linux/drivers/gpu/drm/v3d/v3d_sched.c
Eric Anholt d223f98f02 drm/v3d: Add support for compute shader dispatch.
The compute shader dispatch interface is pretty simple -- just pass in
the regs that userspace has passed us, with no CLs to run.  However,
with no CL to run it means that we need to do manual cache flushing of
the L2 after the HW execution completes (for SSBO, atomic, and
image_load_store writes that are the output of compute shaders).

This doesn't yet expose the L2 cache's ability to have a region of the
address space not write back to memory (which could be used for
shared_var storage).

So far, the Mesa side has been tested on V3D v4.2 simpenrose (passing
the ES31 tests), and on the kernel side on 7278 (failing atomic
compswap tests in a way that doesn't reproduce on simpenrose).

v2: Fix excessive allocation for the clean_job (reported by Dan
    Carpenter).  Keep refs on jobs until clean_job is finished, to
    avoid spurious MMU errors if the output BOs are freed by userspace
    before L2 cleaning is finished.

Signed-off-by: Eric Anholt <eric@anholt.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20190416225856.20264-4-eric@anholt.net
Acked-by: Rob Clark <robdclark@gmail.com>
2019-04-18 09:54:10 -07:00

505 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/* Copyright (C) 2018 Broadcom */
/**
* DOC: Broadcom V3D scheduling
*
* The shared DRM GPU scheduler is used to coordinate submitting jobs
* to the hardware. Each DRM fd (roughly a client process) gets its
* own scheduler entity, which will process jobs in order. The GPU
* scheduler will round-robin between clients to submit the next job.
*
* For simplicity, and in order to keep latency low for interactive
* jobs when bulk background jobs are queued up, we submit a new job
* to the HW only when it has completed the last one, instead of
* filling up the CT[01]Q FIFOs with jobs. Similarly, we use
* v3d_job_dependency() to manage the dependency between bin and
* render, instead of having the clients submit jobs using the HW's
* semaphores to interlock between them.
*/
#include <linux/kthread.h>
#include "v3d_drv.h"
#include "v3d_regs.h"
#include "v3d_trace.h"
static struct v3d_job *
to_v3d_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_job, base);
}
static struct v3d_bin_job *
to_bin_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_bin_job, base.base);
}
static struct v3d_render_job *
to_render_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_render_job, base.base);
}
static struct v3d_tfu_job *
to_tfu_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_tfu_job, base.base);
}
static struct v3d_csd_job *
to_csd_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_csd_job, base.base);
}
static void
v3d_job_free(struct drm_sched_job *sched_job)
{
struct v3d_job *job = to_v3d_job(sched_job);
drm_sched_job_cleanup(sched_job);
v3d_job_put(job);
}
/**
* Returns the fences that the job depends on, one by one.
*
* If placed in the scheduler's .dependency method, the corresponding
* .run_job won't be called until all of them have been signaled.
*/
static struct dma_fence *
v3d_job_dependency(struct drm_sched_job *sched_job,
struct drm_sched_entity *s_entity)
{
struct v3d_job *job = to_v3d_job(sched_job);
struct dma_fence *fence;
fence = job->in_fence;
if (fence) {
job->in_fence = NULL;
return fence;
}
/* XXX: Wait on a fence for switching the GMP if necessary,
* and then do so.
*/
return NULL;
}
/**
* Returns the fences that the render job depends on, one by one.
* v3d_job_run() won't be called until all of them have been signaled.
*/
static struct dma_fence *
v3d_render_job_dependency(struct drm_sched_job *sched_job,
struct drm_sched_entity *s_entity)
{
struct v3d_render_job *job = to_render_job(sched_job);
struct dma_fence *fence;
fence = v3d_job_dependency(sched_job, s_entity);
if (fence)
return fence;
/* If we had a bin job, the render job definitely depends on
* it. We first have to wait for bin to be scheduled, so that
* its done_fence is created.
*/
fence = job->bin_done_fence;
if (fence) {
job->bin_done_fence = NULL;
return fence;
}
return fence;
}
static struct dma_fence *v3d_bin_job_run(struct drm_sched_job *sched_job)
{
struct v3d_bin_job *job = to_bin_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
unsigned long irqflags;
