linux/drivers/md/dm.c
Alasdair G Kergon d1782a3b0a [PATCH] device-mapper: store bdev while frozen
Store the struct block_device while device is frozen, saving us one call to
bdget_disk().

Signed-Off-By: Alasdair G Kergon <agk@redhat.com>
From: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05 16:36:45 -07:00

1188 lines
23 KiB
C

/*
* Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
* Copyright (C) 2004 Red Hat, Inc. All rights reserved.
*
* This file is released under the GPL.
*/
#include "dm.h"
#include "dm-bio-list.h"
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/blkpg.h>
#include <linux/bio.h>
#include <linux/buffer_head.h>
#include <linux/mempool.h>
#include <linux/slab.h>
#include <linux/idr.h>
static const char *_name = DM_NAME;
static unsigned int major = 0;
static unsigned int _major = 0;
/*
* One of these is allocated per bio.
*/
struct dm_io {
struct mapped_device *md;
int error;
struct bio *bio;
atomic_t io_count;
};
/*
* One of these is allocated per target within a bio. Hopefully
* this will be simplified out one day.
*/
struct target_io {
struct dm_io *io;
struct dm_target *ti;
union map_info info;
};
union map_info *dm_get_mapinfo(struct bio *bio)
{
if (bio && bio->bi_private)
return &((struct target_io *)bio->bi_private)->info;
return NULL;
}
/*
* Bits for the md->flags field.
*/
#define DMF_BLOCK_IO 0
#define DMF_SUSPENDED 1
#define DMF_FS_LOCKED 2
struct mapped_device {
struct rw_semaphore lock;
rwlock_t map_lock;
atomic_t holders;
unsigned long flags;
request_queue_t *queue;
struct gendisk *disk;
void *interface_ptr;
/*
* A list of ios that arrived while we were suspended.
*/
atomic_t pending;
wait_queue_head_t wait;
struct bio_list deferred;
/*
* The current mapping.
*/
struct dm_table *map;
/*
* io objects are allocated from here.
*/
mempool_t *io_pool;
mempool_t *tio_pool;
/*
* Event handling.
*/
atomic_t event_nr;
wait_queue_head_t eventq;
/*
* freeze/thaw support require holding onto a super block
*/
struct super_block *frozen_sb;
struct block_device *frozen_bdev;
};
#define MIN_IOS 256
static kmem_cache_t *_io_cache;
static kmem_cache_t *_tio_cache;
static struct bio_set *dm_set;
static int __init local_init(void)
{
int r;
dm_set = bioset_create(16, 16, 4);
if (!dm_set)
return -ENOMEM;
/* allocate a slab for the dm_ios */
_io_cache = kmem_cache_create("dm_io",
sizeof(struct dm_io), 0, 0, NULL, NULL);
if (!_io_cache)
return -ENOMEM;
/* allocate a slab for the target ios */
_tio_cache = kmem_cache_create("dm_tio", sizeof(struct target_io),
0, 0, NULL, NULL);
if (!_tio_cache) {
kmem_cache_destroy(_io_cache);
return -ENOMEM;
}
_major = major;
r = register_blkdev(_major, _name);
if (r < 0) {
kmem_cache_destroy(_tio_cache);
kmem_cache_destroy(_io_cache);
return r;
}
if (!_major)
_major = r;
return 0;
}
static void local_exit(void)
{
kmem_cache_destroy(_tio_cache);
kmem_cache_destroy(_io_cache);
bioset_free(dm_set);
if (unregister_blkdev(_major, _name) < 0)
DMERR("devfs_unregister_blkdev failed");
_major = 0;
DMINFO("cleaned up");
}
int (*_inits[])(void) __initdata = {
local_init,
dm_target_init,
dm_linear_init,
dm_stripe_init,
dm_interface_init,
};
void (*_exits[])(void) = {
local_exit,
dm_target_exit,
dm_linear_exit,
dm_stripe_exit,
dm_interface_exit,
};
static int __init dm_init(void)
{
const int count = ARRAY_SIZE(_inits);
int r, i;
for (i = 0; i < count; i++) {
r = _inits[i]();
if (r)
goto bad;
}
return 0;
bad:
while (i--)
_exits[i]();
return r;
}
static void __exit dm_exit(void)
{
int i = ARRAY_SIZE(_exits);
while (i--)
_exits[i]();
}
/*
* Block device functions
*/
static int dm_blk_open(struct inode *inode, struct file *file)
{
struct mapped_device *md;
md = inode->i_bdev->bd_disk->private_data;
dm_get(md);
return 0;
}
static int dm_blk_close(struct inode *inode, struct file *file)
{
struct mapped_device *md;
md = inode->i_bdev->bd_disk->private_data;
dm_put(md);
return 0;
}
static inline struct dm_io *alloc_io(struct mapped_device *md)
{
return mempool_alloc(md->io_pool, GFP_NOIO);
}
static inline void free_io(struct mapped_device *md, struct dm_io *io)
{
mempool_free(io, md->io_pool);
}
static inline struct target_io *alloc_tio(struct mapped_device *md)
{
return mempool_alloc(md->tio_pool, GFP_NOIO);
}
static inline void free_tio(struct mapped_device *md, struct target_io *tio)
{
mempool_free(tio, md->tio_pool);
}
/*
* Add the bio to the list of deferred io.
