
|
if (s->s_user_ns != &init_user_ns)
|
|
s->s_iflags |= SB_I_NODEV;
|
|
INIT_HLIST_NODE(&s->s_instances);
|
|
INIT_HLIST_BL_HEAD(&s->s_roots);
|
|
mutex_init(&s->s_sync_lock);
|
|
INIT_LIST_HEAD(&s->s_inodes);
|
|
spin_lock_init(&s->s_inode_list_lock);
|
|
INIT_LIST_HEAD(&s->s_inodes_wb);
|
|
spin_lock_init(&s->s_inode_wblist_lock);
|
|
|
|
s->s_count = 1;
|
|
atomic_set(&s->s_active, 1);
|
|
mutex_init(&s->s_vfs_rename_mutex);
|
|
lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
|
|
init_rwsem(&s->s_dquot.dqio_sem);
|
|
s->s_maxbytes = MAX_NON_LFS;
|
|
s->s_op = &default_op;
|
|
s->s_time_gran = 1000000000;
|
|
s->s_time_min = TIME64_MIN;
|
|
s->s_time_max = TIME64_MAX;
|
|
|
|
s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
|
|
"sb-%s", type->name);
|
|
if (!s->s_shrink)
|
|
goto fail;
|
|
|
|
s->s_shrink->scan_objects = super_cache_scan;
|
|
s->s_shrink->count_objects = super_cache_count;
|
|
s->s_shrink->batch = 1024;
|
|
s->s_shrink->private_data = s;
|
|
|
|
if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
|
|
goto fail;
|
|
if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
|
|
goto fail;
|
|
return s;
|
|
|
|
fail:
|
|
destroy_unused_super(s);
|
|
return NULL;
|
|
}
|
|
|
|
/* Superblock refcounting */
|
|
|
|
/*
|
|
* Drop a superblock's refcount. The caller must hold sb_lock.
|
|
*/
|
|
static void __put_super(struct super_block *s)
|
|
{
|
|
if (!--s->s_count) {
|
|
list_del_init(&s->s_list);
|
|
WARN_ON(s->s_dentry_lru.node);
|
|
WARN_ON(s->s_inode_lru.node);
|
|
WARN_ON(!list_empty(&s->s_mounts));
|
|
security_sb_free(s);
|
|
put_user_ns(s->s_user_ns);
|
|
kfree(s->s_subtype);
|
|
call_rcu(&s->rcu, destroy_super_rcu);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* put_super - drop a temporary reference to superblock
|
|
* @sb: superblock in question
|
|
*
|
|
* Drops a temporary reference, frees superblock if there's no
|
|
* references left.
|
|
*/
|
|
void put_super(struct super_block *sb)
|
|
{
|
|
spin_lock(&sb_lock);
|
|
__put_super(sb);
|
|
spin_unlock(&sb_lock);
|
|
}
|
|
|
|
static void kill_super_notify(struct super_block *sb)
|
|
{
|
|
lockdep_assert_not_held(&sb->s_umount);
|
|
|
|
/* already notified earlier */
|
|
if (sb->s_flags & SB_DEAD)
|
|
return;
|
|
|
|
/*
|
|
* Remove it from @fs_supers so it isn't found by new
|
|
* sget{_fc}() walkers anymore. Any concurrent mounter still
|
|
* managing to grab a temporary reference is guaranteed to
|
|
* already see SB_DYING and will wait until we notify them about
|
|
* SB_DEAD.
|
|
*/
|
|
spin_lock(&sb_lock);
|
|
hlist_del_init(&sb->s_instances);
|
|
spin_unlock(&sb_lock);
|
|
|
|
/*
|
|
* Let concurrent mounts know that this thing is really dead.
|
|
* We don't need @sb->s_umount here as every concurrent caller
|
|
* will see SB_DYING and either discard the superblock or wait
|
|
* for SB_DEAD.
|
|
*/
|
|
super_wake(sb, SB_DEAD);
|
|
}
|
|
|
|
/**
|
|
* deactivate_locked_super - drop an active reference to superblock
|
|
* @s: superblock to deactivate
|
|
*
|
|
* Drops an active reference to superblock, converting it into a temporary
|
|
* one if there is no other active references left. In that case we
|
|
* tell fs driver to shut it down and drop the temporary reference we
|
|
* had just acquired.
|
|
*
|
|
* Caller holds exclusive lock on superblock; that lock is released.
|
|
*/
|
|
void deactivate_locked_super(struct super_block *s)
|
|
{
|
|
struct file_system_type *fs = s->s_type;
|
|
if (atomic_dec_and_test(&s->s_active)) {
|
|
shrinker_free(s->s_shrink);
|
|
fs->kill_sb(s);
|
|
|
|
kill_super_notify(s);
|
|
|
|
/*
|
|
* Since list_lru_destroy() may sleep, we cannot call it from
|
|
* put_super(), where we hold the sb_lock. Therefore we destroy
|
|
* the lru lists right now.
|
|
*/
|
|
list_lru_destroy(&s->s_dentry_lru);
|
|
list_lru_destroy(&s->s_inode_lru);
|
|
|
|
put_filesystem(fs);
|
|
put_super(s);
|
|
} else {
|
|
super_unlock_excl(s);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(deactivate_locked_super);
|
|
|
|
/**
|
|
* deactivate_super - drop an active reference to superblock
|
|
* @s: superblock to deactivate
|
|
*
|
|
* Variant of deactivate_locked_super(), except that superblock is *not*
|
|
* locked by caller. If we are going to drop the final active reference,
|
|
* lock will be acquired prior to that.
|
|
*/
|
|
void deactivate_super(struct super_block *s)
|
|
{
|
|
if (!atomic_add_unless(&s->s_active, -1, 1)) {
|
|
__super_lock_excl(s);
|
|
deactivate_locked_super(s);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(deactivate_super);
|
|
|
|
/**
|
|
* grab_super - acquire an active reference to a superblock
|
|
* @sb: superblock to acquire
|
|
*
|
|
* Acquire a temporary reference on a superblock and try to trade it for
|
|
* an active reference. This is used in sget{_fc}() to wait for a
|
|
* superblock to either become SB_BORN or for it to pass through
|
|
* sb->kill() and be marked as SB_DEAD.
|
|
*
|
|
* Return: This returns true if an active reference could be acquired,
|
|
* false if not.
|
|
*/
|
|
static bool grab_super(struct super_block *sb)
|
|
{
|
|
bool locked;
|
|
|
|
sb->s_count++;
|
|
spin_unlock(&sb_lock);
|
|
locked = super_lock_excl(sb);
|
|
if (locked) {
|
|
if (atomic_inc_not_zero(&sb->s_active)) {
|
|
put_super(sb);
|
|
return true;
|
|
}
|
|
super_unlock_excl(sb);
|
|
}
|
|
wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
|
|
put_super(sb);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* super_trylock_shared - try to grab ->s_umount shared
|
|
* @sb: reference we are trying to grab
|
|
*
|
|
* Try to prevent fs shutdown. This is used in places where we
|
|
* cannot take an active reference but we need to ensure that the
|
|
* filesystem is not shut down while we are working on it. It returns
|
|
* false if we cannot acquire s_umount or if we lose the race and
|
|
* filesystem already got into shutdown, and returns true with the s_umount
|
|
* lock held in read mode in case of success. On successful return,
|
|
* the caller must drop the s_umount lock when done.
|
|
*
|
|
* Note that unlike get_super() et.al. this one does *not* bump ->s_count.
|
|
* The reason why it's safe is that we are OK with doing trylock instead
|
|
* of down_read(). There's a couple of places that are OK with that, but
|
|
* it's very much not a general-purpose interface.
