linux/drivers/media/i2c/mt9m114.c
Laurent Pinchart 24d756e914 media: i2c: Add driver for onsemi MT9M114 camera sensor
The MT9M114 is a CMOS camera sensor that combines a 1296x976 pixel array
with a 10-bit dynamic range together with an internal ISP. The driver
exposes two subdevs, one for the pixel array and one for the ISP (named
IFP for Image Flow Processor). Major supported features are

- Full configuration of analog crop and binning in the pixel array
- Full configuration of scaling in the ISP
- Automatic exposure and white balance
- Manual exposure and analog gain
- Horizontal and vertical flip

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Jacopo Mondi <jacopo.mondi@ideasonboard.com>
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
2023-10-07 10:55:46 +02:00

2482 lines
75 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* mt9m114.c onsemi MT9M114 sensor driver
*
* Copyright (c) 2020-2023 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
* Copyright (c) 2012 Analog Devices Inc.
*
* Almost complete rewrite of work by Scott Jiang <Scott.Jiang.Linux@gmail.com>
* itself based on work from Andrew Chew <achew@nvidia.com>.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <linux/videodev2.h>
#include <media/v4l2-async.h>
#include <media/v4l2-cci.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-mediabus.h>
#include <media/v4l2-subdev.h>
/* Sysctl registers */
#define MT9M114_CHIP_ID CCI_REG16(0x0000)
#define MT9M114_COMMAND_REGISTER CCI_REG16(0x0080)
#define MT9M114_COMMAND_REGISTER_APPLY_PATCH BIT(0)
#define MT9M114_COMMAND_REGISTER_SET_STATE BIT(1)
#define MT9M114_COMMAND_REGISTER_REFRESH BIT(2)
#define MT9M114_COMMAND_REGISTER_WAIT_FOR_EVENT BIT(3)
#define MT9M114_COMMAND_REGISTER_OK BIT(15)
#define MT9M114_RESET_AND_MISC_CONTROL CCI_REG16(0x001a)
#define MT9M114_RESET_SOC BIT(0)
#define MT9M114_PAD_SLEW CCI_REG16(0x001e)
#define MT9M114_PAD_CONTROL CCI_REG16(0x0032)
/* XDMA registers */
#define MT9M114_ACCESS_CTL_STAT CCI_REG16(0x0982)
#define MT9M114_PHYSICAL_ADDRESS_ACCESS CCI_REG16(0x098a)
#define MT9M114_LOGICAL_ADDRESS_ACCESS CCI_REG16(0x098e)
/* Sensor Core registers */
#define MT9M114_COARSE_INTEGRATION_TIME CCI_REG16(0x3012)
#define MT9M114_FINE_INTEGRATION_TIME CCI_REG16(0x3014)
#define MT9M114_RESET_REGISTER CCI_REG16(0x301a)
#define MT9M114_RESET_REGISTER_LOCK_REG BIT(3)
#define MT9M114_RESET_REGISTER_MASK_BAD BIT(9)
#define MT9M114_FLASH CCI_REG16(0x3046)
#define MT9M114_GREEN1_GAIN CCI_REG16(0x3056)
#define MT9M114_BLUE_GAIN CCI_REG16(0x3058)
#define MT9M114_RED_GAIN CCI_REG16(0x305a)
#define MT9M114_GREEN2_GAIN CCI_REG16(0x305c)
#define MT9M114_GLOBAL_GAIN CCI_REG16(0x305e)
#define MT9M114_GAIN_DIGITAL_GAIN(n) ((n) << 12)
#define MT9M114_GAIN_DIGITAL_GAIN_MASK (0xf << 12)
#define MT9M114_GAIN_ANALOG_GAIN(n) ((n) << 0)
#define MT9M114_GAIN_ANALOG_GAIN_MASK (0xff << 0)
#define MT9M114_CUSTOMER_REV CCI_REG16(0x31fe)
/* Monitor registers */
#define MT9M114_MON_MAJOR_VERSION CCI_REG16(0x8000)
#define MT9M114_MON_MINOR_VERSION CCI_REG16(0x8002)
#define MT9M114_MON_RELEASE_VERSION CCI_REG16(0x8004)
/* Auto-Exposure Track registers */
#define MT9M114_AE_TRACK_ALGO CCI_REG16(0xa804)
#define MT9M114_AE_TRACK_EXEC_AUTOMATIC_EXPOSURE BIT(0)
#define MT9M114_AE_TRACK_AE_TRACKING_DAMPENING_SPEED CCI_REG8(0xa80a)
/* Color Correction Matrix registers */
#define MT9M114_CCM_ALGO CCI_REG16(0xb404)
#define MT9M114_CCM_EXEC_CALC_CCM_MATRIX BIT(4)
#define MT9M114_CCM_DELTA_GAIN CCI_REG8(0xb42a)
/* Camera Control registers */
#define MT9M114_CAM_SENSOR_CFG_Y_ADDR_START CCI_REG16(0xc800)
#define MT9M114_CAM_SENSOR_CFG_X_ADDR_START CCI_REG16(0xc802)
#define MT9M114_CAM_SENSOR_CFG_Y_ADDR_END CCI_REG16(0xc804)
#define MT9M114_CAM_SENSOR_CFG_X_ADDR_END CCI_REG16(0xc806)
#define MT9M114_CAM_SENSOR_CFG_PIXCLK CCI_REG32(0xc808)
#define MT9M114_CAM_SENSOR_CFG_ROW_SPEED CCI_REG16(0xc80c)
#define MT9M114_CAM_SENSOR_CFG_FINE_INTEG_TIME_MIN CCI_REG16(0xc80e)
#define MT9M114_CAM_SENSOR_CFG_FINE_INTEG_TIME_MAX CCI_REG16(0xc810)
#define MT9M114_CAM_SENSOR_CFG_FRAME_LENGTH_LINES CCI_REG16(0xc812)
#define MT9M114_CAM_SENSOR_CFG_FRAME_LENGTH_LINES_MAX 65535
#define MT9M114_CAM_SENSOR_CFG_LINE_LENGTH_PCK CCI_REG16(0xc814)
#define MT9M114_CAM_SENSOR_CFG_LINE_LENGTH_PCK_MAX 8191
#define MT9M114_CAM_SENSOR_CFG_FINE_CORRECTION CCI_REG16(0xc816)
#define MT9M114_CAM_SENSOR_CFG_CPIPE_LAST_ROW CCI_REG16(0xc818)
#define MT9M114_CAM_SENSOR_CFG_REG_0_DATA CCI_REG16(0xc826)
#define MT9M114_CAM_SENSOR_CONTROL_READ_MODE CCI_REG16(0xc834)
#define MT9M114_CAM_SENSOR_CONTROL_HORZ_MIRROR_EN BIT(0)
#define MT9M114_CAM_SENSOR_CONTROL_VERT_FLIP_EN BIT(1)
#define MT9M114_CAM_SENSOR_CONTROL_X_READ_OUT_NORMAL (0 << 4)
#define MT9M114_CAM_SENSOR_CONTROL_X_READ_OUT_SKIPPING (1 << 4)
#define MT9M114_CAM_SENSOR_CONTROL_X_READ_OUT_AVERAGE (2 << 4)