*/
static int queue_io(struct mapped_device *md, struct bio *bio)
{
down_write(&md->lock);
if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
up_write(&md->lock);
return 1;
}
bio_list_add(&md->deferred, bio);
up_write(&md->lock);
return 0; /* deferred successfully */
}
/*
* Everyone (including functions in this file), should use this
* function to access the md->map field, and make sure they call
* dm_table_put() when finished.
*/
struct dm_table *dm_get_table(struct mapped_device *md)
{
struct dm_table *t;
read_lock(&md->map_lock);
t = md->map;
if (t)
dm_table_get(t);
read_unlock(&md->map_lock);
return t;
}
/*-----------------------------------------------------------------
* CRUD START:
* A more elegant soln is in the works that uses the queue
* merge fn, unfortunately there are a couple of changes to
* the block layer that I want to make for this. So in the
* interests of getting something for people to use I give
* you this clearly demarcated crap.
*---------------------------------------------------------------*/
/*
* Decrements the number of outstanding ios that a bio has been
* cloned into, completing the original io if necc.
*/
static inline void dec_pending(struct dm_io *io, int error)
{
if (error)
io->error = error;
if (atomic_dec_and_test(&io->io_count)) {
if (atomic_dec_and_test(&io->md->pending))
/* nudge anyone waiting on suspend queue */
wake_up(&io->md->wait);
bio_endio(io->bio, io->bio->bi_size, io->error);
free_io(io->md, io);
}
}
static int clone_endio(struct bio *bio, unsigned int done, int error)
{
int r = 0;
struct target_io *tio = bio->bi_private;
struct dm_io *io = tio->io;
dm_endio_fn endio = tio->ti->type->end_io;
if (bio->bi_size)
return 1;
if (!bio_flagged(bio, BIO_UPTODATE) && !error)
error = -EIO;
if (endio) {
r = endio(tio->ti, bio, error, &tio->info);
if (r < 0)
error = r;
else if (r > 0)
/* the target wants another shot at the io */
return 1;
}
free_tio(io->md, tio);
dec_pending(io, error);
bio_put(bio);
return r;
}
static sector_t max_io_len(struct mapped_device *md,
sector_t sector, struct dm_target *ti)
{
sector_t offset = sector - ti->begin;
sector_t len = ti->len - offset;
/*
* Does the target need to split even further ?
*/
if (ti->split_io) {
sector_t boundary;
boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
- offset;
if (len > boundary)
len = boundary;
}
return len;
}
static void __map_bio(struct dm_target *ti, struct bio *clone,
struct target_io *tio)
{
int r;
/*
* Sanity checks.
*/
BUG_ON(!clone->bi_size);
clone->bi_end_io = clone_endio;
clone->bi_private = tio;
/*
* Map the clone. If r == 0 we don't need to do
* anything, the target has assumed ownership of
* this io.
*/
atomic_inc(&tio->io->io_count);
r = ti->type->map(ti, clone, &tio->info);
if (r > 0)
/* the bio has been remapped so dispatch it */
generic_make_request(clone);
else if (r < 0) {
/* error the io and bail out */
struct dm_io *io = tio->io;
free_tio(tio->io->md, tio);
dec_pending(io, -EIO);
bio_put(clone);
}
}
struct clone_info {
struct mapped_device *md;
struct dm_table *map;
struct bio *bio;
struct dm_io *io;
sector_t sector;
sector_t sector_count;
unsigned short idx;
};
/*
* Creates a little bio that is just does part of a bvec.