|
|
*/
|
|
bool super_trylock_shared(struct super_block *sb)
|
|
{
|
|
if (down_read_trylock(&sb->s_umount)) {
|
|
if (!(sb->s_flags & SB_DYING) && sb->s_root &&
|
|
(sb->s_flags & SB_BORN))
|
|
return true;
|
|
super_unlock_shared(sb);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* retire_super - prevents superblock from being reused
|
|
* @sb: superblock to retire
|
|
*
|
|
* The function marks superblock to be ignored in superblock test, which
|
|
* prevents it from being reused for any new mounts. If the superblock has
|
|
* a private bdi, it also unregisters it, but doesn't reduce the refcount
|
|
* of the superblock to prevent potential races. The refcount is reduced
|
|
* by generic_shutdown_super(). The function can not be called
|
|
* concurrently with generic_shutdown_super(). It is safe to call the
|
|
* function multiple times, subsequent calls have no effect.
|
|
*
|
|
* The marker will affect the re-use only for block-device-based
|
|
* superblocks. Other superblocks will still get marked if this function
|
|
* is used, but that will not affect their reusability.
|
|
*/
|
|
void retire_super(struct super_block *sb)
|
|
{
|
|
WARN_ON(!sb->s_bdev);
|
|
__super_lock_excl(sb);
|
|
if (sb->s_iflags & SB_I_PERSB_BDI) {
|
|
bdi_unregister(sb->s_bdi);
|
|
sb->s_iflags &= ~SB_I_PERSB_BDI;
|
|
}
|
|
sb->s_iflags |= SB_I_RETIRED;
|
|
super_unlock_excl(sb);
|
|
}
|
|
EXPORT_SYMBOL(retire_super);
|
|
|
|
/**
|
|
* generic_shutdown_super - common helper for ->kill_sb()
|
|
* @sb: superblock to kill
|
|
*
|
|
* generic_shutdown_super() does all fs-independent work on superblock
|
|
* shutdown. Typical ->kill_sb() should pick all fs-specific objects
|
|
* that need destruction out of superblock, call generic_shutdown_super()
|
|
* and release aforementioned objects. Note: dentries and inodes _are_
|
|
* taken care of and do not need specific handling.
|
|
*
|
|
* Upon calling this function, the filesystem may no longer alter or
|
|
* rearrange the set of dentries belonging to this super_block, nor may it
|
|
* change the attachments of dentries to inodes.
|
|
*/
|
|
void generic_shutdown_super(struct super_block *sb)
|
|
{
|
|
const struct super_operations *sop = sb->s_op;
|
|
|
|
if (sb->s_root) {
|
|
shrink_dcache_for_umount(sb);
|
|
sync_filesystem(sb);
|
|
sb->s_flags &= ~SB_ACTIVE;
|
|
|
|
cgroup_writeback_umount();
|
|
|
|
/* Evict all inodes with zero refcount. */
|
|
evict_inodes(sb);
|
|
|
|
/*
|
|
* Clean up and evict any inodes that still have references due
|
|
* to fsnotify or the security policy.
|
|
*/
|
|
fsnotify_sb_delete(sb);
|
|
security_sb_delete(sb);
|
|
|
|
if (sb->s_dio_done_wq) {
|
|
destroy_workqueue(sb->s_dio_done_wq);
|
|
sb->s_dio_done_wq = NULL;
|
|
}
|
|
|
|
if (sop->put_super)
|
|
sop->put_super(sb);
|
|
|
|
/*
|
|
* Now that all potentially-encrypted inodes have been evicted,
|
|
* the fscrypt keyring can be destroyed.
|
|
*/
|
|
fscrypt_destroy_keyring(sb);
|
|
|
|
if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
|
|
"VFS: Busy inodes after unmount of %s (%s)",
|
|
sb->s_id, sb->s_type->name)) {
|
|
/*
|
|
* Adding a proper bailout path here would be hard, but
|
|
* we can at least make it more likely that a later
|
|
* iput_final() or such crashes cleanly.
|
|
*/
|
|
struct inode *inode;
|
|
|
|
spin_lock(&sb->s_inode_list_lock);
|
|
list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
|
|
inode->i_op = VFS_PTR_POISON;
|
|
inode->i_sb = VFS_PTR_POISON;
|
|
inode->i_mapping = VFS_PTR_POISON;
|
|
}
|
|
spin_unlock(&sb->s_inode_list_lock);
|
|
}
|
|
}
|
|
/*
|
|
* Broadcast to everyone that grabbed a temporary reference to this
|
|
* superblock before we removed it from @fs_supers that the superblock
|
|
* is dying. Every walker of @fs_supers outside of sget{_fc}() will now
|
|
* discard this superblock and treat it as dead.
|
|
*
|
|
* We leave the superblock on @fs_supers so it can be found by
|
|
* sget{_fc}() until we passed sb->kill_sb().
|
|
*/
|
|
super_wake(sb, SB_DYING);
|
|
super_unlock_excl(sb);
|
|
if (sb->s_bdi != &noop_backing_dev_info) {
|
|
if (sb->s_iflags & SB_I_PERSB_BDI)
|
|
bdi_unregister(sb->s_bdi);
|
|
bdi_put(sb->s_bdi);
|
|
sb->s_bdi = &noop_backing_dev_info;
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(generic_shutdown_super);
|
|
|
|
bool mount_capable(struct fs_context *fc)
|
|
{
|
|
if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
|
|
return capable(CAP_SYS_ADMIN);
|
|
else
|
|
return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
|
|
}
|
|
|
|
/**
|
|
* sget_fc - Find or create a superblock
|
|
* @fc: Filesystem context.
|
|
* @test: Comparison callback
|
|
* @set: Setup callback
|
|
*
|
|
* Create a new superblock or find an existing one.
|
|
*
|
|
* The @test callback is used to find a matching existing superblock.
|
|
* Whether or not the requested parameters in @fc are taken into account
|
|
* is specific to the @test callback that is used. They may even be
|
|
* completely ignored.
|
|
*
|
|
* If an extant superblock is matched, it will be returned unless:
|
|
*
|
|
* (1) the namespace the filesystem context @fc and the extant
|
|
* superblock's namespace differ
|
|
*
|
|
* (2) the filesystem context @fc has requested that reusing an extant
|
|
* superblock is not allowed
|
|
*
|
|
* In both cases EBUSY will be returned.
|
|
*
|
|
* If no match is made, a new superblock will be allocated and basic
|
|
* initialisation will be performed (s_type, s_fs_info and s_id will be
|
|
* set and the @set callback will be invoked), the superblock will be
|
|
* published and it will be returned in a partially constructed state
|
|
* with SB_BORN and SB_ACTIVE as yet unset.
|
|
*
|
|
* Return: On success, an extant or newly created superblock is
|
|
* returned. On failure an error pointer is returned.
|
|
*/
|
|
struct super_block *sget_fc(struct fs_context *fc,
|
|
int (*test)(struct super_block *, struct fs_context *),
|
|
int (*set)(struct super_block *, struct fs_context *))
|
|
{
|
|
struct super_block *s = NULL;
|
|
struct super_block *old;
|
|
struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
|
|
int err;
|
|
|
|
retry:
|
|
spin_lock(&sb_lock);
|
|
if (test) {
|
|
hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
|
|
if (test(old, fc))
|
|
goto share_extant_sb;
|
|
}
|
|
}
|
|
if (!s) {
|
|
spin_unlock(&sb_lock);
|
|
s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
|
|
if (!s)
|
|
return ERR_PTR(-ENOMEM);
|
|
goto retry;
|
|
}
|
|
|
|
s->s_fs_info = fc->s_fs_info;
|
|
err = set(s, fc);
|
|
if (err) {
|
|
s->s_fs_info = NULL;
|
|
spin_unlock(&sb_lock);
|
|
destroy_unused_super(s);
|
|
return ERR_PTR(err);
|
|
}
|
|
fc->s_fs_info = NULL;
|
|
s->s_type = fc->fs_type;
|
|
s->s_iflags |= fc->s_iflags;
|
|
strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
|
|
/*
|
|
* Make the superblock visible on @super_blocks and @fs_supers.
|
|
* It's in a nascent state and users should wait on SB_BORN or
|
|
* SB_DYING to be set.
