linux/tools/testing/selftests/bpf/test_verifier.c
Joe Stringer d0a0e4956f selftests/bpf: Count tests skipped by unpriv
When priviliged tests are skipped due to user rights, count the number of
skipped tests so it's more obvious that the test did not check everything.

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-02-15 10:22:55 +01:00

11439 lines
343 KiB
C

/*
* Testsuite for eBPF verifier
*
* Copyright (c) 2014 PLUMgrid, http://plumgrid.com
* Copyright (c) 2017 Facebook
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*/
#include <endian.h>
#include <asm/types.h>
#include <linux/types.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stddef.h>
#include <stdbool.h>
#include <sched.h>
#include <limits.h>
#include <sys/capability.h>
#include <sys/resource.h>
#include <linux/unistd.h>
#include <linux/filter.h>
#include <linux/bpf_perf_event.h>
#include <linux/bpf.h>
#include <linux/if_ether.h>
#include <bpf/bpf.h>
#ifdef HAVE_GENHDR
# include "autoconf.h"
#else
# if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
# define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
# endif
#endif
#include "../../../include/linux/filter.h"
#ifndef ARRAY_SIZE
# define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#endif
#define MAX_INSNS 512
#define MAX_FIXUPS 8
#define MAX_NR_MAPS 4
#define POINTER_VALUE 0xcafe4all
#define TEST_DATA_LEN 64
#define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
#define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
struct bpf_test {
const char *descr;
struct bpf_insn insns[MAX_INSNS];
int fixup_map1[MAX_FIXUPS];
int fixup_map2[MAX_FIXUPS];
int fixup_prog[MAX_FIXUPS];
int fixup_map_in_map[MAX_FIXUPS];
const char *errstr;
const char *errstr_unpriv;
uint32_t retval;
enum {
UNDEF,
ACCEPT,
REJECT
} result, result_unpriv;
enum bpf_prog_type prog_type;
uint8_t flags;
};
/* Note we want this to be 64 bit aligned so that the end of our array is
* actually the end of the structure.
*/
#define MAX_ENTRIES 11
struct test_val {
unsigned int index;
int foo[MAX_ENTRIES];
};
static struct bpf_test tests[] = {
{
"add+sub+mul",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 1),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_2, 3),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -1),
BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 3),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = -3,
},
{
"DIV32 by 0, zero check 1",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU32_REG(BPF_DIV, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"DIV32 by 0, zero check 2",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU32_REG(BPF_DIV, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"DIV64 by 0, zero check",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU64_REG(BPF_DIV, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"MOD32 by 0, zero check 1",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU32_REG(BPF_MOD, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"MOD32 by 0, zero check 2",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU32_REG(BPF_MOD, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"MOD64 by 0, zero check",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU64_REG(BPF_MOD, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"DIV32 by 0, zero check ok, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 2),
BPF_MOV32_IMM(BPF_REG_2, 16),
BPF_ALU32_REG(BPF_DIV, BPF_REG_2, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 8,
},
{
"DIV32 by 0, zero check 1, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"DIV32 by 0, zero check 2, cls",
.insns = {
BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"DIV64 by 0, zero check, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_ALU64_REG(BPF_DIV, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"MOD32 by 0, zero check ok, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 3),
BPF_MOV32_IMM(BPF_REG_2, 5),
BPF_ALU32_REG(BPF_MOD, BPF_REG_2, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 2,
},
{
"MOD32 by 0, zero check 1, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_ALU32_REG(BPF_MOD, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"MOD32 by 0, zero check 2, cls",
.insns = {
BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_ALU32_REG(BPF_MOD, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"MOD64 by 0, zero check 1, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_0, 2),
BPF_ALU64_REG(BPF_MOD, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 2,
},
{
"MOD64 by 0, zero check 2, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_0, -1),
BPF_ALU64_REG(BPF_MOD, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = -1,
},
/* Just make sure that JITs used udiv/umod as otherwise we get
* an exception from INT_MIN/-1 overflow similarly as with div
* by zero.
*/
{
"DIV32 overflow, check 1",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, -1),
BPF_MOV32_IMM(BPF_REG_0, INT_MIN),
BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"DIV32 overflow, check 2",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, INT_MIN),
BPF_ALU32_IMM(BPF_DIV, BPF_REG_0, -1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"DIV64 overflow, check 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, -1),
BPF_LD_IMM64(BPF_REG_0, LLONG_MIN),
BPF_ALU64_REG(BPF_DIV, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"DIV64 overflow, check 2",
.insns = {
BPF_LD_IMM64(BPF_REG_0, LLONG_MIN),
BPF_ALU64_IMM(BPF_DIV, BPF_REG_0, -1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"MOD32 overflow, check 1",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, -1),
BPF_MOV32_IMM(BPF_REG_0, INT_MIN),
BPF_ALU32_REG(BPF_MOD, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = INT_MIN,
},
{
"MOD32 overflow, check 2",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, INT_MIN),
BPF_ALU32_IMM(BPF_MOD, BPF_REG_0, -1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = INT_MIN,
},
{
"MOD64 overflow, check 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, -1),
BPF_LD_IMM64(BPF_REG_2, LLONG_MIN),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_ALU64_REG(BPF_MOD, BPF_REG_2, BPF_REG_1),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_JMP_REG(BPF_JNE, BPF_REG_3, BPF_REG_2, 1),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"MOD64 overflow, check 2",
.insns = {
BPF_LD_IMM64(BPF_REG_2, LLONG_MIN),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_ALU64_IMM(BPF_MOD, BPF_REG_2, -1),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_JMP_REG(BPF_JNE, BPF_REG_3, BPF_REG_2, 1),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"xor32 zero extend check",
.insns = {
BPF_MOV32_IMM(BPF_REG_2, -1),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 32),
BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 0xffff),
BPF_ALU32_REG(BPF_XOR, BPF_REG_2, BPF_REG_2),
BPF_MOV32_IMM(BPF_REG_0, 2),
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 0, 1),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"empty prog",
.insns = {
},
.errstr = "unknown opcode 00",
.result = REJECT,
},
{
"only exit insn",
.insns = {
BPF_EXIT_INSN(),
},
.errstr = "R0 !read_ok",
.result = REJECT,
},
{
"unreachable",
.insns = {
BPF_EXIT_INSN(),
BPF_EXIT_INSN(),
},
.errstr = "unreachable",
.result = REJECT,
},
{
"unreachable2",
.insns = {
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "unreachable",
.result = REJECT,
},
{
"out of range jump",
.insns = {
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "jump out of range",
.result = REJECT,
},
{
"out of range jump2",
.insns = {
BPF_JMP_IMM(BPF_JA, 0, 0, -2),
BPF_EXIT_INSN(),
},
.errstr = "jump out of range",
.result = REJECT,
},
{
"test1 ld_imm64",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.errstr = "invalid BPF_LD_IMM insn",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"test2 ld_imm64",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid BPF_LD_IMM insn",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"test3 ld_imm64",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test4 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test5 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test6 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
BPF_RAW_INSN(0, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"test7 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
BPF_RAW_INSN(0, 0, 0, 0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 1,
},
{
"test8 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 1, 1),
BPF_RAW_INSN(0, 0, 0, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "uses reserved fields",
.result = REJECT,
},
{
"test9 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
BPF_RAW_INSN(0, 0, 0, 1, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test10 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
BPF_RAW_INSN(0, BPF_REG_1, 0, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test11 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
BPF_RAW_INSN(0, 0, BPF_REG_1, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test12 ld_imm64",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, BPF_REG_1, 0, 1),
BPF_RAW_INSN(0, 0, 0, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "not pointing to valid bpf_map",
.result = REJECT,
},
{
"test13 ld_imm64",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, BPF_REG_1, 0, 1),
BPF_RAW_INSN(0, 0, BPF_REG_1, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"arsh32 on imm",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_ALU32_IMM(BPF_ARSH, BPF_REG_0, 5),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "unknown opcode c4",
},
{
"arsh32 on reg",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_MOV64_IMM(BPF_REG_1, 5),
BPF_ALU32_REG(BPF_ARSH, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "unknown opcode cc",
},
{
"arsh64 on imm",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_ALU64_IMM(BPF_ARSH, BPF_REG_0, 5),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"arsh64 on reg",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_MOV64_IMM(BPF_REG_1, 5),
BPF_ALU64_REG(BPF_ARSH, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"no bpf_exit",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_0, BPF_REG_2),
},
.errstr = "not an exit",
.result = REJECT,
},
{
"loop (back-edge)",
.insns = {
BPF_JMP_IMM(BPF_JA, 0, 0, -1),
BPF_EXIT_INSN(),
},
.errstr = "back-edge",
.result = REJECT,
},
{
"loop2 (back-edge)",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
BPF_JMP_IMM(BPF_JA, 0, 0, -4),
BPF_EXIT_INSN(),
},
.errstr = "back-edge",
.result = REJECT,
},
{
"conditional loop",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3),
BPF_EXIT_INSN(),
},
.errstr = "back-edge",
.result = REJECT,
},
{
"read uninitialized register",
.insns = {
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr = "R2 !read_ok",
.result = REJECT,
},
{
"read invalid register",
.insns = {
BPF_MOV64_REG(BPF_REG_0, -1),
BPF_EXIT_INSN(),
},
.errstr = "R15 is invalid",
.result = REJECT,
},
{
"program doesn't init R0 before exit",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.errstr = "R0 !read_ok",
.result = REJECT,
},
{
"program doesn't init R0 before exit in all branches",
.insns = {
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.errstr = "R0 !read_ok",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"stack out of bounds",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, 8, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack",
.result = REJECT,
},
{
"invalid call insn1",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL | BPF_X, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "unknown opcode 8d",
.result = REJECT,
},
{
"invalid call insn2",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 1, 0),
BPF_EXIT_INSN(),
},
.errstr = "BPF_CALL uses reserved",
.result = REJECT,
},
{
"invalid function call",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 1234567),
BPF_EXIT_INSN(),
},
.errstr = "invalid func unknown#1234567",
.result = REJECT,
},
{
"uninitialized stack1",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 2 },
.errstr = "invalid indirect read from stack",
.result = REJECT,
},
{
"uninitialized stack2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -8),
BPF_EXIT_INSN(),
},
.errstr = "invalid read from stack",
.result = REJECT,
},
{
"invalid fp arithmetic",
/* If this gets ever changed, make sure JITs can deal with it. */
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 8),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 subtraction from stack pointer",
.result = REJECT,
},
{
"non-invalid fp arithmetic",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"invalid argument register",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_cgroup_classid),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_cgroup_classid),
BPF_EXIT_INSN(),
},
.errstr = "R1 !read_ok",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"non-invalid argument register",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_cgroup_classid),
BPF_ALU64_REG(BPF_MOV, BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_cgroup_classid),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"check valid spill/fill",
.insns = {
/* spill R1(ctx) into stack */
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
/* fill it back into R2 */
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8),
/* should be able to access R0 = *(R2 + 8) */
/* BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 8), */
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
.retval = POINTER_VALUE,
},
{
"check valid spill/fill, skb mark",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.result_unpriv = ACCEPT,
},
{
"check corrupted spill/fill",
.insns = {
/* spill R1(ctx) into stack */
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
/* mess up with R1 pointer on stack */
BPF_ST_MEM(BPF_B, BPF_REG_10, -7, 0x23),
/* fill back into R0 should fail */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "attempt to corrupt spilled",
.errstr = "corrupted spill",
.result = REJECT,
},
{
"invalid src register in STX",
.insns = {
BPF_STX_MEM(BPF_B, BPF_REG_10, -1, -1),
BPF_EXIT_INSN(),
},
.errstr = "R15 is invalid",
.result = REJECT,
},
{
"invalid dst register in STX",
.insns = {
BPF_STX_MEM(BPF_B, 14, BPF_REG_10, -1),
BPF_EXIT_INSN(),
},
.errstr = "R14 is invalid",
.result = REJECT,
},
{
"invalid dst register in ST",
.insns = {
BPF_ST_MEM(BPF_B, 14, -1, -1),
BPF_EXIT_INSN(),
},
.errstr = "R14 is invalid",
.result = REJECT,
},
{
"invalid src register in LDX",
.insns = {
BPF_LDX_MEM(BPF_B, BPF_REG_0, 12, 0),
BPF_EXIT_INSN(),
},
.errstr = "R12 is invalid",
.result = REJECT,
},
{
"invalid dst register in LDX",
.insns = {
BPF_LDX_MEM(BPF_B, 11, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.errstr = "R11 is invalid",
.result = REJECT,
},
{
"junk insn",
.insns = {
BPF_RAW_INSN(0, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "unknown opcode 00",
.result = REJECT,
},
{
"junk insn2",
.insns = {
BPF_RAW_INSN(1, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "BPF_LDX uses reserved fields",
.result = REJECT,
},
{
"junk insn3",
.insns = {
BPF_RAW_INSN(-1, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "unknown opcode ff",
.result = REJECT,
},
{
"junk insn4",
.insns = {
BPF_RAW_INSN(-1, -1, -1, -1, -1),
BPF_EXIT_INSN(),
},
.errstr = "unknown opcode ff",
.result = REJECT,
},
{
"junk insn5",
.insns = {
BPF_RAW_INSN(0x7f, -1, -1, -1, -1),
BPF_EXIT_INSN(),
},
.errstr = "BPF_ALU uses reserved fields",
.result = REJECT,
},
{
"misaligned read from stack",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -4),
BPF_EXIT_INSN(),
},
.errstr = "misaligned stack access",
.result = REJECT,
},
{
"invalid map_fd for function call",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_delete_elem),
BPF_EXIT_INSN(),
},
.errstr = "fd 0 is not pointing to valid bpf_map",
.result = REJECT,
},
{
"don't check return value before access",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 invalid mem access 'map_value_or_null'",
.result = REJECT,
},
{
"access memory with incorrect alignment",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "misaligned value access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"sometimes access memory with incorrect alignment",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 invalid mem access",
.errstr_unpriv = "R0 leaks addr",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"jump test 1",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"jump test 2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 14),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 11),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 5),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"jump test 3",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 19),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_JMP_IMM(BPF_JA, 0, 0, 15),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -32),
BPF_JMP_IMM(BPF_JA, 0, 0, 11),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -40),
