mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-25 07:14:36 +08:00
d4c75a1b40
The remaining callers of kmem_free() are freeing heap memory, so we can convert them directly to kfree() and get rid of kmem_free() altogether. This conversion was done with: $ for f in `git grep -l kmem_free fs/xfs`; do > sed -i s/kmem_free/kfree/ $f > done $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
1072 lines
30 KiB
C
1072 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_log_recover.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_quota.h"
|
|
|
|
/*
|
|
* This is the number of entries in the l_buf_cancel_table used during
|
|
* recovery.
|
|
*/
|
|
#define XLOG_BC_TABLE_SIZE 64
|
|
|
|
#define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
|
|
((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
|
|
|
|
/*
|
|
* This structure is used during recovery to record the buf log items which
|
|
* have been canceled and should not be replayed.
|
|
*/
|
|
struct xfs_buf_cancel {
|
|
xfs_daddr_t bc_blkno;
|
|
uint bc_len;
|
|
int bc_refcount;
|
|
struct list_head bc_list;
|
|
};
|
|
|
|
static struct xfs_buf_cancel *
|
|
xlog_find_buffer_cancelled(
|
|
struct xlog *log,
|
|
xfs_daddr_t blkno,
|
|
uint len)
|
|
{
|
|
struct list_head *bucket;
|
|
struct xfs_buf_cancel *bcp;
|
|
|
|
if (!log->l_buf_cancel_table)
|
|
return NULL;
|
|
|
|
bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
|
|
list_for_each_entry(bcp, bucket, bc_list) {
|
|
if (bcp->bc_blkno == blkno && bcp->bc_len == len)
|
|
return bcp;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool
|
|
xlog_add_buffer_cancelled(
|
|
struct xlog *log,
|
|
xfs_daddr_t blkno,
|
|
uint len)
|
|
{
|
|
struct xfs_buf_cancel *bcp;
|
|
|
|
/*
|
|
* If we find an existing cancel record, this indicates that the buffer
|
|
* was cancelled multiple times. To ensure that during pass 2 we keep
|
|
* the record in the table until we reach its last occurrence in the
|
|
* log, a reference count is kept to tell how many times we expect to
|
|
* see this record during the second pass.
|
|
*/
|
|
bcp = xlog_find_buffer_cancelled(log, blkno, len);
|
|
if (bcp) {
|
|
bcp->bc_refcount++;
|
|
return false;
|
|
}
|
|
|
|
bcp = kmalloc(sizeof(struct xfs_buf_cancel), GFP_KERNEL | __GFP_NOFAIL);
|
|
bcp->bc_blkno = blkno;
|
|
bcp->bc_len = len;
|
|
bcp->bc_refcount = 1;
|
|
list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno));
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check if there is and entry for blkno, len in the buffer cancel record table.
|
|
*/
|
|
bool
|
|
xlog_is_buffer_cancelled(
|
|
struct xlog *log,
|
|
xfs_daddr_t blkno,
|
|
uint len)
|
|
{
|
|
return xlog_find_buffer_cancelled(log, blkno, len) != NULL;
|
|
}
|
|
|
|
/*
|
|
* Check if there is and entry for blkno, len in the buffer cancel record table,
|
|
* and decremented the reference count on it if there is one.
|
|
*
|
|
* Remove the cancel record once the refcount hits zero, so that if the same
|
|
* buffer is re-used again after its last cancellation we actually replay the
|
|
* changes made at that point.
|
|
*/
|
|
static bool
|
|
xlog_put_buffer_cancelled(
|
|
struct xlog *log,
|
|
xfs_daddr_t blkno,
|
|
uint len)
|
|
{
|
|
struct xfs_buf_cancel *bcp;
|
|
|
|
bcp = xlog_find_buffer_cancelled(log, blkno, len);
|
|
if (!bcp) {
|
|
ASSERT(0);
|
|
return false;
|
|
}
|
|
|
|
if (--bcp->bc_refcount == 0) {
|
|
list_del(&bcp->bc_list);
|
|
kfree(bcp);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* log buffer item recovery */
|
|
|
|
/*
|
|
* Sort buffer items for log recovery. Most buffer items should end up on the
|
|
* buffer list and are recovered first, with the following exceptions:
|
|
*
|
|
* 1. XFS_BLF_CANCEL buffers must be processed last because some log items
|
|
* might depend on the incor ecancellation record, and replaying a cancelled
|
|
* buffer item can remove the incore record.
|
|
*
|
|
* 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
|
|
* we replay di_next_unlinked only after flushing the inode 'free' state
|
|
* to the inode buffer.
|
|
*
|
|
* See xlog_recover_reorder_trans for more details.