|
|
*/
|
|
list_add_tail(&s->s_list, &super_blocks);
|
|
hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
|
|
spin_unlock(&sb_lock);
|
|
get_filesystem(s->s_type);
|
|
shrinker_register(s->s_shrink);
|
|
return s;
|
|
|
|
share_extant_sb:
|
|
if (user_ns != old->s_user_ns || fc->exclusive) {
|
|
spin_unlock(&sb_lock);
|
|
destroy_unused_super(s);
|
|
if (fc->exclusive)
|
|
warnfc(fc, "reusing existing filesystem not allowed");
|
|
else
|
|
warnfc(fc, "reusing existing filesystem in another namespace not allowed");
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
if (!grab_super(old))
|
|
goto retry;
|
|
destroy_unused_super(s);
|
|
return old;
|
|
}
|
|
EXPORT_SYMBOL(sget_fc);
|
|
|
|
/**
|
|
* sget - find or create a superblock
|
|
* @type: filesystem type superblock should belong to
|
|
* @test: comparison callback
|
|
* @set: setup callback
|
|
* @flags: mount flags
|
|
* @data: argument to each of them
|
|
*/
|
|
struct super_block *sget(struct file_system_type *type,
|
|
int (*test)(struct super_block *,void *),
|
|
int (*set)(struct super_block *,void *),
|
|
int flags,
|
|
void *data)
|
|
{
|
|
struct user_namespace *user_ns = current_user_ns();
|
|
struct super_block *s = NULL;
|
|
struct super_block *old;
|
|
int err;
|
|
|
|
/* We don't yet pass the user namespace of the parent
|
|
* mount through to here so always use &init_user_ns
|
|
* until that changes.
|
|
*/
|
|
if (flags & SB_SUBMOUNT)
|
|
user_ns = &init_user_ns;
|
|
|
|
retry:
|
|
spin_lock(&sb_lock);
|
|
if (test) {
|
|
hlist_for_each_entry(old, &type->fs_supers, s_instances) {
|
|
if (!test(old, data))
|
|
continue;
|
|
if (user_ns != old->s_user_ns) {
|
|
spin_unlock(&sb_lock);
|
|
destroy_unused_super(s);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
if (!grab_super(old))
|
|
goto retry;
|
|
destroy_unused_super(s);
|
|
return old;
|
|
}
|
|
}
|
|
if (!s) {
|
|
spin_unlock(&sb_lock);
|
|
s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
|
|
if (!s)
|
|
return ERR_PTR(-ENOMEM);
|
|
goto retry;
|
|
}
|
|
|
|
err = set(s, data);
|
|
if (err) {
|
|
spin_unlock(&sb_lock);
|
|
destroy_unused_super(s);
|
|
return ERR_PTR(err);
|
|
}
|
|
s->s_type = type;
|
|
strscpy(s->s_id, type->name, sizeof(s->s_id));
|
|
list_add_tail(&s->s_list, &super_blocks);
|
|
hlist_add_head(&s->s_instances, &type->fs_supers);
|
|
spin_unlock(&sb_lock);
|
|
get_filesystem(type);
|
|
shrinker_register(s->s_shrink);
|
|
return s;
|
|
}
|
|
EXPORT_SYMBOL(sget);
|
|
|
|
void drop_super(struct super_block *sb)
|
|
{
|
|
super_unlock_shared(sb);
|
|
put_super(sb);
|
|
}
|
|
|
|
EXPORT_SYMBOL(drop_super);
|
|
|
|
void drop_super_exclusive(struct super_block *sb)
|
|
{
|
|
super_unlock_excl(sb);
|
|
put_super(sb);
|
|
}
|
|
EXPORT_SYMBOL(drop_super_exclusive);
|
|
|
|
static void __iterate_supers(void (*f)(struct super_block *))
|
|
{
|
|
struct super_block *sb, *p = NULL;
|
|
|
|
spin_lock(&sb_lock);
|
|
list_for_each_entry(sb, &super_blocks, s_list) {
|
|
if (super_flags(sb, SB_DYING))
|
|
continue;
|
|
sb->s_count++;
|
|
spin_unlock(&sb_lock);
|
|
|
|
f(sb);
|
|
|
|
spin_lock(&sb_lock);
|
|
if (p)
|
|
__put_super(p);
|
|
p = sb;
|
|
}
|
|
if (p)
|
|
__put_super(p);
|
|
spin_unlock(&sb_lock);
|
|
}
|
|
/**
|
|
* iterate_supers - call function for all active superblocks
|
|
* @f: function to call
|
|
* @arg: argument to pass to it
|
|
*
|
|
* Scans the superblock list and calls given function, passing it
|
|
* locked superblock and given argument.
|
|
*/
|
|
void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
|
|
{
|
|
struct super_block *sb, *p = NULL;
|
|
|
|
spin_lock(&sb_lock);
|
|
list_for_each_entry(sb, &super_blocks, s_list) {
|
|
bool locked;
|
|
|
|
sb->s_count++;
|
|
spin_unlock(&sb_lock);
|
|
|
|
locked = super_lock_shared(sb);
|
|
if (locked) {
|
|
if (sb->s_root)
|
|
f(sb, arg);
|
|
super_unlock_shared(sb);
|
|
}
|
|
|
|
spin_lock(&sb_lock);
|
|
if (p)
|
|
__put_super(p);
|
|
p = sb;
|
|
}
|
|
if (p)
|
|
__put_super(p);
|
|
spin_unlock(&sb_lock);
|
|
}
|
|
|
|
/**
|
|
* iterate_supers_type - call function for superblocks of given type
|
|
* @type: fs type
|
|
* @f: function to call
|
|
* @arg: argument to pass to it
|
|
*
|
|
* Scans the superblock list and calls given function, passing it
|
|
* locked superblock and given argument.
|
|
*/
|
|
void iterate_supers_type(struct file_system_type *type,
|
|
void (*f)(struct super_block *, void *), void *arg)
|
|
{
|
|
struct super_block *sb, *p = NULL;
|
|
|
|
spin_lock(&sb_lock);
|
|
hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
|
|
bool locked;
|
|
|
|
sb->s_count++;
|
|
spin_unlock(&sb_lock);
|
|
|
|
locked = super_lock_shared(sb);
|
|
if (locked) {
|
|
if (sb->s_root)
|
|
f(sb, arg);
|
|
super_unlock_shared(sb);
|
|
}
|
|
|
|
spin_lock(&sb_lock);
|
|
if (p)
|
|
__put_super(p);
|
|
p = sb;
|
|
}
|
|
if (p)
|
|
__put_super(p);
|
|
spin_unlock(&sb_lock);
|
|
}
|
|
|
|
EXPORT_SYMBOL(iterate_supers_type);
|
|
|
|
struct super_block *user_get_super(dev_t dev, bool excl)
|
|
{
|
|
struct super_block *sb;
|
|
|
|
spin_lock(&sb_lock);
|
|
list_for_each_entry(sb, &super_blocks, s_list) {
|
|
if (sb->s_dev == dev) {
|
|
bool locked;
|
|
|
|
sb->s_count++;
|
|
spin_unlock(&sb_lock);
|
|
/* still alive? */
|
|
locked = super_lock(sb, excl);
|
|
if (locked) {
|
|
if (sb->s_root)
|
|
return sb;
|
|
super_unlock(sb, excl);
|
|
}
|
|
/* nope, got unmounted */
|
|
spin_lock(&sb_lock);
|
|
__put_super(sb);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&sb_lock);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* reconfigure_super - asks filesystem to change superblock parameters
|
|
* @fc: The superblock and configuration
|
|
*
|
|
* Alters the configuration parameters of a live superblock.