BPF_JMP_IMM(BPF_JA, 0, 0, 7),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),
BPF_JMP_IMM(BPF_JA, 0, 0, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -56),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_delete_elem),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 24 },
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = -ENOENT,
},
{
"jump test 4",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"jump test 5",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"access skb fields ok",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, pkt_type)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, queue_mapping)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, protocol)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, vlan_present)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, vlan_tci)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, napi_id)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"access skb fields bad1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -4),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"access skb fields bad2",
.insns = {
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, pkt_type)),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "different pointers",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"access skb fields bad3",
.insns = {
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, pkt_type)),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_JMP_IMM(BPF_JA, 0, 0, -12),
},
.fixup_map1 = { 6 },
.errstr = "different pointers",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"access skb fields bad4",
.insns = {
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 3),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_JMP_IMM(BPF_JA, 0, 0, -13),
},
.fixup_map1 = { 7 },
.errstr = "different pointers",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"invalid access __sk_buff family",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, family)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff remote_ip4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip4)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff local_ip4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip4)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff remote_ip6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip6)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff local_ip6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip6)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff remote_port",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_port)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff remote_port",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_port)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"valid access __sk_buff family",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, family)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff remote_ip4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip4)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff local_ip4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip4)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff remote_ip6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip6[0])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip6[1])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip6[2])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip6[3])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff local_ip6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip6[0])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip6[1])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip6[2])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip6[3])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff remote_port",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_port)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff remote_port",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_port)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"invalid access of tc_classid for SK_SKB",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
.errstr = "invalid bpf_context access",
},
{
"invalid access of skb->mark for SK_SKB",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
.errstr = "invalid bpf_context access",
},
{
"check skb->mark is not writeable by SK_SKB",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
.errstr = "invalid bpf_context access",
},
{
"check skb->tc_index is writeable by SK_SKB",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, tc_index)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"check skb->priority is writeable by SK_SKB",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, priority)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"direct packet read for SK_SKB",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"direct packet write for SK_SKB",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"overlapping checks for direct packet access SK_SKB",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 6),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_2, 6),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"check skb->mark is not writeable by sockets",
.insns = {
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.errstr_unpriv = "R1 leaks addr",
.result = REJECT,
},
{
"check skb->tc_index is not writeable by sockets",
.insns = {
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, tc_index)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.errstr_unpriv = "R1 leaks addr",
.result = REJECT,
},
{
"check cb access: byte",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 1),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 2),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 3),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1])),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1]) + 1),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1]) + 2),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1]) + 3),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2])),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2]) + 1),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2]) + 2),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2]) + 3),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3])),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3]) + 1),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3]) + 2),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3]) + 3),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4])),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 1),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 2),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0]) + 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0]) + 2),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0]) + 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1])),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1]) + 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1]) + 2),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1]) + 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2])),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2]) + 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2]) + 2),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2]) + 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3])),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3]) + 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3]) + 2),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3]) + 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4])),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4]) + 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4]) + 2),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4]) + 3),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"__sk_buff->hash, offset 0, byte store not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, hash)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"__sk_buff->tc_index, offset 3, byte store not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, tc_index) + 3),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check skb->hash byte load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash)),
#else
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 3),
#endif
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check skb->hash byte load not permitted 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check skb->hash byte load not permitted 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 2),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check skb->hash byte load not permitted 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 3),
#else
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash)),
#endif
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check cb access: byte, wrong type",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"check cb access: half",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 2),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1])),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1]) + 2),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2])),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2]) + 2),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3])),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3]) + 2),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4])),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 2),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0]) + 2),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1])),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1]) + 2),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2])),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2]) + 2),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3])),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3]) + 2),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4])),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4]) + 2),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check cb access: half, unaligned",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 1),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check __sk_buff->hash, offset 0, half store not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, hash)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check __sk_buff->tc_index, offset 2, half store not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, tc_index) + 2),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check skb->hash half load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash)),
#else
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 2),
#endif
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check skb->hash half load not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 2),
#else
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash)),
#endif
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check cb access: half, wrong type",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"check cb access: word",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check cb access: word, unaligned 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 2),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: word, unaligned 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 1),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: word, unaligned 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 2),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: word, unaligned 4",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 3),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: double",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2])),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check cb access: double, unaligned 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1])),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: double, unaligned 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3])),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: double, oob 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4])),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check cb access: double, oob 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4])),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check __sk_buff->ifindex dw store not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, ifindex)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check __sk_buff->ifindex dw load not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, ifindex)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check cb access: double, wrong type",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"check out of range skb->cb access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0]) + 256),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.errstr_unpriv = "",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_ACT,
},
{
"write skb fields from socket prog",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4])),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_index)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, cb[2])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.errstr_unpriv = "R1 leaks addr",
.result_unpriv = REJECT,
},
{
"write skb fields from tc_cls_act prog",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_index)),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, tc_index)),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3])),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "",
.result_unpriv = REJECT,
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"PTR_TO_STACK store/load",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 0xfaceb00c,
},
{
"PTR_TO_STACK store/load - bad alignment on off",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "misaligned stack access off (0x0; 0x0)+-8+2 size 8",
},
{
"PTR_TO_STACK store/load - bad alignment on reg",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "misaligned stack access off (0x0; 0x0)+-10+8 size 8",
},
{
"PTR_TO_STACK store/load - out of bounds low",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -80000),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack off=-79992 size=8",
},
{
"PTR_TO_STACK store/load - out of bounds high",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack off=0 size=8",
},
{
"unpriv: return pointer",
.insns = {
BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.result_unpriv = REJECT,
.errstr_unpriv = "R0 leaks addr",
.retval = POINTER_VALUE,
},
{
"unpriv: add const to pointer",
.insns = {
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"unpriv: add pointer to pointer",
.insns = {
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R1 pointer += pointer",
},
{
"unpriv: neg pointer",
.insns = {
BPF_ALU64_IMM(BPF_NEG, BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.result_unpriv = REJECT,
.errstr_unpriv = "R1 pointer arithmetic",
},
{
"unpriv: cmp pointer with const",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.result_unpriv = REJECT,
.errstr_unpriv = "R1 pointer comparison",
},
{
"unpriv: cmp pointer with pointer",
.insns = {
BPF_JMP_REG(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.result_unpriv = REJECT,
.errstr_unpriv = "R10 pointer comparison",
},
{
"unpriv: check that printk is disallowed",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_trace_printk),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "unknown func bpf_trace_printk#6",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: pass pointer to helper function",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_update_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr_unpriv = "R4 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: indirectly pass pointer on stack to helper function",
.insns = {
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "invalid indirect read from stack off -8+0 size 8",
.result = REJECT,
},
{
"unpriv: mangle pointer on stack 1",
.insns = {
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
BPF_ST_MEM(BPF_W, BPF_REG_10, -8, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "attempt to corrupt spilled",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: mangle pointer on stack 2",
.insns = {
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
BPF_ST_MEM(BPF_B, BPF_REG_10, -1, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "attempt to corrupt spilled",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: read pointer from stack in small chunks",
.insns = {
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid size",
.result = REJECT,
},
{
"unpriv: write pointer into ctx",
.insns = {
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R1 leaks addr",
.result_unpriv = REJECT,