*/
static struct bio *split_bvec(struct bio *bio, sector_t sector,
unsigned short idx, unsigned int offset,
unsigned int len)
{
struct bio *clone;
struct bio_vec *bv = bio->bi_io_vec + idx;
clone = bio_alloc_bioset(GFP_NOIO, 1, dm_set);
*clone->bi_io_vec = *bv;
clone->bi_sector = sector;
clone->bi_bdev = bio->bi_bdev;
clone->bi_rw = bio->bi_rw;
clone->bi_vcnt = 1;
clone->bi_size = to_bytes(len);
clone->bi_io_vec->bv_offset = offset;
clone->bi_io_vec->bv_len = clone->bi_size;
return clone;
}
/*
* Creates a bio that consists of range of complete bvecs.
*/
static struct bio *clone_bio(struct bio *bio, sector_t sector,
unsigned short idx, unsigned short bv_count,
unsigned int len)
{
struct bio *clone;
clone = bio_clone(bio, GFP_NOIO);
clone->bi_sector = sector;
clone->bi_idx = idx;
clone->bi_vcnt = idx + bv_count;
clone->bi_size = to_bytes(len);
clone->bi_flags &= ~(1 << BIO_SEG_VALID);
return clone;
}
static void __clone_and_map(struct clone_info *ci)
{
struct bio *clone, *bio = ci->bio;
struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
struct target_io *tio;
/*
* Allocate a target io object.
*/
tio = alloc_tio(ci->md);
tio->io = ci->io;
tio->ti = ti;
memset(&tio->info, 0, sizeof(tio->info));
if (ci->sector_count <= max) {
/*
* Optimise for the simple case where we can do all of
* the remaining io with a single clone.
*/
clone = clone_bio(bio, ci->sector, ci->idx,
bio->bi_vcnt - ci->idx, ci->sector_count);
__map_bio(ti, clone, tio);
ci->sector_count = 0;
} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
/*
* There are some bvecs that don't span targets.
* Do as many of these as possible.
*/
int i;
sector_t remaining = max;
sector_t bv_len;
for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
bv_len = to_sector(bio->bi_io_vec[i].bv_len);
if (bv_len > remaining)
break;
remaining -= bv_len;
len += bv_len;
}
clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len);
__map_bio(ti, clone, tio);
ci->sector += len;
ci->sector_count -= len;
ci->idx = i;
} else {
/*
* Create two copy bios to deal with io that has
* been split across a target.
*/
struct bio_vec *bv = bio->bi_io_vec + ci->idx;
clone = split_bvec(bio, ci->sector, ci->idx,
bv->bv_offset, max);
__map_bio(ti, clone, tio);
ci->sector += max;
ci->sector_count -= max;
ti = dm_table_find_target(ci->map, ci->sector);
len = to_sector(bv->bv_len) - max;
clone = split_bvec(bio, ci->sector, ci->idx,
bv->bv_offset + to_bytes(max), len);
tio = alloc_tio(ci->md);
tio->io = ci->io;
tio->ti = ti;
memset(&tio->info, 0, sizeof(tio->info));
__map_bio(ti, clone, tio);
ci->sector += len;
ci->sector_count -= len;
ci->idx++;
}
}
/*
* Split the bio into several clones.
*/
static void __split_bio(struct mapped_device *md, struct bio *bio)
{
struct clone_info ci;
ci.map = dm_get_table(md);
if (!ci.map) {
bio_io_error(bio, bio->bi_size);
return;
}
ci.md = md;
ci.bio = bio;
ci.io = alloc_io(md);
ci.io->error = 0;
atomic_set(&ci.io->io_count, 1);
ci.io->bio = bio;
ci.io->md = md;
ci.sector = bio->bi_sector;
ci.sector_count = bio_sectors(bio);
ci.idx = bio->bi_idx;
atomic_inc(&md->pending);
while (ci.sector_count)
__clone_and_map(&ci);
/* drop the extra reference count */
dec_pending(ci.io, 0);
dm_table_put(ci.map);
}
/*-----------------------------------------------------------------
* CRUD END
*---------------------------------------------------------------*/
/*
* The request function that just remaps the bio built up by
* dm_merge_bvec.
*/
static int dm_request(request_queue_t *q, struct bio *bio)
{
int r;
struct mapped_device *md = q->queuedata;
down_read(&md->lock);
/*
* If we're suspended we have to queue
* this io for later.
*/
while (test_bit(DMF_BLOCK_IO, &md->flags)) {
up_read(&md->lock);
if (bio_rw(bio) == READA) {
bio_io_error(bio, bio->bi_size);
return 0;
}
r = queue_io(md, bio);
if (r < 0) {
bio_io_error(bio, bio->bi_size);
return 0;
} else if (r == 0)
return 0; /* deferred successfully */
/*
* We're in a while loop, because someone could suspend
* before we get to the following read lock.