#define MT9M114_CAM_SENSOR_CONTROL_X_READ_OUT_SUMMING (3 << 4)
#define MT9M114_CAM_SENSOR_CONTROL_X_READ_OUT_MASK (3 << 4)
#define MT9M114_CAM_SENSOR_CONTROL_Y_READ_OUT_NORMAL (0 << 8)
#define MT9M114_CAM_SENSOR_CONTROL_Y_READ_OUT_SKIPPING (1 << 8)
#define MT9M114_CAM_SENSOR_CONTROL_Y_READ_OUT_SUMMING (3 << 8)
#define MT9M114_CAM_SENSOR_CONTROL_Y_READ_OUT_MASK (3 << 8)
#define MT9M114_CAM_SENSOR_CONTROL_ANALOG_GAIN CCI_REG16(0xc836)
#define MT9M114_CAM_SENSOR_CONTROL_COARSE_INTEGRATION_TIME CCI_REG16(0xc83c)
#define MT9M114_CAM_SENSOR_CONTROL_FINE_INTEGRATION_TIME CCI_REG16(0xc83e)
#define MT9M114_CAM_MODE_SELECT CCI_REG8(0xc84c)
#define MT9M114_CAM_MODE_SELECT_NORMAL (0 << 0)
#define MT9M114_CAM_MODE_SELECT_LENS_CALIBRATION (1 << 0)
#define MT9M114_CAM_MODE_SELECT_TEST_PATTERN (2 << 0)
#define MT9M114_CAM_MODE_TEST_PATTERN_SELECT CCI_REG8(0xc84d)
#define MT9M114_CAM_MODE_TEST_PATTERN_SELECT_SOLID (1 << 0)
#define MT9M114_CAM_MODE_TEST_PATTERN_SELECT_SOLID_BARS (4 << 0)
#define MT9M114_CAM_MODE_TEST_PATTERN_SELECT_RANDOM (5 << 0)
#define MT9M114_CAM_MODE_TEST_PATTERN_SELECT_FADING_BARS (8 << 0)
#define MT9M114_CAM_MODE_TEST_PATTERN_SELECT_WALKING_1S_10B (10 << 0)
#define MT9M114_CAM_MODE_TEST_PATTERN_SELECT_WALKING_1S_8B (11 << 0)
#define MT9M114_CAM_MODE_TEST_PATTERN_RED CCI_REG16(0xc84e)
#define MT9M114_CAM_MODE_TEST_PATTERN_GREEN CCI_REG16(0xc850)
#define MT9M114_CAM_MODE_TEST_PATTERN_BLUE CCI_REG16(0xc852)
#define MT9M114_CAM_CROP_WINDOW_XOFFSET CCI_REG16(0xc854)
#define MT9M114_CAM_CROP_WINDOW_YOFFSET CCI_REG16(0xc856)
#define MT9M114_CAM_CROP_WINDOW_WIDTH CCI_REG16(0xc858)
#define MT9M114_CAM_CROP_WINDOW_HEIGHT CCI_REG16(0xc85a)
#define MT9M114_CAM_CROP_CROPMODE CCI_REG8(0xc85c)
#define MT9M114_CAM_CROP_MODE_AE_AUTO_CROP_EN BIT(0)
#define MT9M114_CAM_CROP_MODE_AWB_AUTO_CROP_EN BIT(1)
#define MT9M114_CAM_OUTPUT_WIDTH CCI_REG16(0xc868)
#define MT9M114_CAM_OUTPUT_HEIGHT CCI_REG16(0xc86a)
#define MT9M114_CAM_OUTPUT_FORMAT CCI_REG16(0xc86c)
#define MT9M114_CAM_OUTPUT_FORMAT_SWAP_RED_BLUE BIT(0)
#define MT9M114_CAM_OUTPUT_FORMAT_SWAP_BYTES BIT(1)
#define MT9M114_CAM_OUTPUT_FORMAT_MONO_ENABLE BIT(2)
#define MT9M114_CAM_OUTPUT_FORMAT_BT656_ENABLE BIT(3)
#define MT9M114_CAM_OUTPUT_FORMAT_BT656_CROP_SCALE_DISABLE BIT(4)
#define MT9M114_CAM_OUTPUT_FORMAT_FVLV_DISABLE BIT(5)
#define MT9M114_CAM_OUTPUT_FORMAT_FORMAT_YUV (0 << 8)
#define MT9M114_CAM_OUTPUT_FORMAT_FORMAT_RGB (1 << 8)
#define MT9M114_CAM_OUTPUT_FORMAT_FORMAT_BAYER (2 << 8)
#define MT9M114_CAM_OUTPUT_FORMAT_FORMAT_NONE (3 << 8)
#define MT9M114_CAM_OUTPUT_FORMAT_FORMAT_MASK (3 << 8)
#define MT9M114_CAM_OUTPUT_FORMAT_BAYER_FORMAT_RAWR10 (0 << 10)
#define MT9M114_CAM_OUTPUT_FORMAT_BAYER_FORMAT_PRELSC_8_2 (1 << 10)
#define MT9M114_CAM_OUTPUT_FORMAT_BAYER_FORMAT_POSTLSC_8_2 (2 << 10)
#define MT9M114_CAM_OUTPUT_FORMAT_BAYER_FORMAT_PROCESSED8 (3 << 10)
#define MT9M114_CAM_OUTPUT_FORMAT_BAYER_FORMAT_MASK (3 << 10)
#define MT9M114_CAM_OUTPUT_FORMAT_RGB_FORMAT_565RGB (0 << 12)
#define MT9M114_CAM_OUTPUT_FORMAT_RGB_FORMAT_555RGB (1 << 12)
#define MT9M114_CAM_OUTPUT_FORMAT_RGB_FORMAT_444xRGB (2 << 12)
#define MT9M114_CAM_OUTPUT_FORMAT_RGB_FORMAT_444RGBx (3 << 12)
#define MT9M114_CAM_OUTPUT_FORMAT_RGB_FORMAT_MASK (3 << 12)
#define MT9M114_CAM_OUTPUT_FORMAT_YUV CCI_REG16(0xc86e)
#define MT9M114_CAM_OUTPUT_FORMAT_YUV_CLIP BIT(5)
#define MT9M114_CAM_OUTPUT_FORMAT_YUV_AUV_OFFSET BIT(4)
#define MT9M114_CAM_OUTPUT_FORMAT_YUV_SELECT_601 BIT(3)
#define MT9M114_CAM_OUTPUT_FORMAT_YUV_NORMALISE BIT(2)
#define MT9M114_CAM_OUTPUT_FORMAT_YUV_SAMPLING_EVEN_UV (0 << 0)
#define MT9M114_CAM_OUTPUT_FORMAT_YUV_SAMPLING_ODD_UV (1 << 0)
#define MT9M114_CAM_OUTPUT_FORMAT_YUV_SAMPLING_EVENU_ODDV (2 << 0)
#define MT9M114_CAM_OUTPUT_Y_OFFSET CCI_REG8(0xc870)
#define MT9M114_CAM_AET_AEMODE CCI_REG8(0xc878)
#define MT9M114_CAM_AET_EXEC_SET_INDOOR BIT(0)
#define MT9M114_CAM_AET_DISCRETE_FRAMERATE BIT(1)
#define MT9M114_CAM_AET_ADAPTATIVE_TARGET_LUMA BIT(2)
#define MT9M114_CAM_AET_ADAPTATIVE_SKIP_FRAMES BIT(3)
#define MT9M114_CAM_AET_SKIP_FRAMES CCI_REG8(0xc879)
#define MT9M114_CAM_AET_TARGET_AVERAGE_LUMA CCI_REG8(0xc87a)
#define MT9M114_CAM_AET_TARGET_AVERAGE_LUMA_DARK CCI_REG8(0xc87b)
#define MT9M114_CAM_AET_BLACK_CLIPPING_TARGET CCI_REG16(0xc87c)
#define MT9M114_CAM_AET_AE_MIN_VIRT_INT_TIME_PCLK CCI_REG16(0xc87e)
#define MT9M114_CAM_AET_AE_MIN_VIRT_DGAIN CCI_REG16(0xc880)
#define MT9M114_CAM_AET_AE_MAX_VIRT_DGAIN CCI_REG16(0xc882)
#define MT9M114_CAM_AET_AE_MIN_VIRT_AGAIN CCI_REG16(0xc884)
#define MT9M114_CAM_AET_AE_MAX_VIRT_AGAIN CCI_REG16(0xc886)
#define MT9M114_CAM_AET_AE_VIRT_GAIN_TH_EG CCI_REG16(0xc888)
#define MT9M114_CAM_AET_AE_EG_GATE_PERCENTAGE CCI_REG8(0xc88a)
#define MT9M114_CAM_AET_FLICKER_FREQ_HZ CCI_REG8(0xc88b)
#define MT9M114_CAM_AET_MAX_FRAME_RATE CCI_REG16(0xc88c)