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"unpriv: spill/fill of ctx",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"unpriv: spill/fill of ctx 2",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_hash_recalc),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"unpriv: spill/fill of ctx 3",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_hash_recalc),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R1 type=fp expected=ctx",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"unpriv: spill/fill of ctx 4",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_10,
BPF_REG_0, -8, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_hash_recalc),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R1 type=inv expected=ctx",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"unpriv: spill/fill of different pointers stx",
.insns = {
BPF_MOV64_IMM(BPF_REG_3, 42),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_3,
offsetof(struct __sk_buff, mark)),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "same insn cannot be used with different pointers",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"unpriv: spill/fill of different pointers ldx",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2,
-(__s32)offsetof(struct bpf_perf_event_data,
sample_period) - 8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1,
offsetof(struct bpf_perf_event_data,
sample_period)),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "same insn cannot be used with different pointers",
.prog_type = BPF_PROG_TYPE_PERF_EVENT,
},
{
"unpriv: write pointer into map elem value",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: partial copy of pointer",
.insns = {
BPF_MOV32_REG(BPF_REG_1, BPF_REG_10),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R10 partial copy",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: pass pointer to tail_call",
.insns = {
BPF_MOV64_REG(BPF_REG_3, BPF_REG_1),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_prog = { 1 },
.errstr_unpriv = "R3 leaks addr into helper",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: cmp map pointer with zero",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 1 },
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: write into frame pointer",
.insns = {
BPF_MOV64_REG(BPF_REG_10, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "frame pointer is read only",
.result = REJECT,
},
{
"unpriv: spill/fill frame pointer",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "frame pointer is read only",
.result = REJECT,
},
{
"unpriv: cmp of frame pointer",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_10, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R10 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: adding of fp",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, -8),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"unpriv: cmp of stack pointer",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_2, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R2 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"stack pointer arithmetic",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 4),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1),
BPF_ST_MEM(0, BPF_REG_2, 4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
BPF_ST_MEM(0, BPF_REG_2, 4, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"raw_stack: no skb_load_bytes",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
/* Call to skb_load_bytes() omitted. */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid read from stack off -8+0 size 8",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, negative len",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R4 min value is negative",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, negative len 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, ~0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R4 min value is negative",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, zero len",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack type R3",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, no init",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, init",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_6, 0, 0xcafe),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, spilled regs around bounds",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
offsetof(struct __sk_buff, priority)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, spilled regs corruption",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 invalid mem access 'inv'",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, spilled regs corruption 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
offsetof(struct __sk_buff, priority)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_3,
offsetof(struct __sk_buff, pkt_type)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R3 invalid mem access 'inv'",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, spilled regs + data",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
offsetof(struct __sk_buff, priority)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -513),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack type R3 off=-513 access_size=8",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack type R3 off=-1 access_size=8",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 0xffffffff),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R4 min value is negative",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 4",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R4 unbounded memory access, use 'var &= const' or 'if (var < const)'",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 5",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R4 unbounded memory access, use 'var &= const' or 'if (var < const)'",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 6",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack type R3 off=-512 access_size=0",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, large access",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 512),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"context stores via ST",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_1, offsetof(struct __sk_buff, mark), 0),
BPF_EXIT_INSN(),
},
.errstr = "BPF_ST stores into R1 context is not allowed",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"context stores via XADD",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_W, BPF_REG_1,
BPF_REG_0, offsetof(struct __sk_buff, mark), 0),
BPF_EXIT_INSN(),
},
.errstr = "BPF_XADD stores into R1 context is not allowed",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_4, 15),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 7),
BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_3, 12),
BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 14),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_4),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 49),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 49),
BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_3, 4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test3",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access off=76",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SOCKET_FILTER,
},
{
"direct packet access: test4 (write)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test5 (pkt_end >= reg, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test6 (pkt_end >= reg, bad access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid access to packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test7 (pkt_end >= reg, both accesses)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid access to packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test8 (double test, variant 1)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 4),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test9 (double test, variant 2)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test10 (write invalid)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid access to packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test11 (shift, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
BPF_MOV64_IMM(BPF_REG_3, 144),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 3),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 1,
},
{
"direct packet access: test12 (and, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
BPF_MOV64_IMM(BPF_REG_3, 144),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 1,
},
{
"direct packet access: test13 (branches, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 13),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_MOV64_IMM(BPF_REG_4, 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_4, 2),
BPF_MOV64_IMM(BPF_REG_3, 14),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV64_IMM(BPF_REG_3, 24),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 1,
},
{
"direct packet access: test14 (pkt_ptr += 0, CONST_IMM, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 7),
BPF_MOV64_IMM(BPF_REG_5, 12),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 4),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_6, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 1,
},
{
"direct packet access: test15 (spill with xadd)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
BPF_MOV64_IMM(BPF_REG_5, 4096),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_STX_XADD(BPF_DW, BPF_REG_4, BPF_REG_5, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0),
BPF_STX_MEM(BPF_W, BPF_REG_2, BPF_REG_5, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R2 invalid mem access 'inv'",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test16 (arith on data_end)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 16),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R3 pointer arithmetic on PTR_TO_PACKET_END",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test17 (pruning, alignment)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 14),
BPF_JMP_IMM(BPF_JGT, BPF_REG_7, 1, 4),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 1),
BPF_JMP_A(-6),
},
.errstr = "misaligned packet access off 2+(0x0; 0x0)+15+-4 size 4",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"direct packet access: test18 (imm += pkt_ptr, 1)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_IMM(BPF_REG_0, 8),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test19 (imm += pkt_ptr, 2)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
BPF_MOV64_IMM(BPF_REG_4, 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
BPF_STX_MEM(BPF_B, BPF_REG_4, BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test20 (x += pkt_ptr, 1)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0x7fff),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0x7fff - 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"direct packet access: test21 (x += pkt_ptr, 2)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 9),
BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_ALU64_IMM(BPF_AND, BPF_REG_4, 0x7fff),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0x7fff - 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"direct packet access: test22 (x += pkt_ptr, 3)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_3, -16),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_10, -16),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 11),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8),
BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_4, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 49),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_STX_MEM(BPF_H, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"direct packet access: test23 (x += pkt_ptr, 4)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xffff),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_0, 31),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0xffff - 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = REJECT,
.errstr = "invalid access to packet, off=0 size=8, R5(id=1,off=0,r=0)",
},
{
"direct packet access: test24 (x += pkt_ptr, 5)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xff),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_0, 64),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x7fff - 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"direct packet access: test25 (marking on <, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, -4),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test26 (marking on <, bad access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_3, 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JA, 0, 0, -3),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test27 (marking on <=, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_0, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 1,
},
{
"direct packet access: test28 (marking on <=, bad access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, -4),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test1, valid packet_ptr range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_update_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 5 },
.result_unpriv = ACCEPT,
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"helper access to packet: test2, unchecked packet_ptr",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 1 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"helper access to packet: test3, variable add",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10),
BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_4),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 11 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"helper access to packet: test4, packet_ptr with bad range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 7 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"helper access to packet: test5, packet_ptr with too short range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 6 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"helper access to packet: test6, cls valid packet_ptr range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_update_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 5 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test7, cls unchecked packet_ptr",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 1 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test8, cls variable add",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10),
BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_4),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 11 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test9, cls packet_ptr with bad range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 7 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test10, cls packet_ptr with too short range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 6 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test11, cls unsuitable helper 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_7, 4),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_4, 42),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_store_bytes),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "helper access to the packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test12, cls unsuitable helper 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_7, 3),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_4, 4),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "helper access to the packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test13, cls helper ok",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test14, cls helper ok sub",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 4),
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test15, cls helper fail sub",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 12),
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test16, cls helper fail range 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test17, cls helper fail range 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_2, -9),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R2 min value is negative",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test18, cls helper fail range 3",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_2, ~0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R2 min value is negative",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test19, cls helper range zero",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test20, pkt end as input",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R1 type=pkt_end expected=fp",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test21, wrong reg",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"valid map access into an array with a constant",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"valid map access into an array with a register",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_IMM(BPF_REG_1, 4),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"valid map access into an array with a variable",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 3),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"valid map access into an array with a signed variable",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 0xffffffff, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid map access into an array with a constant",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, (MAX_ENTRIES + 1) << 2,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=48 size=8",