|
|
*/
|
|
STATIC enum xlog_recover_reorder
|
|
xlog_recover_buf_reorder(
|
|
struct xlog_recover_item *item)
|
|
{
|
|
struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
|
|
|
|
if (buf_f->blf_flags & XFS_BLF_CANCEL)
|
|
return XLOG_REORDER_CANCEL_LIST;
|
|
if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
|
|
return XLOG_REORDER_INODE_BUFFER_LIST;
|
|
return XLOG_REORDER_BUFFER_LIST;
|
|
}
|
|
|
|
STATIC void
|
|
xlog_recover_buf_ra_pass2(
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item)
|
|
{
|
|
struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
|
|
|
|
xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL);
|
|
}
|
|
|
|
/*
|
|
* Build up the table of buf cancel records so that we don't replay cancelled
|
|
* data in the second pass.
|
|
*/
|
|
static int
|
|
xlog_recover_buf_commit_pass1(
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item)
|
|
{
|
|
struct xfs_buf_log_format *bf = item->ri_buf[0].i_addr;
|
|
|
|
if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
|
|
xfs_err(log->l_mp, "bad buffer log item size (%d)",
|
|
item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
if (!(bf->blf_flags & XFS_BLF_CANCEL))
|
|
trace_xfs_log_recover_buf_not_cancel(log, bf);
|
|
else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len))
|
|
trace_xfs_log_recover_buf_cancel_add(log, bf);
|
|
else
|
|
trace_xfs_log_recover_buf_cancel_ref_inc(log, bf);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Validate the recovered buffer is of the correct type and attach the
|
|
* appropriate buffer operations to them for writeback. Magic numbers are in a
|
|
* few places:
|
|
* the first 16 bits of the buffer (inode buffer, dquot buffer),
|
|
* the first 32 bits of the buffer (most blocks),
|
|
* inside a struct xfs_da_blkinfo at the start of the buffer.
|
|
*/
|
|
static void
|
|
xlog_recover_validate_buf_type(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
struct xfs_buf_log_format *buf_f,
|
|
xfs_lsn_t current_lsn)
|
|
{
|
|
struct xfs_da_blkinfo *info = bp->b_addr;
|
|
uint32_t magic32;
|
|
uint16_t magic16;
|
|
uint16_t magicda;
|
|
char *warnmsg = NULL;
|
|
|
|
/*
|
|
* We can only do post recovery validation on items on CRC enabled
|
|
* fielsystems as we need to know when the buffer was written to be able
|
|
* to determine if we should have replayed the item. If we replay old
|
|
* metadata over a newer buffer, then it will enter a temporarily
|
|
* inconsistent state resulting in verification failures. Hence for now
|
|
* just avoid the verification stage for non-crc filesystems
|
|
*/
|
|
if (!xfs_has_crc(mp))
|
|
return;
|
|
|
|
magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
|
|
magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
|
|
magicda = be16_to_cpu(info->magic);
|
|
switch (xfs_blft_from_flags(buf_f)) {
|
|
case XFS_BLFT_BTREE_BUF:
|
|
switch (magic32) {
|
|
case XFS_ABTB_CRC_MAGIC:
|
|
case XFS_ABTB_MAGIC:
|
|
bp->b_ops = &xfs_bnobt_buf_ops;
|
|
break;
|
|
case XFS_ABTC_CRC_MAGIC:
|
|
case XFS_ABTC_MAGIC:
|
|
bp->b_ops = &xfs_cntbt_buf_ops;
|
|
break;
|
|
case XFS_IBT_CRC_MAGIC:
|
|
case XFS_IBT_MAGIC:
|
|
bp->b_ops = &xfs_inobt_buf_ops;
|
|
break;
|
|
case XFS_FIBT_CRC_MAGIC:
|
|
case XFS_FIBT_MAGIC:
|
|
bp->b_ops = &xfs_finobt_buf_ops;
|
|
break;
|
|
case XFS_BMAP_CRC_MAGIC:
|
|
case XFS_BMAP_MAGIC:
|
|
bp->b_ops = &xfs_bmbt_buf_ops;
|
|
break;
|
|
case XFS_RMAP_CRC_MAGIC:
|
|
bp->b_ops = &xfs_rmapbt_buf_ops;
|
|
break;
|
|
case XFS_REFC_CRC_MAGIC:
|
|
bp->b_ops = &xfs_refcountbt_buf_ops;
|
|
break;
|
|
default:
|
|
warnmsg = "Bad btree block magic!";
|
|
break;
|
|
}
|
|
break;
|
|
case XFS_BLFT_AGF_BUF:
|
|
if (magic32 != XFS_AGF_MAGIC) {
|
|
warnmsg = "Bad AGF block magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_agf_buf_ops;
