mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-07 22:34:18 +08:00
34dc0ea6bc
For dma-direct we know that the DMA address is an encoding of the physical address that we can trivially decode. Use that fact to provide implementations that do not need the arch_dma_coherent_to_pfn architecture hook. Note that we still can only support mmap of non-coherent memory only if the architecture provides a way to set an uncached bit in the page tables. This must be true for architectures that use the generic remap helpers, but other architectures can also manually select it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Max Filippov <jcmvbkbc@gmail.com>
408 lines
11 KiB
C
408 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* arch-independent dma-mapping routines
|
|
*
|
|
* Copyright (c) 2006 SUSE Linux Products GmbH
|
|
* Copyright (c) 2006 Tejun Heo <teheo@suse.de>
|
|
*/
|
|
#include <linux/memblock.h> /* for max_pfn */
|
|
#include <linux/acpi.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dma-noncoherent.h>
|
|
#include <linux/export.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
/*
|
|
* Managed DMA API
|
|
*/
|
|
struct dma_devres {
|
|
size_t size;
|
|
void *vaddr;
|
|
dma_addr_t dma_handle;
|
|
unsigned long attrs;
|
|
};
|
|
|
|
static void dmam_release(struct device *dev, void *res)
|
|
{
|
|
struct dma_devres *this = res;
|
|
|
|
dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
|
|
this->attrs);
|
|
}
|
|
|
|
static int dmam_match(struct device *dev, void *res, void *match_data)
|
|
{
|
|
struct dma_devres *this = res, *match = match_data;
|
|
|
|
if (this->vaddr == match->vaddr) {
|
|
WARN_ON(this->size != match->size ||
|
|
this->dma_handle != match->dma_handle);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dmam_free_coherent - Managed dma_free_coherent()
|
|
* @dev: Device to free coherent memory for
|
|
* @size: Size of allocation
|
|
* @vaddr: Virtual address of the memory to free
|
|
* @dma_handle: DMA handle of the memory to free
|
|
*
|
|
* Managed dma_free_coherent().
|
|
*/
|
|
void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
|
|
dma_addr_t dma_handle)
|
|
{
|
|
struct dma_devres match_data = { size, vaddr, dma_handle };
|
|
|
|
dma_free_coherent(dev, size, vaddr, dma_handle);
|
|
WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
|
|
}
|
|
EXPORT_SYMBOL(dmam_free_coherent);
|
|
|
|
/**
|
|
* dmam_alloc_attrs - Managed dma_alloc_attrs()
|
|
* @dev: Device to allocate non_coherent memory for
|
|
* @size: Size of allocation
|
|
* @dma_handle: Out argument for allocated DMA handle
|
|
* @gfp: Allocation flags
|
|
* @attrs: Flags in the DMA_ATTR_* namespace.
|
|
*
|
|
* Managed dma_alloc_attrs(). Memory allocated using this function will be
|
|
* automatically released on driver detach.
|
|
*
|
|
* RETURNS:
|
|
* Pointer to allocated memory on success, NULL on failure.
|
|
*/
|
|
void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
|
|
gfp_t gfp, unsigned long attrs)
|
|
{
|
|
struct dma_devres *dr;
|
|
void *vaddr;
|
|
|
|
dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
|
|
if (!dr)
|
|
return NULL;
|
|
|
|
vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
|
|
if (!vaddr) {
|
|
devres_free(dr);
|
|
return NULL;
|
|
}
|
|
|
|
dr->vaddr = vaddr;
|
|
dr->dma_handle = *dma_handle;
|
|
dr->size = size;
|
|
dr->attrs = attrs;
|
|
|
|
devres_add(dev, dr);
|
|
|
|
return vaddr;
|
|
}
|
|
EXPORT_SYMBOL(dmam_alloc_attrs);
|
|
|
|
/*
|
|
* Create scatter-list for the already allocated DMA buffer.
|
|
*/
|
|
int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
struct page *page = virt_to_page(cpu_addr);
|
|
int ret;
|
|
|
|
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
|
|
if (!ret)
|
|
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
|
|
* that the intention is to allow exporting memory allocated via the
|
|
* coherent DMA APIs through the dma_buf API, which only accepts a
|
|
* scattertable. This presents a couple of problems:
|
|
* 1. Not all memory allocated via the coherent DMA APIs is backed by
|
|
* a struct page
|
|
* 2. Passing coherent DMA memory into the streaming APIs is not allowed
|
|
* as we will try to flush the memory through a different alias to that
|
|
* actually being used (and the flushes are redundant.)