.result = REJECT,
},
{
"invalid map access into an array with a register",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_IMM(BPF_REG_1, MAX_ENTRIES + 1),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 min value is outside of the array range",
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid map access into an array with a variable",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 unbounded memory access, make sure to bounds check any array access into a map",
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid map access into an array with no floor check",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.errstr = "R0 unbounded memory access",
.result_unpriv = REJECT,
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid map access into an array with a invalid max check",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES + 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.errstr = "invalid access to map value, value_size=48 off=44 size=8",
.result_unpriv = REJECT,
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid map access into an array with a invalid max check",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3, 11 },
.errstr = "R0 pointer += pointer",
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"multiple registers share map_lookup_elem result",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"alu ops on ptr_to_map_value_or_null, 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "R4 pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"alu ops on ptr_to_map_value_or_null, 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_4, -1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "R4 pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"alu ops on ptr_to_map_value_or_null, 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_4, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "R4 pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"invalid memory access with multiple map_lookup_elem calls",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.result = REJECT,
.errstr = "R4 !read_ok",
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"valid indirect map_lookup_elem access with 2nd lookup in branch",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_2, 10),
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 0, 3),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"invalid map access from else condition",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES-1, 1),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 unbounded memory access",
.result = REJECT,
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"constant register |= constant should keep constant type",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
BPF_MOV64_IMM(BPF_REG_2, 34),
BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 13),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"constant register |= constant should not bypass stack boundary checks",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
BPF_MOV64_IMM(BPF_REG_2, 34),
BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 24),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack type R1 off=-48 access_size=58",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"constant register |= constant register should keep constant type",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
BPF_MOV64_IMM(BPF_REG_2, 34),
BPF_MOV64_IMM(BPF_REG_4, 13),
BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"constant register |= constant register should not bypass stack boundary checks",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
BPF_MOV64_IMM(BPF_REG_2, 34),
BPF_MOV64_IMM(BPF_REG_4, 24),
BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack type R1 off=-48 access_size=58",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"invalid direct packet write for LWT_IN",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "cannot write into packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"invalid direct packet write for LWT_OUT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "cannot write into packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_OUT,
},
{
"direct packet write for LWT_XMIT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_LWT_XMIT,
},
{
"direct packet read for LWT_IN",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"direct packet read for LWT_OUT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_LWT_OUT,
},
{
"direct packet read for LWT_XMIT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_LWT_XMIT,
},
{
"overlapping checks for direct packet access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 6),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_2, 6),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_LWT_XMIT,
},
{
"invalid access of tc_classid for LWT_IN",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid bpf_context access",
},
{
"invalid access of tc_classid for LWT_OUT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid bpf_context access",
},
{
"invalid access of tc_classid for LWT_XMIT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid bpf_context access",
},
{
"leak pointer into ctx 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_STX_XADD(BPF_DW, BPF_REG_1, BPF_REG_2,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 2 },
.errstr_unpriv = "R2 leaks addr into mem",
.result_unpriv = REJECT,
.result = REJECT,
.errstr = "BPF_XADD stores into R1 context is not allowed",
},
{
"leak pointer into ctx 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_XADD(BPF_DW, BPF_REG_1, BPF_REG_10,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R10 leaks addr into mem",
.result_unpriv = REJECT,
.result = REJECT,
.errstr = "BPF_XADD stores into R1 context is not allowed",
},
{
"leak pointer into ctx 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 1 },
.errstr_unpriv = "R2 leaks addr into ctx",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"leak pointer into map val",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
BPF_STX_XADD(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr_unpriv = "R6 leaks addr into mem",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"helper access to map: full range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: partial range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: empty range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_EMIT_CALL(BPF_FUNC_trace_printk),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=0 size=0",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: out-of-bound range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) + 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=0 size=56",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: negative range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, -8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): full range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): partial range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): empty range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_EMIT_CALL(BPF_FUNC_trace_printk),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=4 size=0",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): out-of-bound range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo) + 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=4 size=52",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): negative range (> adjustment)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2, -8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): negative range (< adjustment)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): full range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
offsetof(struct test_val, foo)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): partial range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
offsetof(struct test_val, foo)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): empty range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_EMIT_CALL(BPF_FUNC_trace_printk),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R1 min value is outside of the array range",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): out-of-bound range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
offsetof(struct test_val, foo)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo) + 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=4 size=52",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): negative range (> adjustment)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
offsetof(struct test_val, foo)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, -8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): negative range (< adjustment)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
offsetof(struct test_val, foo)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via variable): full range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
offsetof(struct test_val, foo), 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via variable): partial range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
offsetof(struct test_val, foo), 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via variable): empty range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
offsetof(struct test_val, foo), 3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_EMIT_CALL(BPF_FUNC_trace_printk),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R1 min value is outside of the array range",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via variable): no max check",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R1 unbounded memory access",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via variable): wrong max check",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
offsetof(struct test_val, foo), 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo) + 1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=4 size=45",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using <, good access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JLT, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using <, bad access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JLT, BPF_REG_3, 32, 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = REJECT,
.errstr = "R1 unbounded memory access",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using <=, good access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JLE, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using <=, bad access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JLE, BPF_REG_3, 32, 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = REJECT,
.errstr = "R1 unbounded memory access",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<, good access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 0, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<, good access 2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, -3, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<, bad access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, -3, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = REJECT,
.errstr = "R1 min value is negative",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<=, good access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 0, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<=, good access 2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, -3, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<=, bad access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, -3, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = REJECT,
.errstr = "R1 min value is negative",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map element value is preserved across register spilling",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
},
{
"map element value or null is marked on register spilling",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -152),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
},
{
"map element value store of cleared call register",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R1 !read_ok",
.errstr = "R1 !read_ok",
.result = REJECT,
.result_unpriv = REJECT,
},
{
"map element value with unaligned store",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 17),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 43),
BPF_ST_MEM(BPF_DW, BPF_REG_0, -2, 44),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
BPF_ST_MEM(BPF_DW, BPF_REG_8, 0, 32),
BPF_ST_MEM(BPF_DW, BPF_REG_8, 2, 33),
BPF_ST_MEM(BPF_DW, BPF_REG_8, -2, 34),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_8, 5),
BPF_ST_MEM(BPF_DW, BPF_REG_8, 0, 22),
BPF_ST_MEM(BPF_DW, BPF_REG_8, 4, 23),
BPF_ST_MEM(BPF_DW, BPF_REG_8, -7, 24),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_8),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_7, 0, 22),
BPF_ST_MEM(BPF_DW, BPF_REG_7, 4, 23),
BPF_ST_MEM(BPF_DW, BPF_REG_7, -4, 24),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"map element value with unaligned load",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 9),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 2),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_8, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_8, 2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 5),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 4),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"map element value illegal alu op, 1",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 8),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 bitwise operator &= on pointer",
.result = REJECT,
},
{
"map element value illegal alu op, 2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ALU32_IMM(BPF_ADD, BPF_REG_0, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 32-bit pointer arithmetic prohibited",
.result = REJECT,
},
{
"map element value illegal alu op, 3",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ALU64_IMM(BPF_DIV, BPF_REG_0, 42),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 pointer arithmetic with /= operator",
.result = REJECT,
},
{
"map element value illegal alu op, 4",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ENDIAN(BPF_FROM_BE, BPF_REG_0, 64),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 pointer arithmetic prohibited",
.errstr = "invalid mem access 'inv'",
.result = REJECT,
.result_unpriv = REJECT,
},
{
"map element value illegal alu op, 5",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_IMM(BPF_REG_3, 4096),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_STX_XADD(BPF_DW, BPF_REG_2, BPF_REG_3, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 invalid mem access 'inv'",
.result = REJECT,
},
{
"map element value is preserved across register spilling",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0,
offsetof(struct test_val, foo)),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"helper access to variable memory: stack, bitwise AND + JMP, correct bounds",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, bitwise AND, zero included",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.errstr = "invalid indirect read from stack off -64+0 size 64",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, bitwise AND + JMP, wrong max",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 65),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack type R1 off=-64 access_size=65",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP, correct bounds",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP (signed), correct bounds",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP, bounds + offset",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 5),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack type R1 off=-64 access_size=65",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP, wrong max",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 65, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack type R1 off=-64 access_size=65",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP, no max check",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
/* because max wasn't checked, signed min is negative */
.errstr = "R2 min value is negative, either use unsigned or 'var &= const'",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP, no min check",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 3),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid indirect read from stack off -64+0 size 64",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP (signed), no min check",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 3),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: map, JMP, correct bounds",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