|
|
*/
|
|
int reconfigure_super(struct fs_context *fc)
|
|
{
|
|
struct super_block *sb = fc->root->d_sb;
|
|
int retval;
|
|
bool remount_ro = false;
|
|
bool remount_rw = false;
|
|
bool force = fc->sb_flags & SB_FORCE;
|
|
|
|
if (fc->sb_flags_mask & ~MS_RMT_MASK)
|
|
return -EINVAL;
|
|
if (sb->s_writers.frozen != SB_UNFROZEN)
|
|
return -EBUSY;
|
|
|
|
retval = security_sb_remount(sb, fc->security);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (fc->sb_flags_mask & SB_RDONLY) {
|
|
#ifdef CONFIG_BLOCK
|
|
if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
|
|
bdev_read_only(sb->s_bdev))
|
|
return -EACCES;
|
|
#endif
|
|
remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
|
|
remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
|
|
}
|
|
|
|
if (remount_ro) {
|
|
if (!hlist_empty(&sb->s_pins)) {
|
|
super_unlock_excl(sb);
|
|
group_pin_kill(&sb->s_pins);
|
|
__super_lock_excl(sb);
|
|
if (!sb->s_root)
|
|
return 0;
|
|
if (sb->s_writers.frozen != SB_UNFROZEN)
|
|
return -EBUSY;
|
|
remount_ro = !sb_rdonly(sb);
|
|
}
|
|
}
|
|
shrink_dcache_sb(sb);
|
|
|
|
/* If we are reconfiguring to RDONLY and current sb is read/write,
|
|
* make sure there are no files open for writing.
|
|
*/
|
|
if (remount_ro) {
|
|
if (force) {
|
|
sb_start_ro_state_change(sb);
|
|
} else {
|
|
retval = sb_prepare_remount_readonly(sb);
|
|
if (retval)
|
|
return retval;
|
|
}
|
|
} else if (remount_rw) {
|
|
/*
|
|
* Protect filesystem's reconfigure code from writes from
|
|
* userspace until reconfigure finishes.
|
|
*/
|
|
sb_start_ro_state_change(sb);
|
|
}
|
|
|
|
if (fc->ops->reconfigure) {
|
|
retval = fc->ops->reconfigure(fc);
|
|
if (retval) {
|
|
if (!force)
|
|
goto cancel_readonly;
|
|
/* If forced remount, go ahead despite any errors */
|
|
WARN(1, "forced remount of a %s fs returned %i\n",
|
|
sb->s_type->name, retval);
|
|
}
|
|
}
|
|
|
|
WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
|
|
(fc->sb_flags & fc->sb_flags_mask)));
|
|
sb_end_ro_state_change(sb);
|
|
|
|
/*
|
|
* Some filesystems modify their metadata via some other path than the
|
|
* bdev buffer cache (eg. use a private mapping, or directories in
|
|
* pagecache, etc). Also file data modifications go via their own
|
|
* mappings. So If we try to mount readonly then copy the filesystem
|
|
* from bdev, we could get stale data, so invalidate it to give a best
|
|
* effort at coherency.
|
|
*/
|
|
if (remount_ro && sb->s_bdev)
|
|
invalidate_bdev(sb->s_bdev);
|
|
return 0;
|
|
|
|
cancel_readonly:
|
|
sb_end_ro_state_change(sb);
|
|
return retval;
|
|
}
|
|
|
|
static void do_emergency_remount_callback(struct super_block *sb)
|
|
{
|
|
bool locked = super_lock_excl(sb);
|
|
|
|
if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
|
|
struct fs_context *fc;
|
|
|
|
fc = fs_context_for_reconfigure(sb->s_root,
|
|
SB_RDONLY | SB_FORCE, SB_RDONLY);
|
|
if (!IS_ERR(fc)) {
|
|
if (parse_monolithic_mount_data(fc, NULL) == 0)
|
|
(void)reconfigure_super(fc);
|
|
put_fs_context(fc);
|
|
}
|
|
}
|
|
if (locked)
|
|
super_unlock_excl(sb);
|
|
}
|
|
|
|
static void do_emergency_remount(struct work_struct *work)
|
|
{
|
|
__iterate_supers(do_emergency_remount_callback);
|
|
kfree(work);
|
|
printk("Emergency Remount complete\n");
|
|
}
|
|
|
|
void emergency_remount(void)
|
|
{
|
|
struct work_struct *work;
|
|
|
|
work = kmalloc(sizeof(*work), GFP_ATOMIC);
|
|
if (work) {
|
|
INIT_WORK(work, do_emergency_remount);
|
|
schedule_work(work);
|
|
}
|
|
}
|
|
|
|
static void do_thaw_all_callback(struct super_block *sb)
|
|
{
|
|
bool locked = super_lock_excl(sb);
|
|
|
|
if (locked && sb->s_root) {
|
|
if (IS_ENABLED(CONFIG_BLOCK))
|
|
while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
|
|
pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
|
|
thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
|
|
return;
|
|
}
|
|
if (locked)
|
|
super_unlock_excl(sb);
|
|
}
|
|
|
|
static void do_thaw_all(struct work_struct *work)
|
|
{
|
|
__iterate_supers(do_thaw_all_callback);
|
|
kfree(work);
|
|
printk(KERN_WARNING "Emergency Thaw complete\n");
|
|
}
|
|
|
|
/**
|
|
* emergency_thaw_all -- forcibly thaw every frozen filesystem
|
|
*
|
|
* Used for emergency unfreeze of all filesystems via SysRq
|
|
*/
|
|
void emergency_thaw_all(void)
|
|
{
|
|
struct work_struct *work;
|
|
|
|
work = kmalloc(sizeof(*work), GFP_ATOMIC);
|
|
if (work) {
|
|
INIT_WORK(work, do_thaw_all);
|
|
schedule_work(work);
|
|
}
|
|
}
|
|
|
|
static DEFINE_IDA(unnamed_dev_ida);
|
|
|
|
/**
|
|
* get_anon_bdev - Allocate a block device for filesystems which don't have one.
|
|
* @p: Pointer to a dev_t.
|
|
*
|
|
* Filesystems which don't use real block devices can call this function
|
|
* to allocate a virtual block device.
|
|
*
|
|
* Context: Any context. Frequently called while holding sb_lock.
|
|
* Return: 0 on success, -EMFILE if there are no anonymous bdevs left
|
|
* or -ENOMEM if memory allocation failed.
|
|
*/
|
|
int get_anon_bdev(dev_t *p)
|
|
{
|
|
int dev;
|
|
|
|
/*
|
|
* Many userspace utilities consider an FSID of 0 invalid.
|
|
* Always return at least 1 from get_anon_bdev.