#define MT9M114_CAM_AET_MIN_FRAME_RATE CCI_REG16(0xc88e)
#define MT9M114_CAM_AET_TARGET_GAIN CCI_REG16(0xc890)
#define MT9M114_CAM_AWB_CCM_L(n) CCI_REG16(0xc892 + (n) * 2)
#define MT9M114_CAM_AWB_CCM_M(n) CCI_REG16(0xc8a4 + (n) * 2)
#define MT9M114_CAM_AWB_CCM_R(n) CCI_REG16(0xc8b6 + (n) * 2)
#define MT9M114_CAM_AWB_CCM_L_RG_GAIN CCI_REG16(0xc8c8)
#define MT9M114_CAM_AWB_CCM_L_BG_GAIN CCI_REG16(0xc8ca)
#define MT9M114_CAM_AWB_CCM_M_RG_GAIN CCI_REG16(0xc8cc)
#define MT9M114_CAM_AWB_CCM_M_BG_GAIN CCI_REG16(0xc8ce)
#define MT9M114_CAM_AWB_CCM_R_RG_GAIN CCI_REG16(0xc8d0)
#define MT9M114_CAM_AWB_CCM_R_BG_GAIN CCI_REG16(0xc8d2)
#define MT9M114_CAM_AWB_CCM_L_CTEMP CCI_REG16(0xc8d4)
#define MT9M114_CAM_AWB_CCM_M_CTEMP CCI_REG16(0xc8d6)
#define MT9M114_CAM_AWB_CCM_R_CTEMP CCI_REG16(0xc8d8)
#define MT9M114_CAM_AWB_AWB_XSCALE CCI_REG8(0xc8f2)
#define MT9M114_CAM_AWB_AWB_YSCALE CCI_REG8(0xc8f3)
#define MT9M114_CAM_AWB_AWB_WEIGHTS(n) CCI_REG16(0xc8f4 + (n) * 2)
#define MT9M114_CAM_AWB_AWB_XSHIFT_PRE_ADJ CCI_REG16(0xc904)
#define MT9M114_CAM_AWB_AWB_YSHIFT_PRE_ADJ CCI_REG16(0xc906)
#define MT9M114_CAM_AWB_AWBMODE CCI_REG8(0xc909)
#define MT9M114_CAM_AWB_MODE_AUTO BIT(1)
#define MT9M114_CAM_AWB_MODE_EXCLUSIVE_AE BIT(0)
#define MT9M114_CAM_AWB_K_R_L CCI_REG8(0xc90c)
#define MT9M114_CAM_AWB_K_G_L CCI_REG8(0xc90d)
#define MT9M114_CAM_AWB_K_B_L CCI_REG8(0xc90e)
#define MT9M114_CAM_AWB_K_R_R CCI_REG8(0xc90f)
#define MT9M114_CAM_AWB_K_G_R CCI_REG8(0xc910)
#define MT9M114_CAM_AWB_K_B_R CCI_REG8(0xc911)
#define MT9M114_CAM_STAT_AWB_CLIP_WINDOW_XSTART CCI_REG16(0xc914)
#define MT9M114_CAM_STAT_AWB_CLIP_WINDOW_YSTART CCI_REG16(0xc916)
#define MT9M114_CAM_STAT_AWB_CLIP_WINDOW_XEND CCI_REG16(0xc918)
#define MT9M114_CAM_STAT_AWB_CLIP_WINDOW_YEND CCI_REG16(0xc91a)
#define MT9M114_CAM_STAT_AE_INITIAL_WINDOW_XSTART CCI_REG16(0xc91c)
#define MT9M114_CAM_STAT_AE_INITIAL_WINDOW_YSTART CCI_REG16(0xc91e)
#define MT9M114_CAM_STAT_AE_INITIAL_WINDOW_XEND CCI_REG16(0xc920)
#define MT9M114_CAM_STAT_AE_INITIAL_WINDOW_YEND CCI_REG16(0xc922)
#define MT9M114_CAM_LL_LLMODE CCI_REG16(0xc924)
#define MT9M114_CAM_LL_START_BRIGHTNESS CCI_REG16(0xc926)
#define MT9M114_CAM_LL_STOP_BRIGHTNESS CCI_REG16(0xc928)
#define MT9M114_CAM_LL_START_SATURATION CCI_REG8(0xc92a)
#define MT9M114_CAM_LL_END_SATURATION CCI_REG8(0xc92b)
#define MT9M114_CAM_LL_START_DESATURATION CCI_REG8(0xc92c)
#define MT9M114_CAM_LL_END_DESATURATION CCI_REG8(0xc92d)
#define MT9M114_CAM_LL_START_DEMOSAICING CCI_REG8(0xc92e)
#define MT9M114_CAM_LL_START_AP_GAIN CCI_REG8(0xc92f)
#define MT9M114_CAM_LL_START_AP_THRESH CCI_REG8(0xc930)
#define MT9M114_CAM_LL_STOP_DEMOSAICING CCI_REG8(0xc931)
#define MT9M114_CAM_LL_STOP_AP_GAIN CCI_REG8(0xc932)
#define MT9M114_CAM_LL_STOP_AP_THRESH CCI_REG8(0xc933)
#define MT9M114_CAM_LL_START_NR_RED CCI_REG8(0xc934)
#define MT9M114_CAM_LL_START_NR_GREEN CCI_REG8(0xc935)
#define MT9M114_CAM_LL_START_NR_BLUE CCI_REG8(0xc936)
#define MT9M114_CAM_LL_START_NR_THRESH CCI_REG8(0xc937)
#define MT9M114_CAM_LL_STOP_NR_RED CCI_REG8(0xc938)
#define MT9M114_CAM_LL_STOP_NR_GREEN CCI_REG8(0xc939)
#define MT9M114_CAM_LL_STOP_NR_BLUE CCI_REG8(0xc93a)
#define MT9M114_CAM_LL_STOP_NR_THRESH CCI_REG8(0xc93b)
#define MT9M114_CAM_LL_START_CONTRAST_BM CCI_REG16(0xc93c)
#define MT9M114_CAM_LL_STOP_CONTRAST_BM CCI_REG16(0xc93e)
#define MT9M114_CAM_LL_GAMMA CCI_REG16(0xc940)
#define MT9M114_CAM_LL_START_CONTRAST_GRADIENT CCI_REG8(0xc942)
#define MT9M114_CAM_LL_STOP_CONTRAST_GRADIENT CCI_REG8(0xc943)
#define MT9M114_CAM_LL_START_CONTRAST_LUMA_PERCENTAGE CCI_REG8(0xc944)
#define MT9M114_CAM_LL_STOP_CONTRAST_LUMA_PERCENTAGE CCI_REG8(0xc945)
#define MT9M114_CAM_LL_START_GAIN_METRIC CCI_REG16(0xc946)
#define MT9M114_CAM_LL_STOP_GAIN_METRIC CCI_REG16(0xc948)
#define MT9M114_CAM_LL_START_FADE_TO_BLACK_LUMA CCI_REG16(0xc94a)
#define MT9M114_CAM_LL_STOP_FADE_TO_BLACK_LUMA CCI_REG16(0xc94c)
#define MT9M114_CAM_LL_CLUSTER_DC_TH_BM CCI_REG16(0xc94e)
#define MT9M114_CAM_LL_CLUSTER_DC_GATE_PERCENTAGE CCI_REG8(0xc950)
#define MT9M114_CAM_LL_SUMMING_SENSITIVITY_FACTOR CCI_REG8(0xc951)
#define MT9M114_CAM_LL_START_TARGET_LUMA_BM CCI_REG16(0xc952)
#define MT9M114_CAM_LL_STOP_TARGET_LUMA_BM CCI_REG16(0xc954)
#define MT9M114_CAM_PGA_PGA_CONTROL CCI_REG16(0xc95e)
#define MT9M114_CAM_SYSCTL_PLL_ENABLE CCI_REG8(0xc97e)
#define MT9M114_CAM_SYSCTL_PLL_ENABLE_VALUE BIT(0)
#define MT9M114_CAM_SYSCTL_PLL_DIVIDER_M_N CCI_REG16(0xc980)
#define MT9M114_CAM_SYSCTL_PLL_DIVIDER_VALUE(m, n) (((n) << 8) | (m))
#define MT9M114_CAM_SYSCTL_PLL_DIVIDER_P CCI_REG16(0xc982)
#define MT9M114_CAM_SYSCTL_PLL_DIVIDER_P_VALUE(p) ((p) << 8)
#define MT9M114_CAM_PORT_OUTPUT_CONTROL CCI_REG16(0xc984)
#define MT9M114_CAM_PORT_PORT_SELECT_PARALLEL (0 << 0)
#define MT9M114_CAM_PORT_PORT_SELECT_MIPI (1 << 0)
#define MT9M114_CAM_PORT_CLOCK_SLOWDOWN BIT(3)