sizeof(struct test_val), 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: map, JMP, wrong max",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
sizeof(struct test_val) + 1, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=0 size=49",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: map adjusted, JMP, correct bounds",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
sizeof(struct test_val) - 20, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: map adjusted, JMP, wrong max",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
sizeof(struct test_val) - 19, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R1 min value is outside of the array range",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size = 0 allowed on NULL (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size > 0 not allowed on NULL (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.errstr = "R1 type=inv expected=fp",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size = 0 allowed on != NULL stack pointer (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, 0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size = 0 allowed on != NULL map pointer (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size possible = 0 allowed on != NULL stack pointer (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size possible = 0 allowed on != NULL map pointer (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size possible = 0 allowed on != NULL packet pointer (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 0 /* csum_diff of 64-byte packet */,
},
{
"helper access to variable memory: size = 0 not allowed on NULL (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.errstr = "R1 type=inv expected=fp",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size > 0 not allowed on NULL (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.errstr = "R1 type=inv expected=fp",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size = 0 allowed on != NULL stack pointer (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size = 0 allowed on != NULL map pointer (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size possible = 0 allowed on != NULL stack pointer (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size possible = 0 allowed on != NULL map pointer (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: 8 bytes leak",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 63),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_EXIT_INSN(),
},
.errstr = "invalid indirect read from stack off -64+32 size 64",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: 8 bytes no leak (init memory)",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 32),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 32),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"invalid and of negative number",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_1, -4),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 max value is outside of the array range",
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid range check",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 12),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_9, 1),
BPF_ALU32_IMM(BPF_MOD, BPF_REG_1, 2),
BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 1),
BPF_ALU32_REG(BPF_AND, BPF_REG_9, BPF_REG_1),
BPF_ALU32_IMM(BPF_ADD, BPF_REG_9, 1),
BPF_ALU32_IMM(BPF_RSH, BPF_REG_9, 1),
BPF_MOV32_IMM(BPF_REG_3, 1),
BPF_ALU32_REG(BPF_SUB, BPF_REG_3, BPF_REG_9),
BPF_ALU32_IMM(BPF_MUL, BPF_REG_3, 0x10000000),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_3, 0),
BPF_MOV64_REG(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 max value is outside of the array range",
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"map in map access",
.insns = {
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map_in_map = { 3 },
.result = ACCEPT,
},
{
"invalid inner map pointer",
.insns = {
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map_in_map = { 3 },
.errstr = "R1 pointer arithmetic on CONST_PTR_TO_MAP prohibited",
.result = REJECT,
},
{
"forgot null checking on the inner map pointer",
.insns = {
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map_in_map = { 3 },
.errstr = "R1 type=map_value_or_null expected=map_ptr",
.result = REJECT,
},
{
"ld_abs: check calling conv, r1",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.errstr = "R1 !read_ok",
.result = REJECT,
},
{
"ld_abs: check calling conv, r2",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr = "R2 !read_ok",
.result = REJECT,
},
{
"ld_abs: check calling conv, r3",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
BPF_EXIT_INSN(),
},
.errstr = "R3 !read_ok",
.result = REJECT,
},
{
"ld_abs: check calling conv, r4",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
BPF_EXIT_INSN(),
},
.errstr = "R4 !read_ok",
.result = REJECT,
},
{
"ld_abs: check calling conv, r5",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.errstr = "R5 !read_ok",
.result = REJECT,
},
{
"ld_abs: check calling conv, r7",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_7, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"ld_abs: tests on r6 and skb data reload helper",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_LD_ABS(BPF_B, 0),
BPF_LD_ABS(BPF_H, 0),
BPF_LD_ABS(BPF_W, 0),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_6, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_vlan_push),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_7),
BPF_LD_ABS(BPF_B, 0),
BPF_LD_ABS(BPF_H, 0),
BPF_LD_ABS(BPF_W, 0),
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 42 /* ultimate return value */,
},
{
"ld_ind: check calling conv, r1",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_1, 1),
BPF_LD_IND(BPF_W, BPF_REG_1, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.errstr = "R1 !read_ok",
.result = REJECT,
},
{
"ld_ind: check calling conv, r2",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_LD_IND(BPF_W, BPF_REG_2, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr = "R2 !read_ok",
.result = REJECT,
},
{
"ld_ind: check calling conv, r3",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_3, 1),
BPF_LD_IND(BPF_W, BPF_REG_3, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
BPF_EXIT_INSN(),
},
.errstr = "R3 !read_ok",
.result = REJECT,
},
{
"ld_ind: check calling conv, r4",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_4, 1),
BPF_LD_IND(BPF_W, BPF_REG_4, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
BPF_EXIT_INSN(),
},
.errstr = "R4 !read_ok",
.result = REJECT,
},
{
"ld_ind: check calling conv, r5",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_5, 1),
BPF_LD_IND(BPF_W, BPF_REG_5, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.errstr = "R5 !read_ok",
.result = REJECT,
},
{
"ld_ind: check calling conv, r7",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_7, 1),
BPF_LD_IND(BPF_W, BPF_REG_7, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 1,
},
{
"check bpf_perf_event_data->sample_period byte load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period)),
#else
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period) + 7),
#endif
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_PERF_EVENT,
},
{
"check bpf_perf_event_data->sample_period half load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period)),
#else
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period) + 6),
#endif
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_PERF_EVENT,
},
{
"check bpf_perf_event_data->sample_period word load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period)),
#else
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period) + 4),
#endif
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_PERF_EVENT,
},
{
"check bpf_perf_event_data->sample_period dword load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_PERF_EVENT,
},
{
"check skb->data half load not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data)),
#else
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data) + 2),
#endif
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid bpf_context access",
},
{
"check skb->tc_classid half load not permitted for lwt prog",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid)),
#else
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid) + 2),
#endif
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid bpf_context access",
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"bounds checks mixing signed and unsigned, positive bounds",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, 2),
BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 3),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 4, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 2",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_1),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_8, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
BPF_ST_MEM(BPF_B, BPF_REG_8, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 3",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 4),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_8, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
BPF_ST_MEM(BPF_B, BPF_REG_8, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 4",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_ALU64_REG(BPF_AND, BPF_REG_1, BPF_REG_2),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
},
{
"bounds checks mixing signed and unsigned, variant 5",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 4),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 6",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, -512),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_6, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_6, 5),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_4, 1, 4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 1),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_ST_MEM(BPF_H, BPF_REG_10, -512, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R4 min value is negative, either use unsigned",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 7",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, 1024 * 1024 * 1024),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
},
{
"bounds checks mixing signed and unsigned, variant 8",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 9",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_LD_IMM64(BPF_REG_2, -9223372036854775808ULL),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
},
{
"bounds checks mixing signed and unsigned, variant 10",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 11",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
/* Dead branch. */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 12",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -6),
BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 13",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, 2),
BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_7, 1),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_7, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_1),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_7, 4, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_7),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 14",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_9, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_MOV64_IMM(BPF_REG_8, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_9, 42, 6),
BPF_JMP_REG(BPF_JSGT, BPF_REG_8, BPF_REG_1, 3),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, -3),
BPF_JMP_IMM(BPF_JA, 0, 0, -7),
},
.fixup_map1 = { 4 },
.errstr = "R0 invalid mem access 'inv'",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 15",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -6),
BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_JMP_IMM(BPF_JGT, BPF_REG_0, 1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
.result_unpriv = REJECT,
},
{
"subtraction bounds (map value) variant 1",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 0xff, 7),
BPF_LDX_MEM(BPF_B, BPF_REG_3, BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3, 0xff, 5),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_3),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 56),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 max value is outside of the array range",
.result = REJECT,
},
{
"subtraction bounds (map value) variant 2",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 0xff, 6),
BPF_LDX_MEM(BPF_B, BPF_REG_3, BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3, 0xff, 4),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
.result = REJECT,
},
{
"bounds check based on zero-extended MOV",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
/* r2 = 0x0000'0000'ffff'ffff */
BPF_MOV32_IMM(BPF_REG_2, 0xffffffff),
/* r2 = 0 */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 32),
/* no-op */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
/* access at offset 0 */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT
},
{
"bounds check based on sign-extended MOV. test1",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
/* r2 = 0xffff'ffff'ffff'ffff */
BPF_MOV64_IMM(BPF_REG_2, 0xffffffff),
/* r2 = 0xffff'ffff */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 32),
/* r0 = <oob pointer> */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
/* access to OOB pointer */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "map_value pointer and 4294967295",
.result = REJECT
},
{
"bounds check based on sign-extended MOV. test2",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
/* r2 = 0xffff'ffff'ffff'ffff */
BPF_MOV64_IMM(BPF_REG_2, 0xffffffff),
/* r2 = 0xfff'ffff */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36),
/* r0 = <oob pointer> */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
/* access to OOB pointer */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 min value is outside of the array range",
.result = REJECT
},
{
"bounds check based on reg_off + var_off + insn_off. test1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 1),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, (1 << 29) - 1),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, (1 << 29) - 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 3),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "value_size=8 off=1073741825",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"bounds check based on reg_off + var_off + insn_off. test2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 1),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, (1 << 30) - 1),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, (1 << 29) - 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 3),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "value 1073741823",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"bounds check after truncation of non-boundary-crossing range",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
/* r1 = [0x00, 0xff] */
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_2, 1),
/* r2 = 0x10'0000'0000 */
BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 36),
/* r1 = [0x10'0000'0000, 0x10'0000'00ff] */
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2),
/* r1 = [0x10'7fff'ffff, 0x10'8000'00fe] */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
/* r1 = [0x00, 0xff] */
BPF_ALU32_IMM(BPF_SUB, BPF_REG_1, 0x7fffffff),
/* r1 = 0 */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
/* no-op */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* access at offset 0 */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT
},
{
"bounds check after truncation of boundary-crossing range (1)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
/* r1 = [0x00, 0xff] */
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0xffff'ff80, 0x1'0000'007f] */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0xffff'ff80, 0xffff'ffff] or
* [0x0000'0000, 0x0000'007f]
*/
BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 0),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0x00, 0xff] or
* [0xffff'ffff'0000'0080, 0xffff'ffff'ffff'ffff]
*/
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = 0 or
* [0x00ff'ffff'ff00'0000, 0x00ff'ffff'ffff'ffff]
*/
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
/* no-op or OOB pointer computation */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* potentially OOB access */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
/* not actually fully unbounded, but the bound is very high */
.errstr = "R0 unbounded memory access",
.result = REJECT
},
{
"bounds check after truncation of boundary-crossing range (2)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
/* r1 = [0x00, 0xff] */
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0xffff'ff80, 0x1'0000'007f] */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0xffff'ff80, 0xffff'ffff] or
* [0x0000'0000, 0x0000'007f]
* difference to previous test: truncation via MOV32
* instead of ALU32.