|
|
break;
|
|
case XFS_BLFT_AGFL_BUF:
|
|
if (magic32 != XFS_AGFL_MAGIC) {
|
|
warnmsg = "Bad AGFL block magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_agfl_buf_ops;
|
|
break;
|
|
case XFS_BLFT_AGI_BUF:
|
|
if (magic32 != XFS_AGI_MAGIC) {
|
|
warnmsg = "Bad AGI block magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_agi_buf_ops;
|
|
break;
|
|
case XFS_BLFT_UDQUOT_BUF:
|
|
case XFS_BLFT_PDQUOT_BUF:
|
|
case XFS_BLFT_GDQUOT_BUF:
|
|
#ifdef CONFIG_XFS_QUOTA
|
|
if (magic16 != XFS_DQUOT_MAGIC) {
|
|
warnmsg = "Bad DQUOT block magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dquot_buf_ops;
|
|
#else
|
|
xfs_alert(mp,
|
|
"Trying to recover dquots without QUOTA support built in!");
|
|
ASSERT(0);
|
|
#endif
|
|
break;
|
|
case XFS_BLFT_DINO_BUF:
|
|
if (magic16 != XFS_DINODE_MAGIC) {
|
|
warnmsg = "Bad INODE block magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_inode_buf_ops;
|
|
break;
|
|
case XFS_BLFT_SYMLINK_BUF:
|
|
if (magic32 != XFS_SYMLINK_MAGIC) {
|
|
warnmsg = "Bad symlink block magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_symlink_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DIR_BLOCK_BUF:
|
|
if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
|
|
magic32 != XFS_DIR3_BLOCK_MAGIC) {
|
|
warnmsg = "Bad dir block magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dir3_block_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DIR_DATA_BUF:
|
|
if (magic32 != XFS_DIR2_DATA_MAGIC &&
|
|
magic32 != XFS_DIR3_DATA_MAGIC) {
|
|
warnmsg = "Bad dir data magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dir3_data_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DIR_FREE_BUF:
|
|
if (magic32 != XFS_DIR2_FREE_MAGIC &&
|
|
magic32 != XFS_DIR3_FREE_MAGIC) {
|
|
warnmsg = "Bad dir3 free magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dir3_free_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DIR_LEAF1_BUF:
|
|
if (magicda != XFS_DIR2_LEAF1_MAGIC &&
|
|
magicda != XFS_DIR3_LEAF1_MAGIC) {
|
|
warnmsg = "Bad dir leaf1 magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dir3_leaf1_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DIR_LEAFN_BUF:
|
|
if (magicda != XFS_DIR2_LEAFN_MAGIC &&
|
|
magicda != XFS_DIR3_LEAFN_MAGIC) {
|
|
warnmsg = "Bad dir leafn magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dir3_leafn_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DA_NODE_BUF:
|
|
if (magicda != XFS_DA_NODE_MAGIC &&
|
|
magicda != XFS_DA3_NODE_MAGIC) {
|
|
warnmsg = "Bad da node magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_da3_node_buf_ops;
|
|
break;
|
|
case XFS_BLFT_ATTR_LEAF_BUF:
|
|
if (magicda != XFS_ATTR_LEAF_MAGIC &&
|
|
magicda != XFS_ATTR3_LEAF_MAGIC) {
|
|
warnmsg = "Bad attr leaf magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_attr3_leaf_buf_ops;
|
|
break;
|
|
case XFS_BLFT_ATTR_RMT_BUF:
|
|
if (magic32 != XFS_ATTR3_RMT_MAGIC) {
|
|
warnmsg = "Bad attr remote magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_attr3_rmt_buf_ops;
|
|
break;
|
|
case XFS_BLFT_SB_BUF:
|
|
if (magic32 != XFS_SB_MAGIC) {
|
|
warnmsg = "Bad SB block magic!";
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_sb_buf_ops;
|
|
break;
|
|
#ifdef CONFIG_XFS_RT
|
|
case XFS_BLFT_RTBITMAP_BUF:
|
|
case XFS_BLFT_RTSUMMARY_BUF:
|
|
/* no magic numbers for verification of RT buffers */
|
|
bp->b_ops = &xfs_rtbuf_ops;
|
|
break;
|
|
#endif /* CONFIG_XFS_RT */
|
|
default:
|
|
xfs_warn(mp, "Unknown buffer type %d!",
|
|
xfs_blft_from_flags(buf_f));
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Nothing else to do in the case of a NULL current LSN as this means
|
|
* the buffer is more recent than the change in the log and will be
|
|
* skipped.