#define MT9M114_CAM_PORT_TRUNCATE_RAW_BAYER BIT(4)
#define MT9M114_CAM_PORT_PIXCLK_GATE BIT(5)
#define MT9M114_CAM_PORT_CONT_MIPI_CLK BIT(6)
#define MT9M114_CAM_PORT_CHAN_NUM(vc) ((vc) << 8)
#define MT9M114_CAM_PORT_MIPI_TIMING_T_HS_ZERO CCI_REG16(0xc988)
#define MT9M114_CAM_PORT_MIPI_TIMING_T_HS_ZERO_VALUE(n) ((n) << 8)
#define MT9M114_CAM_PORT_MIPI_TIMING_T_HS_EXIT_TRAIL CCI_REG16(0xc98a)
#define MT9M114_CAM_PORT_MIPI_TIMING_T_HS_EXIT_VALUE(n) ((n) << 8)
#define MT9M114_CAM_PORT_MIPI_TIMING_T_HS_TRAIL_VALUE(n) ((n) << 0)
#define MT9M114_CAM_PORT_MIPI_TIMING_T_CLK_POST_PRE CCI_REG16(0xc98c)
#define MT9M114_CAM_PORT_MIPI_TIMING_T_CLK_POST_VALUE(n) ((n) << 8)
#define MT9M114_CAM_PORT_MIPI_TIMING_T_CLK_PRE_VALUE(n) ((n) << 0)
#define MT9M114_CAM_PORT_MIPI_TIMING_T_CLK_TRAIL_ZERO CCI_REG16(0xc98e)
#define MT9M114_CAM_PORT_MIPI_TIMING_T_CLK_TRAIL_VALUE(n) ((n) << 8)
#define MT9M114_CAM_PORT_MIPI_TIMING_T_CLK_ZERO_VALUE(n) ((n) << 0)
/* System Manager registers */
#define MT9M114_SYSMGR_NEXT_STATE CCI_REG8(0xdc00)
#define MT9M114_SYSMGR_CURRENT_STATE CCI_REG8(0xdc01)
#define MT9M114_SYSMGR_CMD_STATUS CCI_REG8(0xdc02)
/* Patch Loader registers */
#define MT9M114_PATCHLDR_LOADER_ADDRESS CCI_REG16(0xe000)
#define MT9M114_PATCHLDR_PATCH_ID CCI_REG16(0xe002)
#define MT9M114_PATCHLDR_FIRMWARE_ID CCI_REG32(0xe004)
#define MT9M114_PATCHLDR_APPLY_STATUS CCI_REG8(0xe008)
#define MT9M114_PATCHLDR_NUM_PATCHES CCI_REG8(0xe009)
#define MT9M114_PATCHLDR_PATCH_ID_0 CCI_REG16(0xe00a)
#define MT9M114_PATCHLDR_PATCH_ID_1 CCI_REG16(0xe00c)
#define MT9M114_PATCHLDR_PATCH_ID_2 CCI_REG16(0xe00e)
#define MT9M114_PATCHLDR_PATCH_ID_3 CCI_REG16(0xe010)
#define MT9M114_PATCHLDR_PATCH_ID_4 CCI_REG16(0xe012)
#define MT9M114_PATCHLDR_PATCH_ID_5 CCI_REG16(0xe014)
#define MT9M114_PATCHLDR_PATCH_ID_6 CCI_REG16(0xe016)
#define MT9M114_PATCHLDR_PATCH_ID_7 CCI_REG16(0xe018)
/* SYS_STATE values (for SYSMGR_NEXT_STATE and SYSMGR_CURRENT_STATE) */
#define MT9M114_SYS_STATE_ENTER_CONFIG_CHANGE 0x28
#define MT9M114_SYS_STATE_STREAMING 0x31
#define MT9M114_SYS_STATE_START_STREAMING 0x34
#define MT9M114_SYS_STATE_ENTER_SUSPEND 0x40
#define MT9M114_SYS_STATE_SUSPENDED 0x41
#define MT9M114_SYS_STATE_ENTER_STANDBY 0x50
#define MT9M114_SYS_STATE_STANDBY 0x52
#define MT9M114_SYS_STATE_LEAVE_STANDBY 0x54
/* Result status of last SET_STATE comamnd */
#define MT9M114_SET_STATE_RESULT_ENOERR 0x00
#define MT9M114_SET_STATE_RESULT_EINVAL 0x0c
#define MT9M114_SET_STATE_RESULT_ENOSPC 0x0d
/*
* The minimum amount of horizontal and vertical blanking is undocumented. The
* minimum values that have been seen in register lists are 303 and 38, use
* them.
*
* Set the default to achieve 1280x960 at 30fps.
*/
#define MT9M114_MIN_HBLANK 303
#define MT9M114_MIN_VBLANK 38
#define MT9M114_DEF_HBLANK 323
#define MT9M114_DEF_VBLANK 39
#define MT9M114_DEF_FRAME_RATE 30
#define MT9M114_MAX_FRAME_RATE 120
#define MT9M114_PIXEL_ARRAY_WIDTH 1296U
#define MT9M114_PIXEL_ARRAY_HEIGHT 976U
/*
* These values are not well documented and are semi-arbitrary. The pixel array
* minimum output size is 8 pixels larger than the minimum scaler cropped input
* width to account for the demosaicing.
*/
#define MT9M114_PIXEL_ARRAY_MIN_OUTPUT_WIDTH (32U + 8U)
#define MT9M114_PIXEL_ARRAY_MIN_OUTPUT_HEIGHT (32U + 8U)
#define MT9M114_SCALER_CROPPED_INPUT_WIDTH 32U
#define MT9M114_SCALER_CROPPED_INPUT_HEIGHT 32U
/* Indices into the mt9m114.ifp.tpg array. */
#define MT9M114_TPG_PATTERN 0
#define MT9M114_TPG_RED 1
#define MT9M114_TPG_GREEN 2
#define MT9M114_TPG_BLUE 3
/* -----------------------------------------------------------------------------
* Data Structures
*/
enum mt9m114_format_flag {
MT9M114_FMT_FLAG_PARALLEL = BIT(0),
MT9M114_FMT_FLAG_CSI2 = BIT(1),
};
struct mt9m114_format_info {
u32 code;
u32 output_format;
u32 flags;
};
struct mt9m114 {
struct i2c_client *client;
struct regmap *regmap;
struct clk *clk;
struct gpio_desc *reset;
struct regulator_bulk_data supplies[3];
struct v4l2_fwnode_endpoint bus_cfg;
struct {
unsigned int m;
unsigned int n;
unsigned int p;
} pll;
unsigned int pixrate;
bool streaming;
/* Pixel Array */
struct {
struct v4l2_subdev sd;
struct media_pad pad;
struct v4l2_ctrl_handler hdl;
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *gain;
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *vblank;
} pa;
/* Image Flow Processor */
struct {
struct v4l2_subdev sd;
struct media_pad pads[2];
struct v4l2_ctrl_handler hdl;
unsigned int frame_rate;
struct v4l2_ctrl *tpg[4];
} ifp;
};
/* -----------------------------------------------------------------------------
* Formats
*/
static const struct mt9m114_format_info mt9m114_format_infos[] = {
{
/*
* The first two entries are used as defaults, for parallel and
* CSI-2 buses respectively. Keep them in that order.