*/
BPF_MOV32_REG(BPF_REG_1, BPF_REG_1),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0x00, 0xff] or
* [0xffff'ffff'0000'0080, 0xffff'ffff'ffff'ffff]
*/
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = 0 or
* [0x00ff'ffff'ff00'0000, 0x00ff'ffff'ffff'ffff]
*/
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
/* no-op or OOB pointer computation */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* potentially OOB access */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
/* not actually fully unbounded, but the bound is very high */
.errstr = "R0 unbounded memory access",
.result = REJECT
},
{
"bounds check after wrapping 32-bit addition",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
/* r1 = 0x7fff'ffff */
BPF_MOV64_IMM(BPF_REG_1, 0x7fffffff),
/* r1 = 0xffff'fffe */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
/* r1 = 0 */
BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 2),
/* no-op */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* access at offset 0 */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT
},
{
"bounds check after shift with oversized count operand",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_IMM(BPF_REG_2, 32),
BPF_MOV64_IMM(BPF_REG_1, 1),
/* r1 = (u32)1 << (u32)32 = ? */
BPF_ALU32_REG(BPF_LSH, BPF_REG_1, BPF_REG_2),
/* r1 = [0x0000, 0xffff] */
BPF_ALU64_IMM(BPF_AND, BPF_REG_1, 0xffff),
/* computes unknown pointer, potentially OOB */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* potentially OOB access */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 max value is outside of the array range",
.result = REJECT
},
{
"bounds check after right shift of maybe-negative number",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
/* r1 = [0x00, 0xff] */
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
/* r1 = [-0x01, 0xfe] */
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 1),
/* r1 = 0 or 0xff'ffff'ffff'ffff */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
/* r1 = 0 or 0xffff'ffff'ffff */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
/* computes unknown pointer, potentially OOB */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* potentially OOB access */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 unbounded memory access",
.result = REJECT
},
{
"bounds check map access with off+size signed 32bit overflow. test1",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x7ffffffe),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
BPF_JMP_A(0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "map_value pointer and 2147483646",
.result = REJECT
},
{
"bounds check map access with off+size signed 32bit overflow. test2",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
BPF_JMP_A(0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "pointer offset 1073741822",
.result = REJECT
},
{
"bounds check map access with off+size signed 32bit overflow. test3",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 0x1fffffff),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 0x1fffffff),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 2),
BPF_JMP_A(0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "pointer offset -1073741822",
.result = REJECT
},
{
"bounds check map access with off+size signed 32bit overflow. test4",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_1, 1000000),
BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 1000000),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 2),
BPF_JMP_A(0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "map_value pointer and 1000000000000",
.result = REJECT
},
{
"pointer/scalar confusion in state equality check (way 1)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
BPF_JMP_A(1),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
BPF_JMP_A(0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.retval = POINTER_VALUE,
.result_unpriv = REJECT,
.errstr_unpriv = "R0 leaks addr as return value"
},
{
"pointer/scalar confusion in state equality check (way 2)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
BPF_JMP_A(1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.retval = POINTER_VALUE,
.result_unpriv = REJECT,
.errstr_unpriv = "R0 leaks addr as return value"
},
{
"variable-offset ctx access",
.insns = {
/* Get an unknown value */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
/* Make it small and 4-byte aligned */
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4),
/* add it to skb. We now have either &skb->len or
* &skb->pkt_type, but we don't know which
*/
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2),
/* dereference it */
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.errstr = "variable ctx access var_off=(0x0; 0x4)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"variable-offset stack access",
.insns = {
/* Fill the top 8 bytes of the stack */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
/* Get an unknown value */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
/* Make it small and 4-byte aligned */
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 8),
/* add it to fp. We now have either fp-4 or fp-8, but
* we don't know which
*/
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10),
/* dereference it */
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 0),
BPF_EXIT_INSN(),
},
.errstr = "variable stack access var_off=(0xfffffffffffffff8; 0x4)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"indirect variable-offset stack access",
.insns = {
/* Fill the top 8 bytes of the stack */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
/* Get an unknown value */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
/* Make it small and 4-byte aligned */
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 8),
/* add it to fp. We now have either fp-4 or fp-8, but
* we don't know which
*/
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10),
/* dereference it indirectly */
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 5 },
.errstr = "variable stack read R2",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"direct stack access with 32-bit wraparound. test1",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_EXIT_INSN()
},
.errstr = "fp pointer and 2147483647",
.result = REJECT
},
{
"direct stack access with 32-bit wraparound. test2",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x3fffffff),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x3fffffff),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_EXIT_INSN()
},
.errstr = "fp pointer and 1073741823",
.result = REJECT
},
{
"direct stack access with 32-bit wraparound. test3",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x1fffffff),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x1fffffff),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_EXIT_INSN()
},
.errstr = "fp pointer offset 1073741822",
.result = REJECT
},
{
"liveness pruning and write screening",
.insns = {
/* Get an unknown value */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
/* branch conditions teach us nothing about R2 */
BPF_JMP_IMM(BPF_JGE, BPF_REG_2, 0, 1),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_2, 0, 1),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R0 !read_ok",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"varlen_map_value_access pruning",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.errstr = "R0 unbounded memory access",
.result_unpriv = REJECT,
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid 64-bit BPF_END",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 0),
{
.code = BPF_ALU64 | BPF_END | BPF_TO_LE,
.dst_reg = BPF_REG_0,
.src_reg = 0,
.off = 0,
.imm = 32,
},
BPF_EXIT_INSN(),
},
.errstr = "unknown opcode d7",
.result = REJECT,
},
{
"XDP, using ifindex from netdev",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, ingress_ifindex)),
BPF_JMP_IMM(BPF_JLT, BPF_REG_2, 1, 1),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.retval = 1,
},
{
"meta access, test1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 8),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet, off=-8",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test3",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test5",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_4, 3),
BPF_MOV64_IMM(BPF_REG_2, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_xdp_adjust_meta),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R3 !read_ok",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_0, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test7",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test8",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0xFFFF),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test9",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0xFFFF),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test10",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_IMM(BPF_REG_5, 42),
BPF_MOV64_IMM(BPF_REG_6, 24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_5, -8),
BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -8),
BPF_JMP_IMM(BPF_JGT, BPF_REG_5, 100, 6),
BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_5),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_5, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test11",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_IMM(BPF_REG_5, 42),
BPF_MOV64_IMM(BPF_REG_6, 24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_5, -8),
BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -8),
BPF_JMP_IMM(BPF_JGT, BPF_REG_5, 100, 6),
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_5),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_5, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test12",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 16),
BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_4, 5),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 0),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 16),
BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"arithmetic ops make PTR_TO_CTX unusable",
.insns = {
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct __sk_buff, data) -
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.errstr = "dereference of modified ctx ptr R1 off=68+8, ctx+const is allowed, ctx+const+const is not",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"pkt_end - pkt_start is allowed",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = TEST_DATA_LEN,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"XDP pkt read, pkt_end mangling, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R3 pointer arithmetic on PTR_TO_PACKET_END",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end mangling, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_3, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R3 pointer arithmetic on PTR_TO_PACKET_END",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' > pkt_end, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' > pkt_end, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data' > pkt_end, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end > pkt_data', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_end > pkt_data', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end > pkt_data', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' < pkt_end, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data' < pkt_end, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' < pkt_end, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end < pkt_data', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end < pkt_data', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_end < pkt_data', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' >= pkt_end, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data' >= pkt_end, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' >= pkt_end, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_end >= pkt_data', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end >= pkt_data', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_end >= pkt_data', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' <= pkt_end, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' <= pkt_end, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data' <= pkt_end, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end <= pkt_data', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_end <= pkt_data', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end <= pkt_data', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_meta' > pkt_data, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' > pkt_data, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_meta' > pkt_data, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data > pkt_meta', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data > pkt_meta', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data > pkt_meta', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' < pkt_data, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_meta' < pkt_data, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' < pkt_data, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data < pkt_meta', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data < pkt_meta', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data < pkt_meta', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' >= pkt_data, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_meta' >= pkt_data, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' >= pkt_data, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data >= pkt_meta', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data >= pkt_meta', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data >= pkt_meta', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' <= pkt_data, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' <= pkt_data, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_meta' <= pkt_data, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data <= pkt_meta', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data <= pkt_meta', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data <= pkt_meta', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"check deducing bounds from const, 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 1, 0),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 tried to subtract pointer from scalar",
},
{
"check deducing bounds from const, 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 1, 1),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 1, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 1,
},
{
"check deducing bounds from const, 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 0, 0),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 tried to subtract pointer from scalar",
},
{
"check deducing bounds from const, 4",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check deducing bounds from const, 5",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 1),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 tried to subtract pointer from scalar",
},
{
"check deducing bounds from const, 6",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 tried to subtract pointer from scalar",
},
{
"check deducing bounds from const, 7",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, ~0),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 0),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "dereference of modified ctx ptr",
},
{
"check deducing bounds from const, 8",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, ~0),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 1),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "dereference of modified ctx ptr",
},
{
"check deducing bounds from const, 9",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 0),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 tried to subtract pointer from scalar",
},
{
"check deducing bounds from const, 10",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 0, 0),
/* Marks reg as unknown. */
BPF_ALU64_IMM(BPF_NEG, BPF_REG_0, 0),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "math between ctx pointer and register with unbounded min value is not allowed",
},
{
"bpf_exit with invalid return code. test1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.errstr = "R0 has value (0x0; 0xffffffff)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test3",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 3),
BPF_EXIT_INSN(),
},
.errstr = "R0 has value (0x0; 0x3)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test4",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test5",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.errstr = "R0 has value (0x2; 0x0)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test6",
.insns = {