|
|
*/
|
|
if (current_lsn == NULLCOMMITLSN)
|
|
return;
|
|
|
|
if (warnmsg) {
|
|
xfs_warn(mp, warnmsg);
|
|
ASSERT(0);
|
|
}
|
|
|
|
/*
|
|
* We must update the metadata LSN of the buffer as it is written out to
|
|
* ensure that older transactions never replay over this one and corrupt
|
|
* the buffer. This can occur if log recovery is interrupted at some
|
|
* point after the current transaction completes, at which point a
|
|
* subsequent mount starts recovery from the beginning.
|
|
*
|
|
* Write verifiers update the metadata LSN from log items attached to
|
|
* the buffer. Therefore, initialize a bli purely to carry the LSN to
|
|
* the verifier.
|
|
*/
|
|
if (bp->b_ops) {
|
|
struct xfs_buf_log_item *bip;
|
|
|
|
bp->b_flags |= _XBF_LOGRECOVERY;
|
|
xfs_buf_item_init(bp, mp);
|
|
bip = bp->b_log_item;
|
|
bip->bli_item.li_lsn = current_lsn;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform a 'normal' buffer recovery. Each logged region of the
|
|
* buffer should be copied over the corresponding region in the
|
|
* given buffer. The bitmap in the buf log format structure indicates
|
|
* where to place the logged data.
|
|
*/
|
|
STATIC void
|
|
xlog_recover_do_reg_buffer(
|
|
struct xfs_mount *mp,
|
|
struct xlog_recover_item *item,
|
|
struct xfs_buf *bp,
|
|
struct xfs_buf_log_format *buf_f,
|
|
xfs_lsn_t current_lsn)
|
|
{
|
|
int i;
|
|
int bit;
|
|
int nbits;
|
|
xfs_failaddr_t fa;
|
|
const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot);
|
|
|
|
trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
|
|
|
|
bit = 0;
|
|
i = 1; /* 0 is the buf format structure */
|
|
while (1) {
|
|
bit = xfs_next_bit(buf_f->blf_data_map,
|
|
buf_f->blf_map_size, bit);
|
|
if (bit == -1)
|
|
break;
|
|
nbits = xfs_contig_bits(buf_f->blf_data_map,
|
|
buf_f->blf_map_size, bit);
|
|
ASSERT(nbits > 0);
|
|
ASSERT(item->ri_buf[i].i_addr != NULL);
|
|
ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
|
|
ASSERT(BBTOB(bp->b_length) >=
|
|
((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
|
|
|
|
/*
|
|
* The dirty regions logged in the buffer, even though
|
|
* contiguous, may span multiple chunks. This is because the
|
|
* dirty region may span a physical page boundary in a buffer
|
|
* and hence be split into two separate vectors for writing into
|
|
* the log. Hence we need to trim nbits back to the length of
|
|
* the current region being copied out of the log.
|
|
*/
|
|
if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
|
|
nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
|
|
|
|
/*
|
|
* Do a sanity check if this is a dquot buffer. Just checking
|
|
* the first dquot in the buffer should do. XXXThis is
|
|
* probably a good thing to do for other buf types also.
|
|
*/
|
|
fa = NULL;
|
|
if (buf_f->blf_flags &
|
|
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
|
|
if (item->ri_buf[i].i_addr == NULL) {
|
|
xfs_alert(mp,
|
|
"XFS: NULL dquot in %s.", __func__);
|
|
goto next;
|
|
}
|
|
if (item->ri_buf[i].i_len < size_disk_dquot) {
|
|
xfs_alert(mp,
|
|
"XFS: dquot too small (%d) in %s.",
|
|
item->ri_buf[i].i_len, __func__);
|
|
goto next;
|
|
}
|
|
fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1);
|
|
if (fa) {
|
|
xfs_alert(mp,
|
|
"dquot corrupt at %pS trying to replay into block 0x%llx",
|
|
fa, xfs_buf_daddr(bp));
|
|
goto next;
|
|
}
|
|
}
|
|
|
|
memcpy(xfs_buf_offset(bp,
|
|
(uint)bit << XFS_BLF_SHIFT), /* dest */
|
|
item->ri_buf[i].i_addr, /* source */
|
|
nbits<<XFS_BLF_SHIFT); /* length */
|
|
next:
|
|
i++;
|
|
bit += nbits;
|
|
}
|
|
|
|
/* Shouldn't be any more regions */
|
|
ASSERT(i == item->ri_total);
|
|
|
|
xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
|
|
}
|
|
|
|
/*
|
|
* Perform a dquot buffer recovery.
|
|
* Simple algorithm: if we have found a QUOTAOFF log item of the same type
|
|
* (ie. USR or GRP), then just toss this buffer away; don't recover it.
|
|
* Else, treat it as a regular buffer and do recovery.