|
|
*/
|
|
dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
|
|
GFP_ATOMIC);
|
|
if (dev == -ENOSPC)
|
|
dev = -EMFILE;
|
|
if (dev < 0)
|
|
return dev;
|
|
|
|
*p = MKDEV(0, dev);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(get_anon_bdev);
|
|
|
|
void free_anon_bdev(dev_t dev)
|
|
{
|
|
ida_free(&unnamed_dev_ida, MINOR(dev));
|
|
}
|
|
EXPORT_SYMBOL(free_anon_bdev);
|
|
|
|
int set_anon_super(struct super_block *s, void *data)
|
|
{
|
|
return get_anon_bdev(&s->s_dev);
|
|
}
|
|
EXPORT_SYMBOL(set_anon_super);
|
|
|
|
void kill_anon_super(struct super_block *sb)
|
|
{
|
|
dev_t dev = sb->s_dev;
|
|
generic_shutdown_super(sb);
|
|
kill_super_notify(sb);
|
|
free_anon_bdev(dev);
|
|
}
|
|
EXPORT_SYMBOL(kill_anon_super);
|
|
|
|
void kill_litter_super(struct super_block *sb)
|
|
{
|
|
if (sb->s_root)
|
|
d_genocide(sb->s_root);
|
|
kill_anon_super(sb);
|
|
}
|
|
EXPORT_SYMBOL(kill_litter_super);
|
|
|
|
int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
|
|
{
|
|
return set_anon_super(sb, NULL);
|
|
}
|
|
EXPORT_SYMBOL(set_anon_super_fc);
|
|
|
|
static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
|
|
{
|
|
return sb->s_fs_info == fc->s_fs_info;
|
|
}
|
|
|
|
static int test_single_super(struct super_block *s, struct fs_context *fc)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int vfs_get_super(struct fs_context *fc,
|
|
int (*test)(struct super_block *, struct fs_context *),
|
|
int (*fill_super)(struct super_block *sb,
|
|
struct fs_context *fc))
|
|
{
|
|
struct super_block *sb;
|
|
int err;
|
|
|
|
sb = sget_fc(fc, test, set_anon_super_fc);
|
|
if (IS_ERR(sb))
|
|
return PTR_ERR(sb);
|
|
|
|
if (!sb->s_root) {
|
|
err = fill_super(sb, fc);
|
|
if (err)
|
|
goto error;
|
|
|
|
sb->s_flags |= SB_ACTIVE;
|
|
}
|
|
|
|
fc->root = dget(sb->s_root);
|
|
return 0;
|
|
|
|
error:
|
|
deactivate_locked_super(sb);
|
|
return err;
|
|
}
|
|
|
|
int get_tree_nodev(struct fs_context *fc,
|
|
int (*fill_super)(struct super_block *sb,
|
|
struct fs_context *fc))
|
|
{
|
|
return vfs_get_super(fc, NULL, fill_super);
|
|
}
|
|
EXPORT_SYMBOL(get_tree_nodev);
|
|
|
|
int get_tree_single(struct fs_context *fc,
|
|
int (*fill_super)(struct super_block *sb,
|
|
struct fs_context *fc))
|
|
{
|
|
return vfs_get_super(fc, test_single_super, fill_super);
|
|
}
|
|
EXPORT_SYMBOL(get_tree_single);
|
|
|
|
int get_tree_keyed(struct fs_context *fc,
|
|
int (*fill_super)(struct super_block *sb,
|
|
struct fs_context *fc),
|
|
void *key)
|
|
{
|
|
fc->s_fs_info = key;
|
|
return vfs_get_super(fc, test_keyed_super, fill_super);
|
|
}
|
|
EXPORT_SYMBOL(get_tree_keyed);
|
|
|
|
static int set_bdev_super(struct super_block *s, void *data)
|
|
{
|
|
s->s_dev = *(dev_t *)data;
|
|
return 0;
|
|
}
|
|
|
|
static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
|
|
{
|
|
return set_bdev_super(s, fc->sget_key);
|
|
}
|
|
|
|
static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
|
|
{
|
|
return !(s->s_iflags & SB_I_RETIRED) &&
|
|
s->s_dev == *(dev_t *)fc->sget_key;
|
|
}
|
|
|
|
/**
|
|
* sget_dev - Find or create a superblock by device number
|
|
* @fc: Filesystem context.
|
|
* @dev: device number
|
|
*
|
|
* Find or create a superblock using the provided device number that
|
|
* will be stored in fc->sget_key.
|
|
*
|
|
* If an extant superblock is matched, then that will be returned with
|
|
* an elevated reference count that the caller must transfer or discard.
|
|
*
|
|
* If no match is made, a new superblock will be allocated and basic
|
|
* initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
|
|
* be set). The superblock will be published and it will be returned in
|
|
* a partially constructed state with SB_BORN and SB_ACTIVE as yet
|
|
* unset.
|
|
*
|
|
* Return: an existing or newly created superblock on success, an error
|
|
* pointer on failure.
|
|
*/
|
|
struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
|
|
{
|
|
fc->sget_key = &dev;
|
|
return sget_fc(fc, super_s_dev_test, super_s_dev_set);
|
|
}
|
|
EXPORT_SYMBOL(sget_dev);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
/*
|
|
* Lock the superblock that is holder of the bdev. Returns the superblock
|
|
* pointer if we successfully locked the superblock and it is alive. Otherwise
|
|
* we return NULL and just unlock bdev->bd_holder_lock.
|
|
*
|
|
* The function must be called with bdev->bd_holder_lock and releases it.
|
|
*/
|
|
static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
|
|
__releases(&bdev->bd_holder_lock)
|
|
{
|
|
struct super_block *sb = bdev->bd_holder;
|
|
bool locked;
|
|
|
|
lockdep_assert_held(&bdev->bd_holder_lock);
|
|
lockdep_assert_not_held(&sb->s_umount);
|
|
lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
|
|
|
|
/* Make sure sb doesn't go away from under us */
|
|
spin_lock(&sb_lock);
|
|
sb->s_count++;
|
|
spin_unlock(&sb_lock);
|
|
|
|
mutex_unlock(&bdev->bd_holder_lock);
|
|
|
|
locked = super_lock(sb, excl);
|
|
|
|
/*
|
|
* If the superblock wasn't already SB_DYING then we hold
|
|
* s_umount and can safely drop our temporary reference.
|
|
*/
|
|
put_super(sb);
|
|
|
|
if (!locked)
|
|
return NULL;
|
|
|
|
if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
|
|
super_unlock(sb, excl);
|
|
return NULL;
|
|
}
|
|
|
|
return sb;
|
|
}
|
|
|
|
static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
|
|
{
|
|
struct super_block *sb;
|
|
|
|
sb = bdev_super_lock(bdev, false);
|
|
if (!sb)
|
|
return;
|
|
|
|
if (!surprise)
|
|
sync_filesystem(sb);
|
|
shrink_dcache_sb(sb);
|
|
invalidate_inodes(sb);
|
|
if (sb->s_op->shutdown)
|
|
sb->s_op->shutdown(sb);
|
|
|
|
super_unlock_shared(sb);
|
|
}
|
|
|
|
static void fs_bdev_sync(struct block_device *bdev)
|
|
{
|
|
struct super_block *sb;
|
|
|
|
sb = bdev_super_lock(bdev, false);
|
|
if (!sb)
|
|
return;
|
|
|
|
sync_filesystem(sb);
|
|
super_unlock_shared(sb);
|
|
}
|
|
|
|
static struct super_block *get_bdev_super(struct block_device *bdev)
|
|
{
|
|
bool active = false;
|
|
struct super_block *sb;
|
|
|
|
sb = bdev_super_lock(bdev, true);
|
|
if (sb) {
|
|
active = atomic_inc_not_zero(&sb->s_active);
|
|
super_unlock_excl(sb);
|
|
}
|
|
if (!active)
|
|
return NULL;
|
|
return sb;
|
|
}
|
|
|
|
/**
|
|
* fs_bdev_freeze - freeze owning filesystem of block device
|
|
* @bdev: block device
|
|
*
|
|
* Freeze the filesystem that owns this block device if it is still
|
|
* active.
|
|
*
|
|
* A filesystem that owns multiple block devices may be frozen from each
|
|
* block device and won't be unfrozen until all block devices are
|
|
* unfrozen. Each block device can only freeze the filesystem once as we
|
|
* nest freezes for block devices in the block layer.
|
|
*
|
|
* Return: If the freeze was successful zero is returned. If the freeze
|
|
* failed a negative error code is returned.
|
|
*/
|
|
static int fs_bdev_freeze(struct block_device *bdev)
|
|
{
|
|
struct super_block *sb;
|
|
int error = 0;
|
|
|
|
lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
|
|
|
|
sb = get_bdev_super(bdev);
|
|
if (!sb)
|
|
return -EINVAL;
|
|
|
|
if (sb->s_op->freeze_super)
|
|
error = sb->s_op->freeze_super(sb,
|
|
FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
|
|
else
|
|
error = freeze_super(sb,
|
|
FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
|
|
if (!error)
|
|
error = sync_blockdev(bdev);
|
|
deactivate_super(sb);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* fs_bdev_thaw - thaw owning filesystem of block device
|
|
* @bdev: block device
|
|
*
|
|
* Thaw the filesystem that owns this block device.
|
|
*
|
|
* A filesystem that owns multiple block devices may be frozen from each
|
|
* block device and won't be unfrozen until all block devices are
|
|
* unfrozen. Each block device can only freeze the filesystem once as we
|
|
* nest freezes for block devices in the block layer.
|
|
*
|
|
* Return: If the thaw was successful zero is returned. If the thaw
|
|
* failed a negative error code is returned. If this function
|
|
* returns zero it doesn't mean that the filesystem is unfrozen
|
|
* as it may have been frozen multiple times (kernel may hold a
|
|
* freeze or might be frozen from other block devices).