*/
.code = MEDIA_BUS_FMT_UYVY8_2X8,
.flags = MT9M114_FMT_FLAG_PARALLEL,
.output_format = MT9M114_CAM_OUTPUT_FORMAT_FORMAT_YUV,
}, {
.code = MEDIA_BUS_FMT_UYVY8_1X16,
.flags = MT9M114_FMT_FLAG_CSI2,
.output_format = MT9M114_CAM_OUTPUT_FORMAT_FORMAT_YUV,
}, {
.code = MEDIA_BUS_FMT_YUYV8_2X8,
.flags = MT9M114_FMT_FLAG_PARALLEL,
.output_format = MT9M114_CAM_OUTPUT_FORMAT_FORMAT_YUV
| MT9M114_CAM_OUTPUT_FORMAT_SWAP_BYTES,
}, {
.code = MEDIA_BUS_FMT_YUYV8_1X16,
.flags = MT9M114_FMT_FLAG_CSI2,
.output_format = MT9M114_CAM_OUTPUT_FORMAT_FORMAT_YUV
| MT9M114_CAM_OUTPUT_FORMAT_SWAP_BYTES,
}, {
.code = MEDIA_BUS_FMT_RGB565_2X8_LE,
.flags = MT9M114_FMT_FLAG_PARALLEL,
.output_format = MT9M114_CAM_OUTPUT_FORMAT_RGB_FORMAT_565RGB
| MT9M114_CAM_OUTPUT_FORMAT_FORMAT_RGB
| MT9M114_CAM_OUTPUT_FORMAT_SWAP_BYTES,
}, {
.code = MEDIA_BUS_FMT_RGB565_2X8_BE,
.flags = MT9M114_FMT_FLAG_PARALLEL,
.output_format = MT9M114_CAM_OUTPUT_FORMAT_RGB_FORMAT_565RGB
| MT9M114_CAM_OUTPUT_FORMAT_FORMAT_RGB,
}, {
.code = MEDIA_BUS_FMT_RGB565_1X16,
.flags = MT9M114_FMT_FLAG_CSI2,
.output_format = MT9M114_CAM_OUTPUT_FORMAT_RGB_FORMAT_565RGB
| MT9M114_CAM_OUTPUT_FORMAT_FORMAT_RGB,
}, {
.code = MEDIA_BUS_FMT_SGRBG8_1X8,
.output_format = MT9M114_CAM_OUTPUT_FORMAT_BAYER_FORMAT_PROCESSED8
| MT9M114_CAM_OUTPUT_FORMAT_FORMAT_BAYER,
.flags = MT9M114_FMT_FLAG_PARALLEL | MT9M114_FMT_FLAG_CSI2,
}, {
/* Keep the format compatible with the IFP sink pad last. */
.code = MEDIA_BUS_FMT_SGRBG10_1X10,
.output_format = MT9M114_CAM_OUTPUT_FORMAT_BAYER_FORMAT_RAWR10
| MT9M114_CAM_OUTPUT_FORMAT_FORMAT_BAYER,
.flags = MT9M114_FMT_FLAG_PARALLEL | MT9M114_FMT_FLAG_CSI2,
}
};
static const struct mt9m114_format_info *
mt9m114_default_format_info(struct mt9m114 *sensor)
{
if (sensor->bus_cfg.bus_type == V4L2_MBUS_CSI2_DPHY)
return &mt9m114_format_infos[1];
else
return &mt9m114_format_infos[0];
}
static const struct mt9m114_format_info *
mt9m114_format_info(struct mt9m114 *sensor, unsigned int pad, u32 code)
{
const unsigned int num_formats = ARRAY_SIZE(mt9m114_format_infos);
unsigned int flag;
unsigned int i;
switch (pad) {
case 0:
return &mt9m114_format_infos[num_formats - 1];
case 1:
if (sensor->bus_cfg.bus_type == V4L2_MBUS_CSI2_DPHY)
flag = MT9M114_FMT_FLAG_CSI2;
else
flag = MT9M114_FMT_FLAG_PARALLEL;
for (i = 0; i < num_formats; ++i) {
const struct mt9m114_format_info *info =
&mt9m114_format_infos[i];
if (info->code == code && info->flags & flag)
return info;
}
return mt9m114_default_format_info(sensor);
default:
return NULL;
}
}
/* -----------------------------------------------------------------------------
* Initialization
*/
static const struct cci_reg_sequence mt9m114_init[] = {
{ MT9M114_RESET_REGISTER, MT9M114_RESET_REGISTER_MASK_BAD |
MT9M114_RESET_REGISTER_LOCK_REG |
0x0010 },
/* Sensor optimization */
{ CCI_REG16(0x316a), 0x8270 },
{ CCI_REG16(0x316c), 0x8270 },
{ CCI_REG16(0x3ed0), 0x2305 },
{ CCI_REG16(0x3ed2), 0x77cf },
{ CCI_REG16(0x316e), 0x8202 },
{ CCI_REG16(0x3180), 0x87ff },
{ CCI_REG16(0x30d4), 0x6080 },
{ CCI_REG16(0xa802), 0x0008 },
{ CCI_REG16(0x3e14), 0xff39 },
/* APGA */
{ MT9M114_CAM_PGA_PGA_CONTROL, 0x0000 },
/* Automatic White balance */
{ MT9M114_CAM_AWB_CCM_L(0), 0x0267 },
{ MT9M114_CAM_AWB_CCM_L(1), 0xff1a },
{ MT9M114_CAM_AWB_CCM_L(2), 0xffb3 },
{ MT9M114_CAM_AWB_CCM_L(3), 0xff80 },
{ MT9M114_CAM_AWB_CCM_L(4), 0x0166 },
{ MT9M114_CAM_AWB_CCM_L(5), 0x0003 },
{ MT9M114_CAM_AWB_CCM_L(6), 0xff9a },
{ MT9M114_CAM_AWB_CCM_L(7), 0xfeb4 },
{ MT9M114_CAM_AWB_CCM_L(8), 0x024d },
{ MT9M114_CAM_AWB_CCM_M(0), 0x01bf },
{ MT9M114_CAM_AWB_CCM_M(1), 0xff01 },
{ MT9M114_CAM_AWB_CCM_M(2), 0xfff3 },
{ MT9M114_CAM_AWB_CCM_M(3), 0xff75 },
{ MT9M114_CAM_AWB_CCM_M(4), 0x0198 },
{ MT9M114_CAM_AWB_CCM_M(5), 0xfffd },
{ MT9M114_CAM_AWB_CCM_M(6), 0xff9a },
{ MT9M114_CAM_AWB_CCM_M(7), 0xfee7 },
{ MT9M114_CAM_AWB_CCM_M(8), 0x02a8 },
{ MT9M114_CAM_AWB_CCM_R(0), 0x01d9 },
{ MT9M114_CAM_AWB_CCM_R(1), 0xff26 },
{ MT9M114_CAM_AWB_CCM_R(2), 0xfff3 },
{ MT9M114_CAM_AWB_CCM_R(3), 0xffb3 },
{ MT9M114_CAM_AWB_CCM_R(4), 0x0132 },
{ MT9M114_CAM_AWB_CCM_R(5), 0xffe8 },
{ MT9M114_CAM_AWB_CCM_R(6), 0xffda },
{ MT9M114_CAM_AWB_CCM_R(7), 0xfecd },
{ MT9M114_CAM_AWB_CCM_R(8), 0x02c2 },
{ MT9M114_CAM_AWB_CCM_L_RG_GAIN, 0x0075 },
{ MT9M114_CAM_AWB_CCM_L_BG_GAIN, 0x011c },
{ MT9M114_CAM_AWB_CCM_M_RG_GAIN, 0x009a },
{ MT9M114_CAM_AWB_CCM_M_BG_GAIN, 0x0105 },