|
|
*
|
|
* Return false if the buffer was tossed and true if we recovered the buffer to
|
|
* indicate to the caller if the buffer needs writing.
|
|
*/
|
|
STATIC bool
|
|
xlog_recover_do_dquot_buffer(
|
|
struct xfs_mount *mp,
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item,
|
|
struct xfs_buf *bp,
|
|
struct xfs_buf_log_format *buf_f)
|
|
{
|
|
uint type;
|
|
|
|
trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
|
|
|
|
/*
|
|
* Filesystems are required to send in quota flags at mount time.
|
|
*/
|
|
if (!mp->m_qflags)
|
|
return false;
|
|
|
|
type = 0;
|
|
if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
|
|
type |= XFS_DQTYPE_USER;
|
|
if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
|
|
type |= XFS_DQTYPE_PROJ;
|
|
if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
|
|
type |= XFS_DQTYPE_GROUP;
|
|
/*
|
|
* This type of quotas was turned off, so ignore this buffer
|
|
*/
|
|
if (log->l_quotaoffs_flag & type)
|
|
return false;
|
|
|
|
xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Perform recovery for a buffer full of inodes. In these buffers, the only
|
|
* data which should be recovered is that which corresponds to the
|
|
* di_next_unlinked pointers in the on disk inode structures. The rest of the
|
|
* data for the inodes is always logged through the inodes themselves rather
|
|
* than the inode buffer and is recovered in xlog_recover_inode_pass2().
|
|
*
|
|
* The only time when buffers full of inodes are fully recovered is when the
|
|
* buffer is full of newly allocated inodes. In this case the buffer will
|
|
* not be marked as an inode buffer and so will be sent to
|
|
* xlog_recover_do_reg_buffer() below during recovery.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_do_inode_buffer(
|
|
struct xfs_mount *mp,
|
|
struct xlog_recover_item *item,
|
|
struct xfs_buf *bp,
|
|
struct xfs_buf_log_format *buf_f)
|
|
{
|
|
int i;
|
|
int item_index = 0;
|
|
int bit = 0;
|
|
int nbits = 0;
|
|
int reg_buf_offset = 0;
|
|
int reg_buf_bytes = 0;
|
|
int next_unlinked_offset;
|
|
int inodes_per_buf;
|
|
xfs_agino_t *logged_nextp;
|
|
xfs_agino_t *buffer_nextp;
|
|
|
|
trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
|
|
|
|
/*
|
|
* Post recovery validation only works properly on CRC enabled
|
|
* filesystems.
|
|
*/
|
|
if (xfs_has_crc(mp))
|
|
bp->b_ops = &xfs_inode_buf_ops;
|
|
|
|
inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
|
|
for (i = 0; i < inodes_per_buf; i++) {
|
|
next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
|
|
offsetof(struct xfs_dinode, di_next_unlinked);
|
|
|
|
while (next_unlinked_offset >=
|
|
(reg_buf_offset + reg_buf_bytes)) {
|
|
/*
|
|
* The next di_next_unlinked field is beyond
|
|
* the current logged region. Find the next
|
|
* logged region that contains or is beyond
|
|
* the current di_next_unlinked field.
|
|
*/
|
|
bit += nbits;
|
|
bit = xfs_next_bit(buf_f->blf_data_map,
|
|
buf_f->blf_map_size, bit);
|
|
|
|
/*
|
|
* If there are no more logged regions in the
|
|
* buffer, then we're done.
|
|
*/
|
|
if (bit == -1)
|
|
return 0;
|
|
|
|
nbits = xfs_contig_bits(buf_f->blf_data_map,
|
|
buf_f->blf_map_size, bit);
|
|
ASSERT(nbits > 0);
|
|
reg_buf_offset = bit << XFS_BLF_SHIFT;
|
|
reg_buf_bytes = nbits << XFS_BLF_SHIFT;
|
|
item_index++;
|
|
}
|
|
|
|
/*
|
|
* If the current logged region starts after the current
|
|
* di_next_unlinked field, then move on to the next
|
|
* di_next_unlinked field.
|
|
*/
|
|
if (next_unlinked_offset < reg_buf_offset)
|
|
continue;
|
|
|
|
ASSERT(item->ri_buf[item_index].i_addr != NULL);
|
|
ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
|
|
ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
|
|
|
|
/*
|
|
* The current logged region contains a copy of the
|
|
* current di_next_unlinked field. Extract its value
|
|
* and copy it to the buffer copy.
|
|
*/
|
|
logged_nextp = item->ri_buf[item_index].i_addr +
|
|
next_unlinked_offset - reg_buf_offset;
|
|
if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
|
|
xfs_alert(mp,
|
|
"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
|
|
"Trying to replay bad (0) inode di_next_unlinked field.",
|
|
item, bp);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
|
|
*buffer_nextp = *logged_nextp;
|
|
|
|
/*
|
|
* If necessary, recalculate the CRC in the on-disk inode. We
|
|
* have to leave the inode in a consistent state for whoever
|
|
* reads it next....