|
|
*/
|
|
static int fs_bdev_thaw(struct block_device *bdev)
|
|
{
|
|
struct super_block *sb;
|
|
int error;
|
|
|
|
lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
|
|
|
|
sb = get_bdev_super(bdev);
|
|
if (WARN_ON_ONCE(!sb))
|
|
return -EINVAL;
|
|
|
|
if (sb->s_op->thaw_super)
|
|
error = sb->s_op->thaw_super(sb,
|
|
FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
|
|
else
|
|
error = thaw_super(sb,
|
|
FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
|
|
deactivate_super(sb);
|
|
return error;
|
|
}
|
|
|
|
const struct blk_holder_ops fs_holder_ops = {
|
|
.mark_dead = fs_bdev_mark_dead,
|
|
.sync = fs_bdev_sync,
|
|
.freeze = fs_bdev_freeze,
|
|
.thaw = fs_bdev_thaw,
|
|
};
|
|
EXPORT_SYMBOL_GPL(fs_holder_ops);
|
|
|
|
int setup_bdev_super(struct super_block *sb, int sb_flags,
|
|
struct fs_context *fc)
|
|
{
|
|
blk_mode_t mode = sb_open_mode(sb_flags);
|
|
struct bdev_handle *bdev_handle;
|
|
struct block_device *bdev;
|
|
|
|
bdev_handle = bdev_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
|
|
if (IS_ERR(bdev_handle)) {
|
|
if (fc)
|
|
errorf(fc, "%s: Can't open blockdev", fc->source);
|
|
return PTR_ERR(bdev_handle);
|
|
}
|
|
bdev = bdev_handle->bdev;
|
|
|
|
/*
|
|
* This really should be in blkdev_get_by_dev, but right now can't due
|
|
* to legacy issues that require us to allow opening a block device node
|
|
* writable from userspace even for a read-only block device.
|
|
*/
|
|
if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
|
|
bdev_release(bdev_handle);
|
|
return -EACCES;
|
|
}
|
|
|
|
/*
|
|
* It is enough to check bdev was not frozen before we set
|
|
* s_bdev as freezing will wait until SB_BORN is set.
|
|
*/
|
|
if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
|
|
if (fc)
|
|
warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
|
|
bdev_release(bdev_handle);
|
|
return -EBUSY;
|
|
}
|
|
spin_lock(&sb_lock);
|
|
sb->s_bdev_handle = bdev_handle;
|
|
sb->s_bdev = bdev;
|
|
sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
|
|
if (bdev_stable_writes(bdev))
|
|
sb->s_iflags |= SB_I_STABLE_WRITES;
|
|
spin_unlock(&sb_lock);
|
|
|
|
snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
|
|
shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
|
|
sb->s_id);
|
|
sb_set_blocksize(sb, block_size(bdev));
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(setup_bdev_super);
|
|
|
|
/**
|
|
* get_tree_bdev - Get a superblock based on a single block device
|
|
* @fc: The filesystem context holding the parameters
|
|
* @fill_super: Helper to initialise a new superblock
|
|
*/
|
|
int get_tree_bdev(struct fs_context *fc,
|
|
int (*fill_super)(struct super_block *,
|
|
struct fs_context *))
|
|
{
|
|
struct super_block *s;
|
|
int error = 0;
|
|
dev_t dev;
|
|
|
|
if (!fc->source)
|
|
return invalf(fc, "No source specified");
|
|
|
|
error = lookup_bdev(fc->source, &dev);
|
|
if (error) {
|
|
errorf(fc, "%s: Can't lookup blockdev", fc->source);
|
|
return error;
|
|
}
|
|
|
|
fc->sb_flags |= SB_NOSEC;
|
|
s = sget_dev(fc, dev);
|
|
if (IS_ERR(s))
|
|
return PTR_ERR(s);
|
|
|
|
if (s->s_root) {
|
|
/* Don't summarily change the RO/RW state. */
|
|
if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
|
|
warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
|
|
deactivate_locked_super(s);
|
|
return -EBUSY;
|
|
}
|
|
} else {
|
|
error = setup_bdev_super(s, fc->sb_flags, fc);
|
|
if (!error)
|
|
error = fill_super(s, fc);
|
|
if (error) {
|
|
deactivate_locked_super(s);
|
|
return error;
|
|
}
|
|
s->s_flags |= SB_ACTIVE;
|
|
}
|
|
|
|
BUG_ON(fc->root);
|
|
fc->root = dget(s->s_root);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(get_tree_bdev);
|
|
|
|
static int test_bdev_super(struct super_block *s, void *data)
|
|
{
|
|
return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
|
|
}
|
|
|
|
struct dentry *mount_bdev(struct file_system_type *fs_type,
|
|
int flags, const char *dev_name, void *data,
|
|
int (*fill_super)(struct super_block *, void *, int))
|
|
{
|
|
struct super_block *s;
|
|
int error;
|
|
dev_t dev;
|
|
|
|
error = lookup_bdev(dev_name, &dev);
|
|
if (error)
|
|
return ERR_PTR(error);
|
|
|
|
flags |= SB_NOSEC;
|
|
s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
|
|
if (IS_ERR(s))
|
|
return ERR_CAST(s);
|
|
|
|
if (s->s_root) {
|
|
if ((flags ^ s->s_flags) & SB_RDONLY) {
|
|
deactivate_locked_super(s);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
} else {
|
|
error = setup_bdev_super(s, flags, NULL);
|
|
if (!error)
|
|
error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
|
|
if (error) {
|
|
deactivate_locked_super(s);
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
s->s_flags |= SB_ACTIVE;
|
|
}
|
|
|
|
return dget(s->s_root);
|
|
}
|
|
EXPORT_SYMBOL(mount_bdev);
|
|
|
|
void kill_block_super(struct super_block *sb)
|
|
{
|
|
struct block_device *bdev = sb->s_bdev;
|
|
|
|
generic_shutdown_super(sb);
|
|
if (bdev) {
|
|
sync_blockdev(bdev);
|
|
bdev_release(sb->s_bdev_handle);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(kill_block_super);
|
|
#endif
|
|
|
|
struct dentry *mount_nodev(struct file_system_type *fs_type,
|
|
int flags, void *data,
|
|
int (*fill_super)(struct super_block *, void *, int))
|
|
{
|
|
int error;
|
|
struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
|
|
|
|
if (IS_ERR(s))
|
|
return ERR_CAST(s);
|
|
|
|
error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
|
|
if (error) {
|
|
deactivate_locked_super(s);
|
|
return ERR_PTR(error);
|
|
}
|
|
s->s_flags |= SB_ACTIVE;
|
|
return dget(s->s_root);
|
|
}
|
|
EXPORT_SYMBOL(mount_nodev);
|
|
|
|
int reconfigure_single(struct super_block *s,
|
|
int flags, void *data)
|
|
{
|
|
struct fs_context *fc;
|
|
int ret;
|
|
|
|
/* The caller really need to be passing fc down into mount_single(),
|
|
* then a chunk of this can be removed. [Bollocks -- AV]
|
|
* Better yet, reconfiguration shouldn't happen, but rather the second
|
|
* mount should be rejected if the parameters are not compatible.
|
|
*/
|
|
fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
|
|
if (IS_ERR(fc))
|
|
return PTR_ERR(fc);
|
|
|
|
ret = parse_monolithic_mount_data(fc, data);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = reconfigure_super(fc);
|
|
out:
|
|
put_fs_context(fc);
|
|
return ret;
|
|
}
|
|
|
|
static int compare_single(struct super_block *s, void *p)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
struct dentry *mount_single(struct file_system_type *fs_type,
|
|
int flags, void *data,
|
|
int (*fill_super)(struct super_block *, void *, int))
|
|
{
|
|
struct super_block *s;
|
|
int error;
|
|
|
|
s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
|
|
if (IS_ERR(s))
|
|
return ERR_CAST(s);
|
|
if (!s->s_root) {
|
|
error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
|
|
if (!error)
|
|
s->s_flags |= SB_ACTIVE;
|
|
} else {
|
|
error = reconfigure_single(s, flags, data);
|
|
}
|
|
if (unlikely(error)) {
|
|
deactivate_locked_super(s);
|
|
return ERR_PTR(error);
|
|
}
|
|
return dget(s->s_root);
|
|
}
|
|
EXPORT_SYMBOL(mount_single);
|
|
|
|
/**
|
|
* vfs_get_tree - Get the mountable root
|
|
* @fc: The superblock configuration context.