*/
down_read(&md->lock);
}
__split_bio(md, bio);
up_read(&md->lock);
return 0;
}
static int dm_flush_all(request_queue_t *q, struct gendisk *disk,
sector_t *error_sector)
{
struct mapped_device *md = q->queuedata;
struct dm_table *map = dm_get_table(md);
int ret = -ENXIO;
if (map) {
ret = dm_table_flush_all(md->map);
dm_table_put(map);
}
return ret;
}
static void dm_unplug_all(request_queue_t *q)
{
struct mapped_device *md = q->queuedata;
struct dm_table *map = dm_get_table(md);
if (map) {
dm_table_unplug_all(map);
dm_table_put(map);
}
}
static int dm_any_congested(void *congested_data, int bdi_bits)
{
int r;
struct mapped_device *md = (struct mapped_device *) congested_data;
struct dm_table *map = dm_get_table(md);
if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
r = bdi_bits;
else
r = dm_table_any_congested(map, bdi_bits);
dm_table_put(map);
return r;
}
/*-----------------------------------------------------------------
* An IDR is used to keep track of allocated minor numbers.
*---------------------------------------------------------------*/
static DECLARE_MUTEX(_minor_lock);
static DEFINE_IDR(_minor_idr);
static void free_minor(unsigned int minor)
{
down(&_minor_lock);
idr_remove(&_minor_idr, minor);
up(&_minor_lock);
}
/*
* See if the device with a specific minor # is free.
*/
static int specific_minor(struct mapped_device *md, unsigned int minor)
{
int r, m;
if (minor >= (1 << MINORBITS))
return -EINVAL;
down(&_minor_lock);
if (idr_find(&_minor_idr, minor)) {
r = -EBUSY;
goto out;
}
r = idr_pre_get(&_minor_idr, GFP_KERNEL);
if (!r) {
r = -ENOMEM;
goto out;
}
r = idr_get_new_above(&_minor_idr, md, minor, &m);
if (r) {
goto out;
}
if (m != minor) {
idr_remove(&_minor_idr, m);
r = -EBUSY;
goto out;
}
out:
up(&_minor_lock);
return r;
}
static int next_free_minor(struct mapped_device *md, unsigned int *minor)
{
int r;
unsigned int m;
down(&_minor_lock);
r = idr_pre_get(&_minor_idr, GFP_KERNEL);
if (!r) {
r = -ENOMEM;
goto out;
}
r = idr_get_new(&_minor_idr, md, &m);
if (r) {
goto out;
}
if (m >= (1 << MINORBITS)) {
idr_remove(&_minor_idr, m);
r = -ENOSPC;
goto out;
}
*minor = m;
out:
up(&_minor_lock);
return r;
}
static struct block_device_operations dm_blk_dops;
/*
* Allocate and initialise a blank device with a given minor.
*/
static struct mapped_device *alloc_dev(unsigned int minor, int persistent)
{
int r;
struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
if (!md) {
DMWARN("unable to allocate device, out of memory.");
return NULL;
}
/* get a minor number for the dev */
r = persistent ? specific_minor(md, minor) : next_free_minor(md, &minor);
if (r < 0)
goto bad1;
memset(md, 0, sizeof(*md));
init_rwsem(&md->lock);
rwlock_init(&md->map_lock);
atomic_set(&md->holders, 1);
atomic_set(&md->event_nr, 0);
md->queue = blk_alloc_queue(GFP_KERNEL);
if (!md->queue)
goto bad1;
md->queue->queuedata = md;
md->queue->backing_dev_info.congested_fn = dm_any_congested;
md->queue->backing_dev_info.congested_data = md;
blk_queue_make_request(md->queue, dm_request);
md->queue->unplug_fn = dm_unplug_all;
md->queue->issue_flush_fn = dm_flush_all;
md->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
mempool_free_slab, _io_cache);
if (!md->io_pool)
goto bad2;
md->tio_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
mempool_free_slab, _tio_cache);
if (!md->tio_pool)
goto bad3;
md->disk = alloc_disk(1);
if (!md->disk)
goto bad4;
md->disk->major = _major;
md->disk->first_minor = minor;
md->disk->fops = &dm_blk_dops;
md->disk->queue = md->queue;
md->disk->private_data = md;
sprintf(md->disk->disk_name, "dm-%d", minor);
add_disk(md->disk);
atomic_set(&md->pending, 0);
init_waitqueue_head(&md->wait);
init_waitqueue_head(&md->eventq);
return md;
bad4:
mempool_destroy(md->tio_pool);
bad3:
mempool_destroy(md->io_pool);
bad2:
blk_put_queue(md->queue);
free_minor(minor);
bad1:
kfree(md);
return NULL;
}
static void free_dev(struct mapped_device *md)
{
free_minor(md->disk->first_minor);
mempool_destroy(md->tio_pool);
mempool_destroy(md->io_pool);
del_gendisk(md->disk);
put_disk(md->disk);
blk_put_queue(md->queue);
kfree(md);
}
/*
* Bind a table to the device.