{ MT9M114_CAM_AWB_CCM_R_RG_GAIN, 0x00a4 },
{ MT9M114_CAM_AWB_CCM_R_BG_GAIN, 0x00ac },
{ MT9M114_CAM_AWB_CCM_L_CTEMP, 0x0a8c },
{ MT9M114_CAM_AWB_CCM_M_CTEMP, 0x0f0a },
{ MT9M114_CAM_AWB_CCM_R_CTEMP, 0x1964 },
{ MT9M114_CAM_AWB_AWB_XSHIFT_PRE_ADJ, 51 },
{ MT9M114_CAM_AWB_AWB_YSHIFT_PRE_ADJ, 60 },
{ MT9M114_CAM_AWB_AWB_XSCALE, 3 },
{ MT9M114_CAM_AWB_AWB_YSCALE, 2 },
{ MT9M114_CAM_AWB_AWB_WEIGHTS(0), 0x0000 },
{ MT9M114_CAM_AWB_AWB_WEIGHTS(1), 0x0000 },
{ MT9M114_CAM_AWB_AWB_WEIGHTS(2), 0x0000 },
{ MT9M114_CAM_AWB_AWB_WEIGHTS(3), 0xe724 },
{ MT9M114_CAM_AWB_AWB_WEIGHTS(4), 0x1583 },
{ MT9M114_CAM_AWB_AWB_WEIGHTS(5), 0x2045 },
{ MT9M114_CAM_AWB_AWB_WEIGHTS(6), 0x03ff },
{ MT9M114_CAM_AWB_AWB_WEIGHTS(7), 0x007c },
{ MT9M114_CAM_AWB_K_R_L, 0x80 },
{ MT9M114_CAM_AWB_K_G_L, 0x80 },
{ MT9M114_CAM_AWB_K_B_L, 0x80 },
{ MT9M114_CAM_AWB_K_R_R, 0x88 },
{ MT9M114_CAM_AWB_K_G_R, 0x80 },
{ MT9M114_CAM_AWB_K_B_R, 0x80 },
/* Low-Light Image Enhancements */
{ MT9M114_CAM_LL_START_BRIGHTNESS, 0x0020 },
{ MT9M114_CAM_LL_STOP_BRIGHTNESS, 0x009a },
{ MT9M114_CAM_LL_START_GAIN_METRIC, 0x0070 },
{ MT9M114_CAM_LL_STOP_GAIN_METRIC, 0x00f3 },
{ MT9M114_CAM_LL_START_CONTRAST_LUMA_PERCENTAGE, 0x20 },
{ MT9M114_CAM_LL_STOP_CONTRAST_LUMA_PERCENTAGE, 0x9a },
{ MT9M114_CAM_LL_START_SATURATION, 0x80 },
{ MT9M114_CAM_LL_END_SATURATION, 0x4b },
{ MT9M114_CAM_LL_START_DESATURATION, 0x00 },
{ MT9M114_CAM_LL_END_DESATURATION, 0xff },
{ MT9M114_CAM_LL_START_DEMOSAICING, 0x3c },
{ MT9M114_CAM_LL_START_AP_GAIN, 0x02 },
{ MT9M114_CAM_LL_START_AP_THRESH, 0x06 },
{ MT9M114_CAM_LL_STOP_DEMOSAICING, 0x64 },
{ MT9M114_CAM_LL_STOP_AP_GAIN, 0x01 },
{ MT9M114_CAM_LL_STOP_AP_THRESH, 0x0c },
{ MT9M114_CAM_LL_START_NR_RED, 0x3c },
{ MT9M114_CAM_LL_START_NR_GREEN, 0x3c },
{ MT9M114_CAM_LL_START_NR_BLUE, 0x3c },
{ MT9M114_CAM_LL_START_NR_THRESH, 0x0f },
{ MT9M114_CAM_LL_STOP_NR_RED, 0x64 },
{ MT9M114_CAM_LL_STOP_NR_GREEN, 0x64 },
{ MT9M114_CAM_LL_STOP_NR_BLUE, 0x64 },
{ MT9M114_CAM_LL_STOP_NR_THRESH, 0x32 },
{ MT9M114_CAM_LL_START_CONTRAST_BM, 0x0020 },
{ MT9M114_CAM_LL_STOP_CONTRAST_BM, 0x009a },
{ MT9M114_CAM_LL_GAMMA, 0x00dc },
{ MT9M114_CAM_LL_START_CONTRAST_GRADIENT, 0x38 },
{ MT9M114_CAM_LL_STOP_CONTRAST_GRADIENT, 0x30 },
{ MT9M114_CAM_LL_START_CONTRAST_LUMA_PERCENTAGE, 0x50 },
{ MT9M114_CAM_LL_STOP_CONTRAST_LUMA_PERCENTAGE, 0x19 },
{ MT9M114_CAM_LL_START_FADE_TO_BLACK_LUMA, 0x0230 },
{ MT9M114_CAM_LL_STOP_FADE_TO_BLACK_LUMA, 0x0010 },
{ MT9M114_CAM_LL_CLUSTER_DC_TH_BM, 0x01cd },
{ MT9M114_CAM_LL_CLUSTER_DC_GATE_PERCENTAGE, 0x05 },
{ MT9M114_CAM_LL_SUMMING_SENSITIVITY_FACTOR, 0x40 },
/* Auto-Exposure */
{ MT9M114_CAM_AET_TARGET_AVERAGE_LUMA_DARK, 0x1b },
{ MT9M114_CAM_AET_AEMODE, 0x00 },
{ MT9M114_CAM_AET_TARGET_GAIN, 0x0080 },
{ MT9M114_CAM_AET_AE_MAX_VIRT_AGAIN, 0x0100 },
{ MT9M114_CAM_AET_BLACK_CLIPPING_TARGET, 0x005a },
{ MT9M114_CCM_DELTA_GAIN, 0x05 },
{ MT9M114_AE_TRACK_AE_TRACKING_DAMPENING_SPEED, 0x20 },
/* Pixel array timings and integration time */
{ MT9M114_CAM_SENSOR_CFG_ROW_SPEED, 1 },
{ MT9M114_CAM_SENSOR_CFG_FINE_INTEG_TIME_MIN, 219 },
{ MT9M114_CAM_SENSOR_CFG_FINE_INTEG_TIME_MAX, 1459 },
{ MT9M114_CAM_SENSOR_CFG_FINE_CORRECTION, 96 },
{ MT9M114_CAM_SENSOR_CFG_REG_0_DATA, 32 },
/* Miscellaneous settings */
{ MT9M114_PAD_SLEW, 0x0777 },
};
/* -----------------------------------------------------------------------------
* Hardware Configuration
*/
/* Wait for a command to complete. */
static int mt9m114_poll_command(struct mt9m114 *sensor, u32 command)
{
unsigned int i;
u64 value;
int ret;
for (i = 0; i < 100; ++i) {
ret = cci_read(sensor->regmap, MT9M114_COMMAND_REGISTER, &value,
NULL);
if (ret < 0)
return ret;
if (!(value & command))
break;
usleep_range(5000, 6000);
}
if (value & command) {
dev_err(&sensor->client->dev, "Command %u completion timeout\n",
command);
return -ETIMEDOUT;
}
if (!(value & MT9M114_COMMAND_REGISTER_OK)) {
dev_err(&sensor->client->dev, "Command %u failed\n", command);
return -EIO;
}
return 0;
}
/* Wait for a state to be entered. */
static int mt9m114_poll_state(struct mt9m114 *sensor, u32 state)
{
unsigned int i;
u64 value;
int ret;
for (i = 0; i < 100; ++i) {
ret = cci_read(sensor->regmap, MT9M114_SYSMGR_CURRENT_STATE,
&value, NULL);
if (ret < 0)
return ret;
if (value == state)
return 0;
usleep_range(1000, 1500);
}
dev_err(&sensor->client->dev, "Timeout waiting for state 0x%02x\n",
state);
return -ETIMEDOUT;
}