|
|
*/
|
|
int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
|
if (dma_is_direct(ops))
|
|
return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
|
|
size, attrs);
|
|
if (!ops->get_sgtable)
|
|
return -ENXIO;
|
|
return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
|
|
}
|
|
EXPORT_SYMBOL(dma_get_sgtable_attrs);
|
|
|
|
#ifdef CONFIG_MMU
|
|
/*
|
|
* Return the page attributes used for mapping dma_alloc_* memory, either in
|
|
* kernel space if remapping is needed, or to userspace through dma_mmap_*.
|
|
*/
|
|
pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
|
|
{
|
|
if (dev_is_dma_coherent(dev) ||
|
|
(IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
|
|
(attrs & DMA_ATTR_NON_CONSISTENT)))
|
|
return prot;
|
|
#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
|
|
if (attrs & DMA_ATTR_WRITE_COMBINE)
|
|
return pgprot_writecombine(prot);
|
|
#endif
|
|
return pgprot_dmacoherent(prot);
|
|
}
|
|
#endif /* CONFIG_MMU */
|
|
|
|
/*
|
|
* Create userspace mapping for the DMA-coherent memory.
|
|
*/
|
|
int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
#ifdef CONFIG_MMU
|
|
unsigned long user_count = vma_pages(vma);
|
|
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
unsigned long off = vma->vm_pgoff;
|
|
int ret = -ENXIO;
|
|
|
|
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
|
|
|
|
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
|
|
return ret;
|
|
|
|
if (off >= count || user_count > count - off)
|
|
return -ENXIO;
|
|
|
|
return remap_pfn_range(vma, vma->vm_start,
|
|
page_to_pfn(virt_to_page(cpu_addr)) + vma->vm_pgoff,
|
|
user_count << PAGE_SHIFT, vma->vm_page_prot);
|
|
#else
|
|
return -ENXIO;
|
|
#endif /* CONFIG_MMU */
|
|
}
|
|
|
|
/**
|
|
* dma_can_mmap - check if a given device supports dma_mmap_*
|
|
* @dev: device to check
|
|
*
|
|
* Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
|
|
* map DMA allocations to userspace.
|
|
*/
|
|
bool dma_can_mmap(struct device *dev)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
|
if (dma_is_direct(ops))
|
|
return dma_direct_can_mmap(dev);
|
|
return ops->mmap != NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_can_mmap);
|
|
|
|
/**
|
|
* dma_mmap_attrs - map a coherent DMA allocation into user space
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @vma: vm_area_struct describing requested user mapping
|
|
* @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
|
|
* @dma_addr: device-view address returned from dma_alloc_attrs
|
|
* @size: size of memory originally requested in dma_alloc_attrs
|
|
* @attrs: attributes of mapping properties requested in dma_alloc_attrs
|
|
*
|
|
* Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
|
|
* space. The coherent DMA buffer must not be freed by the driver until the
|
|
* user space mapping has been released.
|
|
*/
|
|
int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
|
if (dma_is_direct(ops))
|
|
return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
|
|
attrs);
|
|
if (!ops->mmap)
|
|
return -ENXIO;
|
|
return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
|
|
}
|
|
EXPORT_SYMBOL(dma_mmap_attrs);
|
|
|
|
u64 dma_get_required_mask(struct device *dev)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
|
if (dma_is_direct(ops))
|
|
return dma_direct_get_required_mask(dev);
|
|
if (ops->get_required_mask)
|
|
return ops->get_required_mask(dev);
|
|
|
|
/*
|
|
* We require every DMA ops implementation to at least support a 32-bit
|
|
* DMA mask (and use bounce buffering if that isn't supported in
|
|
* hardware). As the direct mapping code has its own routine to
|
|
* actually report an optimal mask we default to 32-bit here as that
|
|
* is the right thing for most IOMMUs, and at least not actively
|
|
* harmful in general.