if (unlikely(job->base.base.s_fence->finished.error))
return NULL;
/* Lock required around bin_job update vs
* v3d_overflow_mem_work().
*/
spin_lock_irqsave(&v3d->job_lock, irqflags);
v3d->bin_job = job;
/* Clear out the overflow allocation, so we don't
* reuse the overflow attached to a previous job.
*/
V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0);
spin_unlock_irqrestore(&v3d->job_lock, irqflags);
v3d_invalidate_caches(v3d);
fence = v3d_fence_create(v3d, V3D_BIN);
if (IS_ERR(fence))
return NULL;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_cl(dev, false, to_v3d_fence(fence)->seqno,
job->start, job->end);
/* Set the current and end address of the control list.
* Writing the end register is what starts the job.
*/
if (job->qma) {
V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, job->qma);
V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, job->qms);
}
if (job->qts) {
V3D_CORE_WRITE(0, V3D_CLE_CT0QTS,
V3D_CLE_CT0QTS_ENABLE |
job->qts);
}
V3D_CORE_WRITE(0, V3D_CLE_CT0QBA, job->start);
V3D_CORE_WRITE(0, V3D_CLE_CT0QEA, job->end);
return fence;
}
static struct dma_fence *v3d_render_job_run(struct drm_sched_job *sched_job)
{
struct v3d_render_job *job = to_render_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
if (unlikely(job->base.base.s_fence->finished.error))
return NULL;
v3d->render_job = job;
/* Can we avoid this flush? We need to be careful of
* scheduling, though -- imagine job0 rendering to texture and
* job1 reading, and them being executed as bin0, bin1,
* render0, render1, so that render1's flush at bin time
* wasn't enough.
*/
v3d_invalidate_caches(v3d);
fence = v3d_fence_create(v3d, V3D_RENDER);
if (IS_ERR(fence))
return NULL;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_cl(dev, true, to_v3d_fence(fence)->seqno,
job->start, job->end);
/* XXX: Set the QCFG */
/* Set the current and end address of the control list.
* Writing the end register is what starts the job.
*/
V3D_CORE_WRITE(0, V3D_CLE_CT1QBA, job->start);
V3D_CORE_WRITE(0, V3D_CLE_CT1QEA, job->end);
return fence;
}
static struct dma_fence *
v3d_tfu_job_run(struct drm_sched_job *sched_job)
{
struct v3d_tfu_job *job = to_tfu_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
fence = v3d_fence_create(v3d, V3D_TFU);
if (IS_ERR(fence))
return NULL;
v3d->tfu_job = job;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_tfu(dev, to_v3d_fence(fence)->seqno);
V3D_WRITE(V3D_TFU_IIA, job->args.iia);
V3D_WRITE(V3D_TFU_IIS, job->args.iis);
V3D_WRITE(V3D_TFU_ICA, job->args.ica);
V3D_WRITE(V3D_TFU_IUA, job->args.iua);
V3D_WRITE(V3D_TFU_IOA, job->args.ioa);
V3D_WRITE(V3D_TFU_IOS, job->args.ios);
V3D_WRITE(V3D_TFU_COEF0, job->args.coef[0]);
if (job->args.coef[0] & V3D_TFU_COEF0_USECOEF) {
V3D_WRITE(V3D_TFU_COEF1, job->args.coef[1]);
V3D_WRITE(V3D_TFU_COEF2, job->args.coef[2]);
V3D_WRITE(V3D_TFU_COEF3, job->args.coef[3]);
}
/* ICFG kicks off the job. */
V3D_WRITE(V3D_TFU_ICFG, job->args.icfg | V3D_TFU_ICFG_IOC);
return fence;
}
static struct dma_fence *
v3d_csd_job_run(struct drm_sched_job *sched_job)
{
struct v3d_csd_job *job = to_csd_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
int i;
v3d->csd_job = job;
v3d_invalidate_caches(v3d);
fence = v3d_fence_create(v3d, V3D_CSD);
if (IS_ERR(fence))
return NULL;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_csd(dev, to_v3d_fence(fence)->seqno);
for (i = 1; i <= 6; i++)
V3D_CORE_WRITE(0, V3D_CSD_QUEUED_CFG0 + 4 * i, job->args.cfg[i]);
/* CFG0 write kicks off the job. */
V3D_CORE_WRITE(0, V3D_CSD_QUEUED_CFG0, job->args.cfg[0]);
return fence;
}
static struct dma_fence *
v3d_cache_clean_job_run(struct drm_sched_job *sched_job)
{
struct v3d_job *job = to_v3d_job(sched_job);
struct v3d_dev *v3d = job->v3d;
v3d_clean_caches(v3d);
return NULL;
}
static void
v3d_gpu_reset_for_timeout(struct v3d_dev *v3d, struct drm_sched_job *sched_job)
{
enum v3d_queue q;
mutex_lock(&v3d->reset_lock);
/* block scheduler */
for (q = 0; q < V3D_MAX_QUEUES; q++)
drm_sched_stop(&v3d->queue[q].sched);
if (sched_job)
drm_sched_increase_karma(sched_job);
/* get the GPU back into the init state */
v3d_reset(v3d);
for (q = 0; q < V3D_MAX_QUEUES; q++)
drm_sched_resubmit_jobs(&v3d->queue[q].sched);
/* Unblock schedulers and restart their jobs. */
for (q = 0; q < V3D_MAX_QUEUES; q++) {
drm_sched_start(&v3d->queue[q].sched, true);
}