static int mt9m114_set_state(struct mt9m114 *sensor, u8 next_state)
{
int ret = 0;
/* Set the next desired state and start the state transition. */
cci_write(sensor->regmap, MT9M114_SYSMGR_NEXT_STATE, next_state, &ret);
cci_write(sensor->regmap, MT9M114_COMMAND_REGISTER,
MT9M114_COMMAND_REGISTER_OK |
MT9M114_COMMAND_REGISTER_SET_STATE, &ret);
if (ret < 0)
return ret;
/* Wait for the state transition to complete. */
ret = mt9m114_poll_command(sensor, MT9M114_COMMAND_REGISTER_SET_STATE);
if (ret < 0)
return ret;
return 0;
}
static int mt9m114_initialize(struct mt9m114 *sensor)
{
u32 value;
int ret;
ret = cci_multi_reg_write(sensor->regmap, mt9m114_init,
ARRAY_SIZE(mt9m114_init), NULL);
if (ret < 0) {
dev_err(&sensor->client->dev,
"Failed to initialize the sensor\n");
return ret;
}
/* Configure the PLL. */
cci_write(sensor->regmap, MT9M114_CAM_SYSCTL_PLL_ENABLE,
MT9M114_CAM_SYSCTL_PLL_ENABLE_VALUE, &ret);
cci_write(sensor->regmap, MT9M114_CAM_SYSCTL_PLL_DIVIDER_M_N,
MT9M114_CAM_SYSCTL_PLL_DIVIDER_VALUE(sensor->pll.m,
sensor->pll.n),
&ret);
cci_write(sensor->regmap, MT9M114_CAM_SYSCTL_PLL_DIVIDER_P,
MT9M114_CAM_SYSCTL_PLL_DIVIDER_P_VALUE(sensor->pll.p), &ret);
cci_write(sensor->regmap, MT9M114_CAM_SENSOR_CFG_PIXCLK,
sensor->pixrate, &ret);
/* Configure the output mode. */
if (sensor->bus_cfg.bus_type == V4L2_MBUS_CSI2_DPHY) {
value = MT9M114_CAM_PORT_PORT_SELECT_MIPI
| MT9M114_CAM_PORT_CHAN_NUM(0)
| 0x8000;
if (!(sensor->bus_cfg.bus.mipi_csi2.flags &
V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK))
value |= MT9M114_CAM_PORT_CONT_MIPI_CLK;
} else {
value = MT9M114_CAM_PORT_PORT_SELECT_PARALLEL
| 0x8000;
}
cci_write(sensor->regmap, MT9M114_CAM_PORT_OUTPUT_CONTROL, value, &ret);
if (ret < 0)
return ret;
ret = mt9m114_set_state(sensor, MT9M114_SYS_STATE_ENTER_CONFIG_CHANGE);
if (ret < 0)
return ret;
ret = mt9m114_set_state(sensor, MT9M114_SYS_STATE_ENTER_SUSPEND);
if (ret < 0)
return ret;
return 0;
}
static int mt9m114_configure(struct mt9m114 *sensor,
struct v4l2_subdev_state *pa_state,
struct v4l2_subdev_state *ifp_state)
{
const struct v4l2_mbus_framefmt *pa_format;
const struct v4l2_rect *pa_crop;
const struct mt9m114_format_info *ifp_info;
const struct v4l2_mbus_framefmt *ifp_format;
const struct v4l2_rect *ifp_crop;
const struct v4l2_rect *ifp_compose;
unsigned int hratio, vratio;
u64 output_format;
u64 read_mode;
int ret = 0;
pa_format = v4l2_subdev_get_pad_format(&sensor->pa.sd, pa_state, 0);
pa_crop = v4l2_subdev_get_pad_crop(&sensor->pa.sd, pa_state, 0);
ifp_format = v4l2_subdev_get_pad_format(&sensor->ifp.sd, ifp_state, 1);
ifp_info = mt9m114_format_info(sensor, 1, ifp_format->code);
ifp_crop = v4l2_subdev_get_pad_crop(&sensor->ifp.sd, ifp_state, 0);
ifp_compose = v4l2_subdev_get_pad_compose(&sensor->ifp.sd, ifp_state, 0);
ret = cci_read(sensor->regmap, MT9M114_CAM_SENSOR_CONTROL_READ_MODE,
&read_mode, NULL);
if (ret < 0)
return ret;
ret = cci_read(sensor->regmap, MT9M114_CAM_OUTPUT_FORMAT,
&output_format, NULL);
if (ret < 0)
return ret;
hratio = pa_crop->width / pa_format->width;
vratio = pa_crop->height / pa_format->height;
/*
* Pixel array crop and binning. The CAM_SENSOR_CFG_CPIPE_LAST_ROW
* register isn't clearly documented, but is always set to the number
* of active rows minus 4 divided by the vertical binning factor in all
* example sensor modes.
*/
cci_write(sensor->regmap, MT9M114_CAM_SENSOR_CFG_X_ADDR_START,
pa_crop->left, &ret);
cci_write(sensor->regmap, MT9M114_CAM_SENSOR_CFG_Y_ADDR_START,
pa_crop->top, &ret);
cci_write(sensor->regmap, MT9M114_CAM_SENSOR_CFG_X_ADDR_END,
pa_crop->width + pa_crop->left - 1, &ret);
cci_write(sensor->regmap, MT9M114_CAM_SENSOR_CFG_Y_ADDR_END,
pa_crop->height + pa_crop->top - 1, &ret);
cci_write(sensor->regmap, MT9M114_CAM_SENSOR_CFG_CPIPE_LAST_ROW,
(pa_crop->height - 4) / vratio - 1, &ret);
read_mode &= ~(MT9M114_CAM_SENSOR_CONTROL_X_READ_OUT_MASK |
MT9M114_CAM_SENSOR_CONTROL_Y_READ_OUT_MASK);
if (hratio > 1)
read_mode |= MT9M114_CAM_SENSOR_CONTROL_X_READ_OUT_SUMMING;
if (vratio > 1)
read_mode |= MT9M114_CAM_SENSOR_CONTROL_Y_READ_OUT_SUMMING;
cci_write(sensor->regmap, MT9M114_CAM_SENSOR_CONTROL_READ_MODE,
read_mode, &ret);
/*
* Color pipeline (IFP) cropping and scaling. Subtract 4 from the left
* and top coordinates to compensate for the lines and columns removed
* by demosaicing that are taken into account in the crop rectangle but
* not in the hardware.