|
|
*
|
|
* The filesystem is invoked to get or create a superblock which can then later
|
|
* be used for mounting. The filesystem places a pointer to the root to be
|
|
* used for mounting in @fc->root.
|
|
*/
|
|
int vfs_get_tree(struct fs_context *fc)
|
|
{
|
|
struct super_block *sb;
|
|
int error;
|
|
|
|
if (fc->root)
|
|
return -EBUSY;
|
|
|
|
/* Get the mountable root in fc->root, with a ref on the root and a ref
|
|
* on the superblock.
|
|
*/
|
|
error = fc->ops->get_tree(fc);
|
|
if (error < 0)
|
|
return error;
|
|
|
|
if (!fc->root) {
|
|
pr_err("Filesystem %s get_tree() didn't set fc->root\n",
|
|
fc->fs_type->name);
|
|
/* We don't know what the locking state of the superblock is -
|
|
* if there is a superblock.
|
|
*/
|
|
BUG();
|
|
}
|
|
|
|
sb = fc->root->d_sb;
|
|
WARN_ON(!sb->s_bdi);
|
|
|
|
/*
|
|
* super_wake() contains a memory barrier which also care of
|
|
* ordering for super_cache_count(). We place it before setting
|
|
* SB_BORN as the data dependency between the two functions is
|
|
* the superblock structure contents that we just set up, not
|
|
* the SB_BORN flag.
|
|
*/
|
|
super_wake(sb, SB_BORN);
|
|
|
|
error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
|
|
if (unlikely(error)) {
|
|
fc_drop_locked(fc);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
|
|
* but s_maxbytes was an unsigned long long for many releases. Throw
|
|
* this warning for a little while to try and catch filesystems that
|
|
* violate this rule.
|
|
*/
|
|
WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
|
|
"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(vfs_get_tree);
|
|
|
|
/*
|
|
* Setup private BDI for given superblock. It gets automatically cleaned up
|
|
* in generic_shutdown_super().
|
|
*/
|
|
int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
|
|
{
|
|
struct backing_dev_info *bdi;
|
|
int err;
|
|
va_list args;
|
|
|
|
bdi = bdi_alloc(NUMA_NO_NODE);
|
|
if (!bdi)
|
|
return -ENOMEM;
|
|
|
|
va_start(args, fmt);
|
|
err = bdi_register_va(bdi, fmt, args);
|
|
va_end(args);
|
|
if (err) {
|
|
bdi_put(bdi);
|
|
return err;
|
|
}
|
|
WARN_ON(sb->s_bdi != &noop_backing_dev_info);
|
|
sb->s_bdi = bdi;
|
|
sb->s_iflags |= SB_I_PERSB_BDI;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(super_setup_bdi_name);
|
|
|
|
/*
|
|
* Setup private BDI for given superblock. I gets automatically cleaned up
|
|
* in generic_shutdown_super().
|
|
*/
|
|
int super_setup_bdi(struct super_block *sb)
|
|
{
|
|
static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
|
|
|
|
return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
|
|
atomic_long_inc_return(&bdi_seq));
|
|
}
|
|
EXPORT_SYMBOL(super_setup_bdi);
|
|
|
|
/**
|
|
* sb_wait_write - wait until all writers to given file system finish
|
|
* @sb: the super for which we wait
|
|
* @level: type of writers we wait for (normal vs page fault)
|
|
*
|
|
* This function waits until there are no writers of given type to given file
|
|
* system.
|
|
*/
|
|
static void sb_wait_write(struct super_block *sb, int level)
|
|
{
|
|
percpu_down_write(sb->s_writers.rw_sem + level-1);
|
|
}
|
|
|
|
/*
|
|
* We are going to return to userspace and forget about these locks, the
|
|
* ownership goes to the caller of thaw_super() which does unlock().
|
|
*/
|
|
static void lockdep_sb_freeze_release(struct super_block *sb)
|
|
{
|
|
int level;
|
|
|
|
for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
|
|
percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
|
|
}
|
|
|
|
/*
|
|
* Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
|
|
*/
|
|
static void lockdep_sb_freeze_acquire(struct super_block *sb)
|
|
{
|
|
int level;
|
|
|
|
for (level = 0; level < SB_FREEZE_LEVELS; ++level)
|
|
percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
|
|
}
|
|
|
|
static void sb_freeze_unlock(struct super_block *sb, int level)
|
|
{
|
|
for (level--; level >= 0; level--)
|
|
percpu_up_write(sb->s_writers.rw_sem + level);
|
|
}
|
|
|
|
static int wait_for_partially_frozen(struct super_block *sb)
|
|
{
|
|
int ret = 0;
|
|
|
|
do {
|
|
unsigned short old = sb->s_writers.frozen;
|
|
|
|
up_write(&sb->s_umount);
|
|
ret = wait_var_event_killable(&sb->s_writers.frozen,
|
|
sb->s_writers.frozen != old);
|
|
down_write(&sb->s_umount);
|
|
} while (ret == 0 &&
|
|
sb->s_writers.frozen != SB_UNFROZEN &&
|
|
sb->s_writers.frozen != SB_FREEZE_COMPLETE);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
|
|
#define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST)
|
|
|
|
static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
|
|
{
|
|
WARN_ON_ONCE((who & ~FREEZE_FLAGS));
|
|
WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
|
|
|
|
if (who & FREEZE_HOLDER_KERNEL)
|
|
++sb->s_writers.freeze_kcount;
|
|
if (who & FREEZE_HOLDER_USERSPACE)
|
|
++sb->s_writers.freeze_ucount;
|
|
return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
|
|
}
|
|
|
|
static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
|
|
{
|
|
WARN_ON_ONCE((who & ~FREEZE_FLAGS));
|
|
WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
|
|
|
|
if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
|
|
--sb->s_writers.freeze_kcount;
|
|
if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
|
|
--sb->s_writers.freeze_ucount;
|
|
return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
|
|
}
|
|
|
|
static inline bool may_freeze(struct super_block *sb, enum freeze_holder who)
|
|
{
|
|
WARN_ON_ONCE((who & ~FREEZE_FLAGS));
|
|
WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
|
|
|
|
if (who & FREEZE_HOLDER_KERNEL)
|
|
return (who & FREEZE_MAY_NEST) ||
|
|
sb->s_writers.freeze_kcount == 0;
|
|
if (who & FREEZE_HOLDER_USERSPACE)
|
|
return (who & FREEZE_MAY_NEST) ||
|
|
sb->s_writers.freeze_ucount == 0;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* freeze_super - lock the filesystem and force it into a consistent state
|
|
* @sb: the super to lock
|
|
* @who: context that wants to freeze
|
|
*
|
|
* Syncs the super to make sure the filesystem is consistent and calls the fs's
|
|
* freeze_fs. Subsequent calls to this without first thawing the fs may return
|
|
* -EBUSY.
|
|
*
|
|
* @who should be:
|
|
* * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
|
|
* * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
|
|
* * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
|
|
*
|
|
* The @who argument distinguishes between the kernel and userspace trying to
|
|
* freeze the filesystem. Although there cannot be multiple kernel freezes or
|
|
* multiple userspace freezes in effect at any given time, the kernel and
|
|
* userspace can both hold a filesystem frozen. The filesystem remains frozen
|
|
* until there are no kernel or userspace freezes in effect.
|
|
*
|
|
* A filesystem may hold multiple devices and thus a filesystems may be
|
|
* frozen through the block layer via multiple block devices. In this
|
|
* case the request is marked as being allowed to nest by passing
|
|
* FREEZE_MAY_NEST. The filesystem remains frozen until all block
|
|
* devices are unfrozen. If multiple freezes are attempted without
|
|
* FREEZE_MAY_NEST -EBUSY will be returned.
|
|
*
|
|
* During this function, sb->s_writers.frozen goes through these values:
|
|
*
|
|
* SB_UNFROZEN: File system is normal, all writes progress as usual.