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.errstr = "R0 is not a known value (ctx)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test7",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 4),
BPF_ALU64_REG(BPF_MUL, BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr = "R0 has unknown scalar value",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"calls: basic sanity",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.result = ACCEPT,
},
{
"calls: not on unpriviledged",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "function calls to other bpf functions are allowed for root only",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = 1,
},
{
"calls: div by 0 in subprog",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(BPF_REG_2, 0),
BPF_MOV32_IMM(BPF_REG_3, 1),
BPF_ALU32_REG(BPF_DIV, BPF_REG_3, BPF_REG_2),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"calls: multiple ret types in subprog 1",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = REJECT,
.errstr = "R0 invalid mem access 'inv'",
},
{
"calls: multiple ret types in subprog 2",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_6,
offsetof(struct __sk_buff, data)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 64),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 16 },
.result = REJECT,
.errstr = "R0 min value is outside of the array range",
},
{
"calls: overlapping caller/callee",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "last insn is not an exit or jmp",
.result = REJECT,
},
{
"calls: wrong recursive calls",
.insns = {
BPF_JMP_IMM(BPF_JA, 0, 0, 4),
BPF_JMP_IMM(BPF_JA, 0, 0, 4),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "jump out of range",
.result = REJECT,
},
{
"calls: wrong src reg",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 2, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "BPF_CALL uses reserved fields",
.result = REJECT,
},
{
"calls: wrong off value",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, -1, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "BPF_CALL uses reserved fields",
.result = REJECT,
},
{
"calls: jump back loop",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -1),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge from insn 0 to 0",
.result = REJECT,
},
{
"calls: conditional call",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "jump out of range",
.result = REJECT,
},
{
"calls: conditional call 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.result = ACCEPT,
},
{
"calls: conditional call 3",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_JMP_IMM(BPF_JA, 0, 0, 4),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, -6),
BPF_MOV64_IMM(BPF_REG_0, 3),
BPF_JMP_IMM(BPF_JA, 0, 0, -6),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge from insn",
.result = REJECT,
},
{
"calls: conditional call 4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, -5),
BPF_MOV64_IMM(BPF_REG_0, 3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.result = ACCEPT,
},
{
"calls: conditional call 5",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, -6),
BPF_MOV64_IMM(BPF_REG_0, 3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge from insn",
.result = REJECT,
},
{
"calls: conditional call 6",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -2),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge from insn",
.result = REJECT,
},
{
"calls: using r0 returned by callee",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.result = ACCEPT,
},
{
"calls: using uninit r0 from callee",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "!read_ok",
.result = REJECT,
},
{
"calls: callee is using r1",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_ACT,
.result = ACCEPT,
.retval = TEST_DATA_LEN,
},
{
"calls: callee using args1",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "allowed for root only",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = POINTER_VALUE,
},
{
"calls: callee using wrong args2",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "R2 !read_ok",
.result = REJECT,
},
{
"calls: callee using two args",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_6,
offsetof(struct __sk_buff, len)),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_6,
offsetof(struct __sk_buff, len)),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "allowed for root only",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = TEST_DATA_LEN + TEST_DATA_LEN - ETH_HLEN - ETH_HLEN,
},
{
"calls: callee changing pkt pointers",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_8, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_8, BPF_REG_7, 2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
/* clear_all_pkt_pointers() has to walk all frames
* to make sure that pkt pointers in the caller
* are cleared when callee is calling a helper that
* adjusts packet size
*/
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_xdp_adjust_head),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R6 invalid mem access 'inv'",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"calls: two calls with args",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = TEST_DATA_LEN + TEST_DATA_LEN,
},
{
"calls: calls with stack arith",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -64),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -64),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -64),
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 42,
},
{
"calls: calls with misaligned stack access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -63),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -61),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -63),
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
.errstr = "misaligned stack access",
.result = REJECT,
},
{
"calls: calls control flow, jump test",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 43),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, -3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 43,
},
{
"calls: calls control flow, jump test 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 43),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "jump out of range from insn 1 to 4",
.result = REJECT,
},
{
"calls: two calls with bad jump",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "jump out of range from insn 11 to 9",
.result = REJECT,
},
{
"calls: recursive call. test1",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge",
.result = REJECT,
},
{
"calls: recursive call. test2",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge",
.result = REJECT,
},
{
"calls: unreachable code",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "unreachable insn 6",
.result = REJECT,
},
{
"calls: invalid call",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -4),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "invalid destination",
.result = REJECT,
},
{
"calls: invalid call 2",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 0x7fffffff),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "invalid destination",
.result = REJECT,
},
{
"calls: jumping across function bodies. test1",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "jump out of range",
.result = REJECT,
},
{
"calls: jumping across function bodies. test2",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "jump out of range",
.result = REJECT,
},
{
"calls: call without exit",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -2),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "not an exit",
.result = REJECT,
},
{
"calls: call into middle of ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "last insn",
.result = REJECT,
},
{
"calls: call into middle of other call",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "last insn",
.result = REJECT,
},
{
"calls: ld_abs with changing ctx data in callee",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_LD_ABS(BPF_B, 0),
BPF_LD_ABS(BPF_H, 0),
BPF_LD_ABS(BPF_W, 0),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 5),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_7),
BPF_LD_ABS(BPF_B, 0),
BPF_LD_ABS(BPF_H, 0),
BPF_LD_ABS(BPF_W, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_vlan_push),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "BPF_LD_[ABS|IND] instructions cannot be mixed",
.result = REJECT,
},
{
"calls: two calls with bad fallthrough",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "not an exit",
.result = REJECT,
},
{
"calls: two calls with stack read",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.result = ACCEPT,
},
{
"calls: two calls with stack write",
.insns = {
/* main prog */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 7),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_8),
/* write into stack frame of main prog */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 2 */
/* read from stack frame of main prog */
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.result = ACCEPT,
},
{
"calls: stack overflow using two frames (pre-call access)",
.insns = {
/* prog 1 */
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* prog 2 */
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.errstr = "combined stack size",
.result = REJECT,
},
{
"calls: stack overflow using two frames (post-call access)",
.insns = {
/* prog 1 */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 2),
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_EXIT_INSN(),
/* prog 2 */
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.errstr = "combined stack size",
.result = REJECT,
},
{
"calls: stack depth check using three frames. test1",
.insns = {
/* main */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4), /* call A */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 5), /* call B */
BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* A */
BPF_ST_MEM(BPF_B, BPF_REG_10, -256, 0),
BPF_EXIT_INSN(),
/* B */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, -3), /* call A */
BPF_ST_MEM(BPF_B, BPF_REG_10, -64, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
/* stack_main=32, stack_A=256, stack_B=64
* and max(main+A, main+A+B) < 512
*/
.result = ACCEPT,
},
{
"calls: stack depth check using three frames. test2",
.insns = {
/* main */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4), /* call A */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 5), /* call B */
BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* A */
BPF_ST_MEM(BPF_B, BPF_REG_10, -64, 0),
BPF_EXIT_INSN(),
/* B */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, -3), /* call A */
BPF_ST_MEM(BPF_B, BPF_REG_10, -256, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
/* stack_main=32, stack_A=64, stack_B=256
* and max(main+A, main+A+B) < 512
*/
.result = ACCEPT,
},
{
"calls: stack depth check using three frames. test3",
.insns = {
/* main */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 6), /* call A */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 8), /* call B */
BPF_JMP_IMM(BPF_JGE, BPF_REG_6, 0, 1),
BPF_ST_MEM(BPF_B, BPF_REG_10, -64, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* A */
BPF_JMP_IMM(BPF_JLT, BPF_REG_1, 10, 1),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_B, BPF_REG_10, -224, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, -3),
/* B */
BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 2, 1),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, -6), /* call A */
BPF_ST_MEM(BPF_B, BPF_REG_10, -256, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
/* stack_main=64, stack_A=224, stack_B=256
* and max(main+A, main+A+B) > 512
*/
.errstr = "combined stack",
.result = REJECT,
},
{
"calls: stack depth check using three frames. test4",
/* void main(void) {
* func1(0);
* func1(1);
* func2(1);
* }
* void func1(int alloc_or_recurse) {
* if (alloc_or_recurse) {
* frame_pointer[-300] = 1;
* } else {
* func2(alloc_or_recurse);
* }
* }
* void func2(int alloc_or_recurse) {
* if (alloc_or_recurse) {
* frame_pointer[-300] = 1;
* }
* }
*/
.insns = {
/* main */
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 6), /* call A */
BPF_MOV64_IMM(BPF_REG_1, 1),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4), /* call A */
BPF_MOV64_IMM(BPF_REG_1, 1),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 7), /* call B */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* A */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 2),
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call B */
BPF_EXIT_INSN(),
/* B */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.result = REJECT,
.errstr = "combined stack",
},
{
"calls: stack depth check using three frames. test5",
.insns = {
/* main */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call A */
BPF_EXIT_INSN(),
/* A */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call B */
BPF_EXIT_INSN(),
/* B */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call C */
BPF_EXIT_INSN(),
/* C */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call D */
BPF_EXIT_INSN(),
/* D */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call E */
BPF_EXIT_INSN(),
/* E */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call F */
BPF_EXIT_INSN(),
/* F */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call G */
BPF_EXIT_INSN(),
/* G */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call H */
BPF_EXIT_INSN(),
/* H */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.errstr = "call stack",
.result = REJECT,
},
{
"calls: spill into caller stack frame",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.errstr = "cannot spill",
.result = REJECT,
},
{
"calls: write into caller stack frame",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.result = ACCEPT,
.retval = 42,
},
{
"calls: write into callee stack frame",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, -8),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.errstr = "cannot return stack pointer",
.result = REJECT,
},
{
"calls: two calls with stack write and void return",
.insns = {
/* main prog */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* subprog 2 */
/* write into stack frame of main prog */
BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 0),
BPF_EXIT_INSN(), /* void return */
},
.prog_type = BPF_PROG_TYPE_XDP,
.result = ACCEPT,
},
{
"calls: ambiguous return value",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "allowed for root only",
.result_unpriv = REJECT,
.errstr = "R0 !read_ok",
.result = REJECT,
},
{
"calls: two calls that return map_value",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* fetch secound map_value_ptr from the stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
/* call 3rd function twice */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* first time with fp-8 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
/* second time with fp-16 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* subprog 2 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
/* lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr into stack frame of main prog */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(), /* return 0 */
},
.prog_type = BPF_PROG_TYPE_XDP,
.fixup_map1 = { 23 },
.result = ACCEPT,
},
{
"calls: two calls that return map_value with bool condition",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
/* call 3rd function twice */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* first time with fp-8 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 9),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
/* second time with fp-16 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2),
/* fetch secound map_value_ptr from the stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_7, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
/* subprog 2 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
/* lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(), /* return 0 */
/* write map_value_ptr into stack frame of main prog */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(), /* return 1 */
},
.prog_type = BPF_PROG_TYPE_XDP,
.fixup_map1 = { 23 },
.result = ACCEPT,
},
{
"calls: two calls that return map_value with incorrect bool check",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
/* call 3rd function twice */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* first time with fp-8 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 9),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
/* second time with fp-16 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
/* fetch secound map_value_ptr from the stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_7, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
/* subprog 2 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
/* lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(), /* return 0 */
/* write map_value_ptr into stack frame of main prog */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(), /* return 1 */