|
|
*/
|
|
xfs_dinode_calc_crc(mp,
|
|
xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* V5 filesystems know the age of the buffer on disk being recovered. We can
|
|
* have newer objects on disk than we are replaying, and so for these cases we
|
|
* don't want to replay the current change as that will make the buffer contents
|
|
* temporarily invalid on disk.
|
|
*
|
|
* The magic number might not match the buffer type we are going to recover
|
|
* (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
|
|
* extract the LSN of the existing object in the buffer based on it's current
|
|
* magic number. If we don't recognise the magic number in the buffer, then
|
|
* return a LSN of -1 so that the caller knows it was an unrecognised block and
|
|
* so can recover the buffer.
|
|
*
|
|
* Note: we cannot rely solely on magic number matches to determine that the
|
|
* buffer has a valid LSN - we also need to verify that it belongs to this
|
|
* filesystem, so we need to extract the object's LSN and compare it to that
|
|
* which we read from the superblock. If the UUIDs don't match, then we've got a
|
|
* stale metadata block from an old filesystem instance that we need to recover
|
|
* over the top of.
|
|
*/
|
|
static xfs_lsn_t
|
|
xlog_recover_get_buf_lsn(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
struct xfs_buf_log_format *buf_f)
|
|
{
|
|
uint32_t magic32;
|
|
uint16_t magic16;
|
|
uint16_t magicda;
|
|
void *blk = bp->b_addr;
|
|
uuid_t *uuid;
|
|
xfs_lsn_t lsn = -1;
|
|
uint16_t blft;
|
|
|
|
/* v4 filesystems always recover immediately */
|
|
if (!xfs_has_crc(mp))
|
|
goto recover_immediately;
|
|
|
|
/*
|
|
* realtime bitmap and summary file blocks do not have magic numbers or
|
|
* UUIDs, so we must recover them immediately.
|
|
*/
|
|
blft = xfs_blft_from_flags(buf_f);
|
|
if (blft == XFS_BLFT_RTBITMAP_BUF || blft == XFS_BLFT_RTSUMMARY_BUF)
|
|
goto recover_immediately;
|
|
|
|
magic32 = be32_to_cpu(*(__be32 *)blk);
|
|
switch (magic32) {
|
|
case XFS_ABTB_CRC_MAGIC:
|
|
case XFS_ABTC_CRC_MAGIC:
|
|
case XFS_ABTB_MAGIC:
|
|
case XFS_ABTC_MAGIC:
|
|
case XFS_RMAP_CRC_MAGIC:
|
|
case XFS_REFC_CRC_MAGIC:
|
|
case XFS_FIBT_CRC_MAGIC:
|
|
case XFS_FIBT_MAGIC:
|
|
case XFS_IBT_CRC_MAGIC:
|
|
case XFS_IBT_MAGIC: {
|
|
struct xfs_btree_block *btb = blk;
|
|
|
|
lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
|
|
uuid = &btb->bb_u.s.bb_uuid;
|
|
break;
|
|
}
|
|
case XFS_BMAP_CRC_MAGIC:
|
|
case XFS_BMAP_MAGIC: {
|
|
struct xfs_btree_block *btb = blk;
|
|
|
|
lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
|
|
uuid = &btb->bb_u.l.bb_uuid;
|
|
break;
|
|
}
|
|
case XFS_AGF_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
|
|
uuid = &((struct xfs_agf *)blk)->agf_uuid;
|
|
break;
|
|
case XFS_AGFL_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
|
|
uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
|
|
break;
|
|
case XFS_AGI_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
|
|
uuid = &((struct xfs_agi *)blk)->agi_uuid;
|
|
break;
|
|
case XFS_SYMLINK_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
|
|
uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
|
|
break;
|
|
case XFS_DIR3_BLOCK_MAGIC:
|
|
case XFS_DIR3_DATA_MAGIC:
|
|
case XFS_DIR3_FREE_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
|
|
uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
|
|
break;
|
|
case XFS_ATTR3_RMT_MAGIC:
|
|
/*
|
|
* Remote attr blocks are written synchronously, rather than
|
|
* being logged. That means they do not contain a valid LSN
|
|
* (i.e. transactionally ordered) in them, and hence any time we
|
|
* see a buffer to replay over the top of a remote attribute
|
|
* block we should simply do so.