|
|
*
|
|
* SB_FREEZE_WRITE: The file system is in the process of being frozen. New
|
|
* writes should be blocked, though page faults are still allowed. We wait for
|
|
* all writes to complete and then proceed to the next stage.
|
|
*
|
|
* SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
|
|
* but internal fs threads can still modify the filesystem (although they
|
|
* should not dirty new pages or inodes), writeback can run etc. After waiting
|
|
* for all running page faults we sync the filesystem which will clean all
|
|
* dirty pages and inodes (no new dirty pages or inodes can be created when
|
|
* sync is running).
|
|
*
|
|
* SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
|
|
* modification are blocked (e.g. XFS preallocation truncation on inode
|
|
* reclaim). This is usually implemented by blocking new transactions for
|
|
* filesystems that have them and need this additional guard. After all
|
|
* internal writers are finished we call ->freeze_fs() to finish filesystem
|
|
* freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
|
|
* mostly auxiliary for filesystems to verify they do not modify frozen fs.
|
|
*
|
|
* sb->s_writers.frozen is protected by sb->s_umount.
|
|
*
|
|
* Return: If the freeze was successful zero is returned. If the freeze
|
|
* failed a negative error code is returned.
|
|
*/
|
|
int freeze_super(struct super_block *sb, enum freeze_holder who)
|
|
{
|
|
int ret;
|
|
|
|
if (!super_lock_excl(sb)) {
|
|
WARN_ON_ONCE("Dying superblock while freezing!");
|
|
return -EINVAL;
|
|
}
|
|
atomic_inc(&sb->s_active);
|
|
|
|
retry:
|
|
if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
|
|
if (may_freeze(sb, who))
|
|
ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
|
|
else
|
|
ret = -EBUSY;
|
|
/* All freezers share a single active reference. */
|
|
deactivate_locked_super(sb);
|
|
return ret;
|
|
}
|
|
|
|
if (sb->s_writers.frozen != SB_UNFROZEN) {
|
|
ret = wait_for_partially_frozen(sb);
|
|
if (ret) {
|
|
deactivate_locked_super(sb);
|
|
return ret;
|
|
}
|
|
|
|
goto retry;
|
|
}
|
|
|
|
if (sb_rdonly(sb)) {
|
|
/* Nothing to do really... */
|
|
WARN_ON_ONCE(freeze_inc(sb, who) > 1);
|
|
sb->s_writers.frozen = SB_FREEZE_COMPLETE;
|
|
wake_up_var(&sb->s_writers.frozen);
|
|
super_unlock_excl(sb);
|
|
return 0;
|
|
}
|
|
|
|
sb->s_writers.frozen = SB_FREEZE_WRITE;
|
|
/* Release s_umount to preserve sb_start_write -> s_umount ordering */
|
|
super_unlock_excl(sb);
|
|
sb_wait_write(sb, SB_FREEZE_WRITE);
|
|
__super_lock_excl(sb);
|
|
|
|
/* Now we go and block page faults... */
|
|
sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
|
|
sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
|
|
|
|
/* All writers are done so after syncing there won't be dirty data */
|
|
ret = sync_filesystem(sb);
|
|
if (ret) {
|
|
sb->s_writers.frozen = SB_UNFROZEN;
|
|
sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
|
|
wake_up_var(&sb->s_writers.frozen);
|
|
deactivate_locked_super(sb);
|
|
return ret;
|
|
}
|
|
|
|
/* Now wait for internal filesystem counter */
|
|
sb->s_writers.frozen = SB_FREEZE_FS;
|
|
sb_wait_write(sb, SB_FREEZE_FS);
|
|
|
|
if (sb->s_op->freeze_fs) {
|
|
ret = sb->s_op->freeze_fs(sb);
|
|
if (ret) {
|
|
printk(KERN_ERR
|
|
"VFS:Filesystem freeze failed\n");
|
|
sb->s_writers.frozen = SB_UNFROZEN;
|
|
sb_freeze_unlock(sb, SB_FREEZE_FS);
|
|
wake_up_var(&sb->s_writers.frozen);
|
|
deactivate_locked_super(sb);
|
|
return ret;
|
|
}
|
|
}
|
|
/*
|
|
* For debugging purposes so that fs can warn if it sees write activity
|
|
* when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
|
|
*/
|
|
WARN_ON_ONCE(freeze_inc(sb, who) > 1);
|
|
sb->s_writers.frozen = SB_FREEZE_COMPLETE;
|
|
wake_up_var(&sb->s_writers.frozen);
|
|
lockdep_sb_freeze_release(sb);
|
|
super_unlock_excl(sb);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(freeze_super);
|
|
|
|
/*
|
|
* Undoes the effect of a freeze_super_locked call. If the filesystem is
|
|
* frozen both by userspace and the kernel, a thaw call from either source
|
|
* removes that state without releasing the other state or unlocking the
|
|
* filesystem.
|
|
*/
|
|
static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
|
|
{
|
|
int error = -EINVAL;
|
|
|
|
if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* All freezers share a single active reference.
|
|
* So just unlock in case there are any left.
|
|
*/
|
|
if (freeze_dec(sb, who))
|
|
goto out_unlock;
|
|
|
|
if (sb_rdonly(sb)) {
|
|
sb->s_writers.frozen = SB_UNFROZEN;
|
|
wake_up_var(&sb->s_writers.frozen);
|
|
goto out_deactivate;
|
|
}
|
|
|
|
lockdep_sb_freeze_acquire(sb);
|
|
|
|
if (sb->s_op->unfreeze_fs) {
|
|
error = sb->s_op->unfreeze_fs(sb);
|
|
if (error) {
|
|
pr_err("VFS: Filesystem thaw failed\n");
|
|
freeze_inc(sb, who);
|
|
lockdep_sb_freeze_release(sb);
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
sb->s_writers.frozen = SB_UNFROZEN;
|
|
wake_up_var(&sb->s_writers.frozen);
|
|
sb_freeze_unlock(sb, SB_FREEZE_FS);
|
|
out_deactivate:
|
|
deactivate_locked_super(sb);
|
|
return 0;
|
|
|
|
out_unlock:
|
|
super_unlock_excl(sb);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* thaw_super -- unlock filesystem
|
|
* @sb: the super to thaw
|
|
* @who: context that wants to freeze
|
|
*
|
|
* Unlocks the filesystem and marks it writeable again after freeze_super()
|
|
* if there are no remaining freezes on the filesystem.
|
|
*
|
|
* @who should be:
|
|
* * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
|
|
* * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
|
|
* * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
|
|
*
|
|
* A filesystem may hold multiple devices and thus a filesystems may
|
|
* have been frozen through the block layer via multiple block devices.
|
|
* The filesystem remains frozen until all block devices are unfrozen.
|
|
*/
|
|
int thaw_super(struct super_block *sb, enum freeze_holder who)
|
|
{
|
|
if (!super_lock_excl(sb)) {
|
|
WARN_ON_ONCE("Dying superblock while thawing!");
|
|
return -EINVAL;
|
|
}
|
|
return thaw_super_locked(sb, who);
|
|
}
|
|
EXPORT_SYMBOL(thaw_super);
|
|
|
|
/*
|
|
* Create workqueue for deferred direct IO completions. We allocate the
|
|
* workqueue when it's first needed. This avoids creating workqueue for
|
|
* filesystems that don't need it and also allows us to create the workqueue
|
|
* late enough so the we can include s_id in the name of the workqueue.
|
|
*/
|
|
int sb_init_dio_done_wq(struct super_block *sb)
|
|
{
|
|
struct workqueue_struct *old;
|
|
struct workqueue_struct *wq = alloc_workqueue("dio/%s",
|
|
WQ_MEM_RECLAIM, 0,
|
|
sb->s_id);
|
|
if (!wq)
|
|
return -ENOMEM;
|
|
/*
|
|
* This has to be atomic as more DIOs can race to create the workqueue
|
|
*/
|
|
old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
|
|
/* Someone created workqueue before us? Free ours... */
|
|
if (old)
|
|
destroy_workqueue(wq);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);
|