*/
static void event_callback(void *context)
{
struct mapped_device *md = (struct mapped_device *) context;
atomic_inc(&md->event_nr);
wake_up(&md->eventq);
}
static void __set_size(struct gendisk *disk, sector_t size)
{
struct block_device *bdev;
set_capacity(disk, size);
bdev = bdget_disk(disk, 0);
if (bdev) {
down(&bdev->bd_inode->i_sem);
i_size_write(bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
up(&bdev->bd_inode->i_sem);
bdput(bdev);
}
}
static int __bind(struct mapped_device *md, struct dm_table *t)
{
request_queue_t *q = md->queue;
sector_t size;
size = dm_table_get_size(t);
__set_size(md->disk, size);
if (size == 0)
return 0;
write_lock(&md->map_lock);
md->map = t;
write_unlock(&md->map_lock);
dm_table_get(t);
dm_table_event_callback(md->map, event_callback, md);
dm_table_set_restrictions(t, q);
return 0;
}
static void __unbind(struct mapped_device *md)
{
struct dm_table *map = md->map;
if (!map)
return;
dm_table_event_callback(map, NULL, NULL);
write_lock(&md->map_lock);
md->map = NULL;
write_unlock(&md->map_lock);
dm_table_put(map);
}
/*
* Constructor for a new device.
*/
static int create_aux(unsigned int minor, int persistent,
struct mapped_device **result)
{
struct mapped_device *md;
md = alloc_dev(minor, persistent);
if (!md)
return -ENXIO;
*result = md;
return 0;
}
int dm_create(struct mapped_device **result)
{
return create_aux(0, 0, result);
}
int dm_create_with_minor(unsigned int minor, struct mapped_device **result)
{
return create_aux(minor, 1, result);
}
void *dm_get_mdptr(dev_t dev)
{
struct mapped_device *md;
void *mdptr = NULL;
unsigned minor = MINOR(dev);
if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
return NULL;
down(&_minor_lock);
md = idr_find(&_minor_idr, minor);
if (md && (dm_disk(md)->first_minor == minor))
mdptr = md->interface_ptr;
up(&_minor_lock);
return mdptr;
}
void dm_set_mdptr(struct mapped_device *md, void *ptr)
{
md->interface_ptr = ptr;
}
void dm_get(struct mapped_device *md)
{
atomic_inc(&md->holders);
}
void dm_put(struct mapped_device *md)
{
struct dm_table *map = dm_get_table(md);
if (atomic_dec_and_test(&md->holders)) {
if (!test_bit(DMF_SUSPENDED, &md->flags) && map) {
dm_table_presuspend_targets(map);
dm_table_postsuspend_targets(map);
}
__unbind(md);
free_dev(md);
}
dm_table_put(map);
}
/*
* Process the deferred bios
*/
static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
{
struct bio *n;
while (c) {
n = c->bi_next;
c->bi_next = NULL;
__split_bio(md, c);
c = n;
}
}
/*
* Swap in a new table (destroying old one).
*/
int dm_swap_table(struct mapped_device *md, struct dm_table *table)
{
int r;
down_write(&md->lock);
/* device must be suspended */
if (!test_bit(DMF_SUSPENDED, &md->flags)) {
up_write(&md->lock);
return -EPERM;
}
__unbind(md);
r = __bind(md, table);
if (r)
return r;
up_write(&md->lock);
return 0;
}
/*
* Functions to lock and unlock any filesystem running on the
* device.