|
|
*/
|
|
goto recover_immediately;
|
|
case XFS_SB_MAGIC:
|
|
/*
|
|
* superblock uuids are magic. We may or may not have a
|
|
* sb_meta_uuid on disk, but it will be set in the in-core
|
|
* superblock. We set the uuid pointer for verification
|
|
* according to the superblock feature mask to ensure we check
|
|
* the relevant UUID in the superblock.
|
|
*/
|
|
lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
|
|
if (xfs_has_metauuid(mp))
|
|
uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
|
|
else
|
|
uuid = &((struct xfs_dsb *)blk)->sb_uuid;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (lsn != (xfs_lsn_t)-1) {
|
|
if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
|
|
goto recover_immediately;
|
|
return lsn;
|
|
}
|
|
|
|
magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
|
|
switch (magicda) {
|
|
case XFS_DIR3_LEAF1_MAGIC:
|
|
case XFS_DIR3_LEAFN_MAGIC:
|
|
case XFS_ATTR3_LEAF_MAGIC:
|
|
case XFS_DA3_NODE_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
|
|
uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (lsn != (xfs_lsn_t)-1) {
|
|
if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
|
|
goto recover_immediately;
|
|
return lsn;
|
|
}
|
|
|
|
/*
|
|
* We do individual object checks on dquot and inode buffers as they
|
|
* have their own individual LSN records. Also, we could have a stale
|
|
* buffer here, so we have to at least recognise these buffer types.
|
|
*
|
|
* A notd complexity here is inode unlinked list processing - it logs
|
|
* the inode directly in the buffer, but we don't know which inodes have
|
|
* been modified, and there is no global buffer LSN. Hence we need to
|
|
* recover all inode buffer types immediately. This problem will be
|
|
* fixed by logical logging of the unlinked list modifications.
|
|
*/
|
|
magic16 = be16_to_cpu(*(__be16 *)blk);
|
|
switch (magic16) {
|
|
case XFS_DQUOT_MAGIC:
|
|
case XFS_DINODE_MAGIC:
|
|
goto recover_immediately;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* unknown buffer contents, recover immediately */
|
|
|
|
recover_immediately:
|
|
return (xfs_lsn_t)-1;
|
|
|
|
}
|
|
|
|
/*
|
|
* This routine replays a modification made to a buffer at runtime.
|
|
* There are actually two types of buffer, regular and inode, which
|
|
* are handled differently. Inode buffers are handled differently
|
|
* in that we only recover a specific set of data from them, namely
|
|
* the inode di_next_unlinked fields. This is because all other inode
|
|
* data is actually logged via inode records and any data we replay
|
|
* here which overlaps that may be stale.
|
|
*
|
|
* When meta-data buffers are freed at run time we log a buffer item
|
|
* with the XFS_BLF_CANCEL bit set to indicate that previous copies
|
|
* of the buffer in the log should not be replayed at recovery time.
|
|
* This is so that if the blocks covered by the buffer are reused for
|
|
* file data before we crash we don't end up replaying old, freed
|
|
* meta-data into a user's file.
|
|
*
|
|
* To handle the cancellation of buffer log items, we make two passes
|
|
* over the log during recovery. During the first we build a table of
|
|
* those buffers which have been cancelled, and during the second we
|
|
* only replay those buffers which do not have corresponding cancel
|
|
* records in the table. See xlog_recover_buf_pass[1,2] above
|
|
* for more details on the implementation of the table of cancel records.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_buf_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t current_lsn)
|
|
{
|
|
struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
|
|
struct xfs_mount *mp = log->l_mp;
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
uint buf_flags;
|
|
xfs_lsn_t lsn;
|
|
|
|
/*
|
|
* In this pass we only want to recover all the buffers which have
|
|
* not been cancelled and are not cancellation buffers themselves.
|
|
*/
|
|
if (buf_f->blf_flags & XFS_BLF_CANCEL) {
|
|
if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
|
|
buf_f->blf_len))
|
|
goto cancelled;
|
|
} else {
|
|
|
|
if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
|
|
buf_f->blf_len))
|
|
goto cancelled;
|
|
}
|
|
|
|
trace_xfs_log_recover_buf_recover(log, buf_f);
|
|
|
|
buf_flags = 0;
|
|
if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
|
|
buf_flags |= XBF_UNMAPPED;
|
|
|
|
error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
|
|
buf_flags, &bp, NULL);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Recover the buffer only if we get an LSN from it and it's less than
|
|
* the lsn of the transaction we are replaying.
|
|
*
|
|
* Note that we have to be extremely careful of readahead here.
|
|
* Readahead does not attach verfiers to the buffers so if we don't
|
|
* actually do any replay after readahead because of the LSN we found
|
|
* in the buffer if more recent than that current transaction then we
|
|
* need to attach the verifier directly. Failure to do so can lead to
|
|
* future recovery actions (e.g. EFI and unlinked list recovery) can
|
|
* operate on the buffers and they won't get the verifier attached. This
|
|
* can lead to blocks on disk having the correct content but a stale
|
|
* CRC.