},
.prog_type = BPF_PROG_TYPE_XDP,
.fixup_map1 = { 23 },
.result = REJECT,
.errstr = "invalid read from stack off -16+0 size 8",
},
{
"calls: two calls that receive map_value via arg=ptr_stack_of_caller. test1",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* 1st lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_8, 1),
/* 2nd lookup from map */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* 20 */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, /* 24 */
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_9, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-16 */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_9, 1),
/* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), /* 30 */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), /* 34 */
BPF_EXIT_INSN(),
/* subprog 2 */
/* if arg2 == 1 do *arg1 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* if arg4 == 1 do *arg3 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 12, 22 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=8 off=2 size=8",
},
{
"calls: two calls that receive map_value via arg=ptr_stack_of_caller. test2",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* 1st lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_8, 1),
/* 2nd lookup from map */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* 20 */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, /* 24 */
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_9, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-16 */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_9, 1),
/* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), /* 30 */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), /* 34 */
BPF_EXIT_INSN(),
/* subprog 2 */
/* if arg2 == 1 do *arg1 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* if arg4 == 1 do *arg3 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 12, 22 },
.result = ACCEPT,
},
{
"calls: two jumps that receive map_value via arg=ptr_stack_of_jumper. test3",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* 1st lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -24, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -24),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_8, 1),
/* 2nd lookup from map */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -24),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_9, 0), // 26
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-16 */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_9, 1),
/* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), // 30
BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), // 34
BPF_JMP_IMM(BPF_JA, 0, 0, -30),
/* subprog 2 */
/* if arg2 == 1 do *arg1 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* if arg4 == 1 do *arg3 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, -8),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 12, 22 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=8 off=2 size=8",
},
{
"calls: two calls that receive map_value_ptr_or_null via arg. test1",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* 1st lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr_or_null into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV64_IMM(BPF_REG_8, 1),
/* 2nd lookup from map */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr_or_null into stack frame of main prog at fp-16 */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_9, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV64_IMM(BPF_REG_9, 1),
/* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* subprog 2 */
/* if arg2 == 1 do *arg1 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* if arg4 == 1 do *arg3 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 12, 22 },
.result = ACCEPT,
},
{
"calls: two calls that receive map_value_ptr_or_null via arg. test2",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* 1st lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr_or_null into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV64_IMM(BPF_REG_8, 1),
/* 2nd lookup from map */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr_or_null into stack frame of main prog at fp-16 */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_9, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV64_IMM(BPF_REG_9, 1),
/* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* subprog 2 */
/* if arg2 == 1 do *arg1 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* if arg4 == 0 do *arg3 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 0, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 12, 22 },
.result = REJECT,
.errstr = "R0 invalid mem access 'inv'",
},
{
"calls: pkt_ptr spill into caller stack",
.insns = {
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
/* spill unchecked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
/* now the pkt range is verified, read pkt_ptr from stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0),
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = POINTER_VALUE,
},
{
"calls: pkt_ptr spill into caller stack 2",
.insns = {
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
/* Marking is still kept, but not in all cases safe. */
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_ST_MEM(BPF_W, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
/* spill unchecked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
/* now the pkt range is verified, read pkt_ptr from stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0),
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "invalid access to packet",
.result = REJECT,
},
{
"calls: pkt_ptr spill into caller stack 3",
.insns = {
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
/* Marking is still kept and safe here. */
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_ST_MEM(BPF_W, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
/* spill unchecked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* now the pkt range is verified, read pkt_ptr from stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0),
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"calls: pkt_ptr spill into caller stack 4",
.insns = {
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
/* Check marking propagated. */
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_ST_MEM(BPF_W, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
/* spill unchecked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"calls: pkt_ptr spill into caller stack 5",
.insns = {
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
/* spill checked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "same insn cannot be used with different",
.result = REJECT,
},
{
"calls: pkt_ptr spill into caller stack 6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
/* spill checked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "R4 invalid mem access",
.result = REJECT,
},
{
"calls: pkt_ptr spill into caller stack 7",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
/* spill checked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "R4 invalid mem access",
.result = REJECT,
},
{
"calls: pkt_ptr spill into caller stack 8",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_0, BPF_REG_3, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
/* spill checked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"calls: pkt_ptr spill into caller stack 9",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_0, BPF_REG_3, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_IMM(BPF_REG_5, 0),
/* spill unchecked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "invalid access to packet",
.result = REJECT,
},
{
"calls: caller stack init to zero or map_value_or_null",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
/* fetch map_value_or_null or const_zero from stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
/* store into map_value */
BPF_ST_MEM(BPF_W, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
/* if (ctx == 0) return; */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 8),
/* else bpf_map_lookup() and *(fp - 8) = r0 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr_or_null into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 13 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"calls: stack init to zero and pruning",
.insns = {
/* first make allocated_stack 16 byte */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, 0),
/* now fork the execution such that the false branch
* of JGT insn will be verified second and it skisp zero
* init of fp-8 stack slot. If stack liveness marking
* is missing live_read marks from call map_lookup
* processing then pruning will incorrectly assume
* that fp-8 stack slot was unused in the fall-through
* branch and will accept the program incorrectly
*/
BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 2, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 6 },
.errstr = "invalid indirect read from stack off -8+0 size 8",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"search pruning: all branches should be verified (nop operation)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_3, 0xbeef, 2),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_A(1),
BPF_MOV64_IMM(BPF_REG_4, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -16),
BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns),
BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -16),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_5, 0, 2),
BPF_MOV64_IMM(BPF_REG_6, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_6, 0, 0xdead),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R6 invalid mem access 'inv'",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"search pruning: all branches should be verified (invalid stack access)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_3, 0xbeef, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -16),
BPF_JMP_A(1),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -24),
BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns),
BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -16),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "invalid read from stack off -16+0 size 8",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
};
static int probe_filter_length(const struct bpf_insn *fp)
{
int len;
for (len = MAX_INSNS - 1; len > 0; --len)
if (fp[len].code != 0 || fp[len].imm != 0)
break;
return len + 1;
}
static int create_map(uint32_t size_value, uint32_t max_elem)
{
int fd;
fd = bpf_create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
size_value, max_elem, BPF_F_NO_PREALLOC);
if (fd < 0)
printf("Failed to create hash map '%s'!\n", strerror(errno));
return fd;
}
static int create_prog_array(void)
{
int fd;
fd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
sizeof(int), 4, 0);
if (fd < 0)
printf("Failed to create prog array '%s'!\n", strerror(errno));
return fd;
}
static int create_map_in_map(void)
{
int inner_map_fd, outer_map_fd;
inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
sizeof(int), 1, 0);
if (inner_map_fd < 0) {
printf("Failed to create array '%s'!\n", strerror(errno));
return inner_map_fd;
}
outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
sizeof(int), inner_map_fd, 1, 0);
if (outer_map_fd < 0)
printf("Failed to create array of maps '%s'!\n",
strerror(errno));
close(inner_map_fd);
return outer_map_fd;
}
static char bpf_vlog[32768];
static void do_test_fixup(struct bpf_test *test, struct bpf_insn *prog,
int *map_fds)
{
int *fixup_map1 = test->fixup_map1;
int *fixup_map2 = test->fixup_map2;
int *fixup_prog = test->fixup_prog;
int *fixup_map_in_map = test->fixup_map_in_map;
/* Allocating HTs with 1 elem is fine here, since we only test
* for verifier and not do a runtime lookup, so the only thing
* that really matters is value size in this case.
*/
if (*fixup_map1) {
map_fds[0] = create_map(sizeof(long long), 1);
do {
prog[*fixup_map1].imm = map_fds[0];
fixup_map1++;
} while (*fixup_map1);
}
if (*fixup_map2) {
map_fds[1] = create_map(sizeof(struct test_val), 1);
do {
prog[*fixup_map2].imm = map_fds[1];
fixup_map2++;
} while (*fixup_map2);
}
if (*fixup_prog) {
map_fds[2] = create_prog_array();
do {
prog[*fixup_prog].imm = map_fds[2];
fixup_prog++;
} while (*fixup_prog);
}
if (*fixup_map_in_map) {
map_fds[3] = create_map_in_map();
do {
prog[*fixup_map_in_map].imm = map_fds[3];
fixup_map_in_map++;
} while (*fixup_map_in_map);
}
}
static void do_test_single(struct bpf_test *test, bool unpriv,
int *passes, int *errors)
{
int fd_prog, expected_ret, reject_from_alignment;
struct bpf_insn *prog = test->insns;
int prog_len = probe_filter_length(prog);
char data_in[TEST_DATA_LEN] = {};
int prog_type = test->prog_type;
int map_fds[MAX_NR_MAPS];
const char *expected_err;
uint32_t retval;
int i, err;
for (i = 0; i < MAX_NR_MAPS; i++)
map_fds[i] = -1;
do_test_fixup(test, prog, map_fds);
fd_prog = bpf_verify_program(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER,
prog, prog_len, test->flags & F_LOAD_WITH_STRICT_ALIGNMENT,
"GPL", 0, bpf_vlog, sizeof(bpf_vlog), 1);
expected_ret = unpriv && test->result_unpriv != UNDEF ?
test->result_unpriv : test->result;
expected_err = unpriv && test->errstr_unpriv ?
test->errstr_unpriv : test->errstr;
reject_from_alignment = fd_prog < 0 &&
(test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) &&
strstr(bpf_vlog, "Unknown alignment.");
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (reject_from_alignment) {
printf("FAIL\nFailed due to alignment despite having efficient unaligned access: '%s'!\n",
strerror(errno));
goto fail_log;
}
#endif
if (expected_ret == ACCEPT) {
if (fd_prog < 0 && !reject_from_alignment) {
printf("FAIL\nFailed to load prog '%s'!\n",
strerror(errno));
goto fail_log;
}
} else {
if (fd_prog >= 0) {
printf("FAIL\nUnexpected success to load!\n");
goto fail_log;
}
if (!strstr(bpf_vlog, expected_err) && !reject_from_alignment) {
printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
expected_err, bpf_vlog);
goto fail_log;
}
}
if (fd_prog >= 0) {
err = bpf_prog_test_run(fd_prog, 1, data_in, sizeof(data_in),
NULL, NULL, &retval, NULL);
if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) {
printf("Unexpected bpf_prog_test_run error\n");
goto fail_log;
}
if (!err && retval != test->retval &&
test->retval != POINTER_VALUE) {
printf("FAIL retval %d != %d\n", retval, test->retval);
goto fail_log;
}
}
(*passes)++;
printf("OK%s\n", reject_from_alignment ?
" (NOTE: reject due to unknown alignment)" : "");
close_fds:
close(fd_prog);
for (i = 0; i < MAX_NR_MAPS; i++)
close(map_fds[i]);
sched_yield();
return;
fail_log:
(*errors)++;
printf("%s", bpf_vlog);
goto close_fds;
}
static bool is_admin(void)
{
cap_t caps;
cap_flag_value_t sysadmin = CAP_CLEAR;
const cap_value_t cap_val = CAP_SYS_ADMIN;
#ifdef CAP_IS_SUPPORTED
if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
perror("cap_get_flag");
return false;
}
#endif
caps = cap_get_proc();
if (!caps) {
perror("cap_get_proc");
return false;
}
if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin))
perror("cap_get_flag");
if (cap_free(caps))
perror("cap_free");
return (sysadmin == CAP_SET);
}
static int set_admin(bool admin)
{
cap_t caps;
const cap_value_t cap_val = CAP_SYS_ADMIN;
int ret = -1;
caps = cap_get_proc();
if (!caps) {
perror("cap_get_proc");
return -1;
}
if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val,
admin ? CAP_SET : CAP_CLEAR)) {
perror("cap_set_flag");
goto out;
}
if (cap_set_proc(caps)) {
perror("cap_set_proc");
goto out;
}
ret = 0;
out:
if (cap_free(caps))
perror("cap_free");
return ret;
}
static int do_test(bool unpriv, unsigned int from, unsigned int to)
{
int i, passes = 0, errors = 0, skips = 0;
for (i = from; i < to; i++) {
struct bpf_test *test = &tests[i];
/* Program types that are not supported by non-root we
* skip right away.
*/
if (!test->prog_type) {
if (!unpriv)
set_admin(false);
printf("#%d/u %s ", i, test->descr);
do_test_single(test, true, &passes, &errors);
if (!unpriv)
set_admin(true);
}
if (unpriv) {
printf("#%d/p %s SKIP\n", i, test->descr);
skips++;
} else {
printf("#%d/p %s ", i, test->descr);
do_test_single(test, false, &passes, &errors);
}
}
printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
skips, errors);
return errors ? EXIT_FAILURE : EXIT_SUCCESS;
}
int main(int argc, char **argv)
{
struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY };
struct rlimit rlim = { 1 << 20, 1 << 20 };
unsigned int from = 0, to = ARRAY_SIZE(tests);
bool unpriv = !is_admin();
if (argc == 3) {
unsigned int l = atoi(argv[argc - 2]);
unsigned int u = atoi(argv[argc - 1]);
if (l < to && u < to) {
from = l;
to = u + 1;
}
} else if (argc == 2) {
unsigned int t = atoi(argv[argc - 1]);
if (t < to) {
from = t;
to = t + 1;
}
}
setrlimit(RLIMIT_MEMLOCK, unpriv ? &rlim : &rinf);
return do_test(unpriv, from, to);
}