*/
static int __lock_fs(struct mapped_device *md)
{
if (test_and_set_bit(DMF_FS_LOCKED, &md->flags))
return 0;
md->frozen_bdev = bdget_disk(md->disk, 0);
if (!md->frozen_bdev) {
DMWARN("bdget failed in __lock_fs");
return -ENOMEM;
}
WARN_ON(md->frozen_sb);
md->frozen_sb = freeze_bdev(md->frozen_bdev);
/* don't bdput right now, we don't want the bdev
* to go away while it is locked. We'll bdput
* in __unlock_fs
*/
return 0;
}
static int __unlock_fs(struct mapped_device *md)
{
if (!test_and_clear_bit(DMF_FS_LOCKED, &md->flags))
return 0;
thaw_bdev(md->frozen_bdev, md->frozen_sb);
bdput(md->frozen_bdev);
md->frozen_sb = NULL;
md->frozen_bdev = NULL;
return 0;
}
/*
* We need to be able to change a mapping table under a mounted
* filesystem. For example we might want to move some data in
* the background. Before the table can be swapped with
* dm_bind_table, dm_suspend must be called to flush any in
* flight bios and ensure that any further io gets deferred.
*/
int dm_suspend(struct mapped_device *md)
{
struct dm_table *map;
DECLARE_WAITQUEUE(wait, current);
/* Flush I/O to the device. */
down_read(&md->lock);
if (test_bit(DMF_BLOCK_IO, &md->flags)) {
up_read(&md->lock);
return -EINVAL;
}
map = dm_get_table(md);
if (map)
dm_table_presuspend_targets(map);
__lock_fs(md);
up_read(&md->lock);
/*
* First we set the BLOCK_IO flag so no more ios will be
* mapped.
*/
down_write(&md->lock);
if (test_bit(DMF_BLOCK_IO, &md->flags)) {
/*
* If we get here we know another thread is
* trying to suspend as well, so we leave the fs
* locked for this thread.
*/
up_write(&md->lock);
return -EINVAL;
}
set_bit(DMF_BLOCK_IO, &md->flags);
add_wait_queue(&md->wait, &wait);
up_write(&md->lock);
/* unplug */
if (map) {
dm_table_unplug_all(map);
dm_table_put(map);
}
/*
* Then we wait for the already mapped ios to
* complete.
*/
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
if (!atomic_read(&md->pending) || signal_pending(current))
break;
io_schedule();
}
set_current_state(TASK_RUNNING);
down_write(&md->lock);
remove_wait_queue(&md->wait, &wait);
/* were we interrupted ? */
if (atomic_read(&md->pending)) {
__unlock_fs(md);
clear_bit(DMF_BLOCK_IO, &md->flags);
up_write(&md->lock);
return -EINTR;
}
set_bit(DMF_SUSPENDED, &md->flags);
map = dm_get_table(md);
if (map)
dm_table_postsuspend_targets(map);
dm_table_put(map);
up_write(&md->lock);
return 0;
}
int dm_resume(struct mapped_device *md)
{
struct bio *def;
struct dm_table *map = dm_get_table(md);
down_write(&md->lock);
if (!map ||
!test_bit(DMF_SUSPENDED, &md->flags) ||
!dm_table_get_size(map)) {
up_write(&md->lock);
dm_table_put(map);
return -EINVAL;
}
dm_table_resume_targets(map);
clear_bit(DMF_SUSPENDED, &md->flags);
clear_bit(DMF_BLOCK_IO, &md->flags);
def = bio_list_get(&md->deferred);
__flush_deferred_io(md, def);
up_write(&md->lock);
__unlock_fs(md);
dm_table_unplug_all(map);
dm_table_put(map);
return 0;
}
/*-----------------------------------------------------------------
* Event notification.
*---------------------------------------------------------------*/
uint32_t dm_get_event_nr(struct mapped_device *md)
{
return atomic_read(&md->event_nr);
}
int dm_wait_event(struct mapped_device *md, int event_nr)
{
return wait_event_interruptible(md->eventq,
(event_nr != atomic_read(&md->event_nr)));
}
/*
* The gendisk is only valid as long as you have a reference
* count on 'md'.
*/
struct gendisk *dm_disk(struct mapped_device *md)
{
return md->disk;
}
int dm_suspended(struct mapped_device *md)
{
return test_bit(DMF_SUSPENDED, &md->flags);
}
static struct block_device_operations dm_blk_dops = {
.open = dm_blk_open,
.release = dm_blk_close,
.owner = THIS_MODULE
};
EXPORT_SYMBOL(dm_get_mapinfo);
/*
* module hooks
*/
module_init(dm_init);
module_exit(dm_exit);
module_param(major, uint, 0);
MODULE_PARM_DESC(major, "The major number of the device mapper");
MODULE_DESCRIPTION(DM_NAME " driver");
MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
MODULE_LICENSE("GPL");