mutex_unlock(&v3d->reset_lock);
}
/* If the current address or return address have changed, then the GPU
* has probably made progress and we should delay the reset. This
* could fail if the GPU got in an infinite loop in the CL, but that
* is pretty unlikely outside of an i-g-t testcase.
*/
static void
v3d_cl_job_timedout(struct drm_sched_job *sched_job, enum v3d_queue q,
u32 *timedout_ctca, u32 *timedout_ctra)
{
struct v3d_job *job = to_v3d_job(sched_job);
struct v3d_dev *v3d = job->v3d;
u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(q));
u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(q));
if (*timedout_ctca != ctca || *timedout_ctra != ctra) {
*timedout_ctca = ctca;
*timedout_ctra = ctra;
return;
}
v3d_gpu_reset_for_timeout(v3d, sched_job);
}
static void
v3d_bin_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_bin_job *job = to_bin_job(sched_job);
v3d_cl_job_timedout(sched_job, V3D_BIN,
&job->timedout_ctca, &job->timedout_ctra);
}
static void
v3d_render_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_render_job *job = to_render_job(sched_job);
v3d_cl_job_timedout(sched_job, V3D_RENDER,
&job->timedout_ctca, &job->timedout_ctra);
}
static void
v3d_generic_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_job *job = to_v3d_job(sched_job);
v3d_gpu_reset_for_timeout(job->v3d, sched_job);
}
static void
v3d_csd_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_csd_job *job = to_csd_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
u32 batches = V3D_CORE_READ(0, V3D_CSD_CURRENT_CFG4);
/* If we've made progress, skip reset and let the timer get
* rearmed.
*/
if (job->timedout_batches != batches) {
job->timedout_batches = batches;
return;
}
v3d_gpu_reset_for_timeout(v3d, sched_job);
}
static const struct drm_sched_backend_ops v3d_bin_sched_ops = {
.dependency = v3d_job_dependency,
.run_job = v3d_bin_job_run,
.timedout_job = v3d_bin_job_timedout,
.free_job = v3d_job_free,
};
static const struct drm_sched_backend_ops v3d_render_sched_ops = {
.dependency = v3d_render_job_dependency,
.run_job = v3d_render_job_run,
.timedout_job = v3d_render_job_timedout,
.free_job = v3d_job_free,
};
static const struct drm_sched_backend_ops v3d_tfu_sched_ops = {
.dependency = v3d_job_dependency,
.run_job = v3d_tfu_job_run,
.timedout_job = v3d_generic_job_timedout,
.free_job = v3d_job_free,
};
static const struct drm_sched_backend_ops v3d_csd_sched_ops = {
.dependency = v3d_job_dependency,
.run_job = v3d_csd_job_run,
.timedout_job = v3d_csd_job_timedout,
.free_job = v3d_job_free
};
static const struct drm_sched_backend_ops v3d_cache_clean_sched_ops = {
.dependency = v3d_job_dependency,
.run_job = v3d_cache_clean_job_run,
.timedout_job = v3d_generic_job_timedout,
.free_job = v3d_job_free
};
int
v3d_sched_init(struct v3d_dev *v3d)
{
int hw_jobs_limit = 1;
int job_hang_limit = 0;
int hang_limit_ms = 500;
int ret;
ret = drm_sched_init(&v3d->queue[V3D_BIN].sched,
&v3d_bin_sched_ops,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms),
"v3d_bin");
if (ret) {
dev_err(v3d->dev, "Failed to create bin scheduler: %d.", ret);
return ret;
}
ret = drm_sched_init(&v3d->queue[V3D_RENDER].sched,
&v3d_render_sched_ops,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms),
"v3d_render");
if (ret) {
dev_err(v3d->dev, "Failed to create render scheduler: %d.",
ret);
v3d_sched_fini(v3d);
return ret;
}
ret = drm_sched_init(&v3d->queue[V3D_TFU].sched,
&v3d_tfu_sched_ops,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms),
"v3d_tfu");
if (ret) {
dev_err(v3d->dev, "Failed to create TFU scheduler: %d.",
ret);
v3d_sched_fini(v3d);
return ret;
}
if (v3d_has_csd(v3d)) {
ret = drm_sched_init(&v3d->queue[V3D_CSD].sched,
&v3d_csd_sched_ops,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms),
"v3d_csd");
if (ret) {
dev_err(v3d->dev, "Failed to create CSD scheduler: %d.",
ret);
v3d_sched_fini(v3d);
return ret;
}
ret = drm_sched_init(&v3d->queue[V3D_CACHE_CLEAN].sched,
&v3d_cache_clean_sched_ops,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms),
"v3d_cache_clean");
if (ret) {
dev_err(v3d->dev, "Failed to create CACHE_CLEAN scheduler: %d.",
ret);
v3d_sched_fini(v3d);
return ret;
}
}
return 0;
}
void
v3d_sched_fini(struct v3d_dev *v3d)
{
enum v3d_queue q;
for (q = 0; q < V3D_MAX_QUEUES; q++) {
if (v3d->queue[q].sched.ready)
drm_sched_fini(&v3d->queue[q].sched);
}
}