|
|
*
|
|
* It is safe to assume these clean buffers are currently up to date.
|
|
* If the buffer is dirtied by a later transaction being replayed, then
|
|
* the verifier will be reset to match whatever recover turns that
|
|
* buffer into.
|
|
*/
|
|
lsn = xlog_recover_get_buf_lsn(mp, bp, buf_f);
|
|
if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
|
|
trace_xfs_log_recover_buf_skip(log, buf_f);
|
|
xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
|
|
|
|
/*
|
|
* We're skipping replay of this buffer log item due to the log
|
|
* item LSN being behind the ondisk buffer. Verify the buffer
|
|
* contents since we aren't going to run the write verifier.
|
|
*/
|
|
if (bp->b_ops) {
|
|
bp->b_ops->verify_read(bp);
|
|
error = bp->b_error;
|
|
}
|
|
goto out_release;
|
|
}
|
|
|
|
if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
|
|
error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
|
|
if (error)
|
|
goto out_release;
|
|
} else if (buf_f->blf_flags &
|
|
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
|
|
bool dirty;
|
|
|
|
dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
|
|
if (!dirty)
|
|
goto out_release;
|
|
} else {
|
|
xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
|
|
}
|
|
|
|
/*
|
|
* Perform delayed write on the buffer. Asynchronous writes will be
|
|
* slower when taking into account all the buffers to be flushed.
|
|
*
|
|
* Also make sure that only inode buffers with good sizes stay in
|
|
* the buffer cache. The kernel moves inodes in buffers of 1 block
|
|
* or inode_cluster_size bytes, whichever is bigger. The inode
|
|
* buffers in the log can be a different size if the log was generated
|
|
* by an older kernel using unclustered inode buffers or a newer kernel
|
|
* running with a different inode cluster size. Regardless, if
|
|
* the inode buffer size isn't max(blocksize, inode_cluster_size)
|
|
* for *our* value of inode_cluster_size, then we need to keep
|
|
* the buffer out of the buffer cache so that the buffer won't
|
|
* overlap with future reads of those inodes.
|
|
*/
|
|
if (XFS_DINODE_MAGIC ==
|
|
be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
|
|
(BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
|
|
xfs_buf_stale(bp);
|
|
error = xfs_bwrite(bp);
|
|
} else {
|
|
ASSERT(bp->b_mount == mp);
|
|
bp->b_flags |= _XBF_LOGRECOVERY;
|
|
xfs_buf_delwri_queue(bp, buffer_list);
|
|
}
|
|
|
|
out_release:
|
|
xfs_buf_relse(bp);
|
|
return error;
|
|
cancelled:
|
|
trace_xfs_log_recover_buf_cancel(log, buf_f);
|
|
return 0;
|
|
}
|
|
|
|
const struct xlog_recover_item_ops xlog_buf_item_ops = {
|
|
.item_type = XFS_LI_BUF,
|
|
.reorder = xlog_recover_buf_reorder,
|
|
.ra_pass2 = xlog_recover_buf_ra_pass2,
|
|
.commit_pass1 = xlog_recover_buf_commit_pass1,
|
|
.commit_pass2 = xlog_recover_buf_commit_pass2,
|
|
};
|
|
|
|
#ifdef DEBUG
|
|
void
|
|
xlog_check_buf_cancel_table(
|
|
struct xlog *log)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
|
|
ASSERT(list_empty(&log->l_buf_cancel_table[i]));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
xlog_alloc_buf_cancel_table(
|
|
struct xlog *log)
|
|
{
|
|
void *p;
|
|
int i;
|
|
|
|
ASSERT(log->l_buf_cancel_table == NULL);
|
|
|
|
p = kmalloc_array(XLOG_BC_TABLE_SIZE, sizeof(struct list_head),
|
|
GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
log->l_buf_cancel_table = p;
|
|
for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
|
|
INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
xlog_free_buf_cancel_table(
|
|
struct xlog *log)
|
|
{
|
|
int i;
|
|
|
|
if (!log->l_buf_cancel_table)
|
|
return;
|
|
|
|
for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) {
|
|
struct xfs_buf_cancel *bc;
|
|
|
|
while ((bc = list_first_entry_or_null(
|
|
&log->l_buf_cancel_table[i],
|
|
struct xfs_buf_cancel, bc_list))) {
|
|
list_del(&bc->bc_list);
|
|
kfree(bc);
|
|
}
|
|
}
|
|
|
|
kfree(log->l_buf_cancel_table);
|
|
log->l_buf_cancel_table = NULL;
|
|
}
|