|
|
*/
|
|
return DMA_BIT_MASK(32);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_get_required_mask);
|
|
|
|
void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
|
|
gfp_t flag, unsigned long attrs)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
void *cpu_addr;
|
|
|
|
WARN_ON_ONCE(!dev->coherent_dma_mask);
|
|
|
|
if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
|
|
return cpu_addr;
|
|
|
|
/* let the implementation decide on the zone to allocate from: */
|
|
flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
|
|
|
|
if (dma_is_direct(ops))
|
|
cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
|
|
else if (ops->alloc)
|
|
cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
|
|
else
|
|
return NULL;
|
|
|
|
debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
|
|
return cpu_addr;
|
|
}
|
|
EXPORT_SYMBOL(dma_alloc_attrs);
|
|
|
|
void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t dma_handle, unsigned long attrs)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
|
if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
|
|
return;
|
|
/*
|
|
* On non-coherent platforms which implement DMA-coherent buffers via
|
|
* non-cacheable remaps, ops->free() may call vunmap(). Thus getting
|
|
* this far in IRQ context is a) at risk of a BUG_ON() or trying to
|
|
* sleep on some machines, and b) an indication that the driver is
|
|
* probably misusing the coherent API anyway.
|
|
*/
|
|
WARN_ON(irqs_disabled());
|
|
|
|
if (!cpu_addr)
|
|
return;
|
|
|
|
debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
|
|
if (dma_is_direct(ops))
|
|
dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
|
|
else if (ops->free)
|
|
ops->free(dev, size, cpu_addr, dma_handle, attrs);
|
|
}
|
|
EXPORT_SYMBOL(dma_free_attrs);
|
|
|
|
int dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
|
if (dma_is_direct(ops))
|
|
return dma_direct_supported(dev, mask);
|
|
if (!ops->dma_supported)
|
|
return 1;
|
|
return ops->dma_supported(dev, mask);
|
|
}
|
|
EXPORT_SYMBOL(dma_supported);
|
|
|
|
#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
|
|
void arch_dma_set_mask(struct device *dev, u64 mask);
|
|
#else
|
|
#define arch_dma_set_mask(dev, mask) do { } while (0)
|
|
#endif
|
|
|
|
int dma_set_mask(struct device *dev, u64 mask)
|
|
{
|
|
/*
|
|
* Truncate the mask to the actually supported dma_addr_t width to
|
|
* avoid generating unsupportable addresses.
|
|
*/
|
|
mask = (dma_addr_t)mask;
|
|
|
|
if (!dev->dma_mask || !dma_supported(dev, mask))
|
|
return -EIO;
|
|
|
|
arch_dma_set_mask(dev, mask);
|
|
*dev->dma_mask = mask;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dma_set_mask);
|
|
|
|
#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
|
|
int dma_set_coherent_mask(struct device *dev, u64 mask)
|
|
{
|
|
/*
|
|
* Truncate the mask to the actually supported dma_addr_t width to
|
|
* avoid generating unsupportable addresses.
|
|
*/
|
|
mask = (dma_addr_t)mask;
|
|
|
|
if (!dma_supported(dev, mask))
|
|
return -EIO;
|
|
|
|
dev->coherent_dma_mask = mask;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dma_set_coherent_mask);
|
|
#endif
|
|
|
|
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
|
BUG_ON(!valid_dma_direction(dir));
|
|
|
|
if (dma_is_direct(ops))
|
|
arch_dma_cache_sync(dev, vaddr, size, dir);
|
|
else if (ops->cache_sync)
|
|
ops->cache_sync(dev, vaddr, size, dir);
|
|
}
|
|
EXPORT_SYMBOL(dma_cache_sync);
|
|
|
|
size_t dma_max_mapping_size(struct device *dev)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
size_t size = SIZE_MAX;
|
|
|
|
if (dma_is_direct(ops))
|
|
size = dma_direct_max_mapping_size(dev);
|
|
else if (ops && ops->max_mapping_size)
|
|
size = ops->max_mapping_size(dev);
|
|
|
|
return size;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_max_mapping_size);
|
|
|
|
unsigned long dma_get_merge_boundary(struct device *dev)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
|
if (!ops || !ops->get_merge_boundary)
|
|
return 0; /* can't merge */
|
|
|
|
return ops->get_merge_boundary(dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
|