*/
cci_write(sensor->regmap, MT9M114_CAM_CROP_WINDOW_XOFFSET,
ifp_crop->left - 4, &ret);
cci_write(sensor->regmap, MT9M114_CAM_CROP_WINDOW_YOFFSET,
ifp_crop->top - 4, &ret);
cci_write(sensor->regmap, MT9M114_CAM_CROP_WINDOW_WIDTH,
ifp_crop->width, &ret);
cci_write(sensor->regmap, MT9M114_CAM_CROP_WINDOW_HEIGHT,
ifp_crop->height, &ret);
cci_write(sensor->regmap, MT9M114_CAM_OUTPUT_WIDTH,
ifp_compose->width, &ret);
cci_write(sensor->regmap, MT9M114_CAM_OUTPUT_HEIGHT,
ifp_compose->height, &ret);
/* AWB and AE windows, use the full frame. */
cci_write(sensor->regmap, MT9M114_CAM_STAT_AWB_CLIP_WINDOW_XSTART,
0, &ret);
cci_write(sensor->regmap, MT9M114_CAM_STAT_AWB_CLIP_WINDOW_YSTART,
0, &ret);
cci_write(sensor->regmap, MT9M114_CAM_STAT_AWB_CLIP_WINDOW_XEND,
ifp_compose->width - 1, &ret);
cci_write(sensor->regmap, MT9M114_CAM_STAT_AWB_CLIP_WINDOW_YEND,
ifp_compose->height - 1, &ret);
cci_write(sensor->regmap, MT9M114_CAM_STAT_AE_INITIAL_WINDOW_XSTART,
0, &ret);
cci_write(sensor->regmap, MT9M114_CAM_STAT_AE_INITIAL_WINDOW_YSTART,
0, &ret);
cci_write(sensor->regmap, MT9M114_CAM_STAT_AE_INITIAL_WINDOW_XEND,
ifp_compose->width / 5 - 1, &ret);
cci_write(sensor->regmap, MT9M114_CAM_STAT_AE_INITIAL_WINDOW_YEND,
ifp_compose->height / 5 - 1, &ret);
cci_write(sensor->regmap, MT9M114_CAM_CROP_CROPMODE,
MT9M114_CAM_CROP_MODE_AWB_AUTO_CROP_EN |
MT9M114_CAM_CROP_MODE_AE_AUTO_CROP_EN, &ret);
/* Set the media bus code. */
output_format &= ~(MT9M114_CAM_OUTPUT_FORMAT_RGB_FORMAT_MASK |
MT9M114_CAM_OUTPUT_FORMAT_BAYER_FORMAT_MASK |
MT9M114_CAM_OUTPUT_FORMAT_FORMAT_MASK |
MT9M114_CAM_OUTPUT_FORMAT_SWAP_BYTES |
MT9M114_CAM_OUTPUT_FORMAT_SWAP_RED_BLUE);
output_format |= ifp_info->output_format;
cci_write(sensor->regmap, MT9M114_CAM_OUTPUT_FORMAT,
output_format, &ret);
return ret;
}
static int mt9m114_set_frame_rate(struct mt9m114 *sensor)
{
u16 frame_rate = sensor->ifp.frame_rate << 8;
int ret = 0;
cci_write(sensor->regmap, MT9M114_CAM_AET_MIN_FRAME_RATE,
frame_rate, &ret);
cci_write(sensor->regmap, MT9M114_CAM_AET_MAX_FRAME_RATE,
frame_rate, &ret);
return ret;
}
static int mt9m114_start_streaming(struct mt9m114 *sensor,
struct v4l2_subdev_state *pa_state,
struct v4l2_subdev_state *ifp_state)
{
int ret;
ret = pm_runtime_resume_and_get(&sensor->client->dev);
if (ret)
return ret;
ret = mt9m114_configure(sensor, pa_state, ifp_state);
if (ret)
goto error;
ret = mt9m114_set_frame_rate(sensor);
if (ret)
goto error;
ret = __v4l2_ctrl_handler_setup(&sensor->pa.hdl);
if (ret)
goto error;
ret = __v4l2_ctrl_handler_setup(&sensor->ifp.hdl);
if (ret)
goto error;
/*
* The Change-Config state is transient and moves to the streaming
* state automatically.
*/
ret = mt9m114_set_state(sensor, MT9M114_SYS_STATE_ENTER_CONFIG_CHANGE);
if (ret)
goto error;
sensor->streaming = true;
return 0;
error:
pm_runtime_mark_last_busy(&sensor->client->dev);
pm_runtime_put_autosuspend(&sensor->client->dev);
return ret;
}
static int mt9m114_stop_streaming(struct mt9m114 *sensor)
{
int ret;
sensor->streaming = false;
ret = mt9m114_set_state(sensor, MT9M114_SYS_STATE_ENTER_SUSPEND);
pm_runtime_mark_last_busy(&sensor->client->dev);
pm_runtime_put_autosuspend(&sensor->client->dev);
return ret;
}
/* -----------------------------------------------------------------------------
* Common Subdev Operations
*/
static const struct media_entity_operations mt9m114_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
/* -----------------------------------------------------------------------------
* Pixel Array Control Operations
*/
static inline struct mt9m114 *pa_ctrl_to_mt9m114(struct v4l2_ctrl *ctrl)
{
return container_of(ctrl->handler, struct mt9m114, pa.hdl);
}
static int mt9m114_pa_g_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9m114 *sensor = pa_ctrl_to_mt9m114(ctrl);
u64 value;
int ret;
if (!pm_runtime_get_if_in_use(&sensor->client->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
ret = cci_read(sensor->regmap,
MT9M114_CAM_SENSOR_CONTROL_COARSE_INTEGRATION_TIME,
&value, NULL);
if (ret)
break;
ctrl->val = value;
break;
case V4L2_CID_ANALOGUE_GAIN:
ret = cci_read(sensor->regmap,
MT9M114_CAM_SENSOR_CONTROL_ANALOG_GAIN,
&value, NULL);
if (ret)
break;
ctrl->val = value;
break;
default:
ret = -EINVAL;
break;
}
pm_runtime_mark_last_busy(&sensor->client->dev);
pm_runtime_put_autosuspend(&sensor->client->dev);
return ret;
}
static int mt9m114_pa_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9m114 *sensor = pa_ctrl_to_mt9m114(ctrl);
const struct v4l2_mbus_framefmt *format;
struct v4l2_subdev_state *state;
int ret = 0;
u64 mask;
/* V4L2 controls values are applied only when power is up. */
if (!pm_runtime_get_if_in_use(&sensor->client->dev))
return 0;
state = v4l2_subdev_get_locked_active_state(&sensor->pa.sd);
format = v4l2_subdev_get_pad_format(&sensor->pa.sd, state, 0);
switch (ctrl->id) {
case V4L2_CID_HBLANK:
cci_write(sensor->regmap, MT9M114_CAM_SENSOR_CFG_LINE_LENGTH_PCK,
ctrl->val + format->width, &ret);
break;
case V4L2_CID_VBLANK:
cci_write(sensor->regmap, MT9M114_CAM_SENSOR_CFG_FRAME_LENGTH_LINES,
ctrl->val + format->height, &ret);
break;
case V4L2_CID_EXPOSURE:
cci_write(sensor->regmap,
MT9M114_CAM_SENSOR_CONTROL_COARSE_INTEGRATION_TIME,
ctrl->val, &ret);
break;
case V4L2_CID_ANALOGUE_GAIN:
/*
* The CAM_SENSOR_CONTROL_ANALOG_GAIN contains linear analog
* gain values that are mapped to the GLOBAL_GAIN register
* values by the sensor firmware.
*/
cci_write(sensor->regmap, MT9M114_CAM_SENSOR_CONTROL_ANALOG_GAIN,
ctrl->val, &ret);
break;
case V4L2_CID_HFLIP:
mask = MT9M114_CAM_SENSOR_CONTROL_HORZ_MIRROR_EN;
ret = cci_update_bits(sensor->regmap,
MT9M114_CAM_SENSOR_CONTROL_READ_MODE,
mask, ctrl->val ? mask : 0, NULL);
break;
case V4L2_CID_VFLIP:
mask = MT9M114_CAM_SENSOR_CONTROL_VERT_FLIP_EN;
ret = cci_update_bits(sensor->regmap,
MT9M114_CAM_SENSOR_CONTROL_READ_MODE,
mask, ctrl->val ? mask : 0, NULL);
break;
default:
ret = -EINVAL;
break;
}
pm_runtime_mark_last_busy(&sensor->client->dev);
pm_runtime_put_autosuspend(&sensor->client->dev);
return ret;
}
static const struct v4l2_ctrl_ops mt9m114_pa_ctrl_ops = {
.g_volatile_ctrl = mt9m114_pa_g_ctrl,
.s_ctrl = mt9m114_pa_s_ctrl,
};
static void mt9m114_pa_ctrl_update_exposure(struct mt9m114 *sensor, bool manual)
{
/*
* Update the volatile flag on the manual exposure and gain controls.
* If the controls have switched to manual, read their current value
* from the hardware to ensure that control read and write operations
* will behave correctly
*/
if (manual) {
mt9m114_pa_g_ctrl(sensor->pa.exposure);
sensor->pa.exposure->cur.val = sensor->pa.exposure->val;
sensor->pa.exposure->flags &= ~V4L2_CTRL_FLAG_VOLATILE;
mt9m114_pa_g_ctrl(sensor->pa.gain);
sensor->pa.gain->cur.val = sensor->pa.gain->val;
sensor->pa.gain->flags &= ~V4L2_CTRL_FLAG_VOLATILE;
} else {
sensor->pa.exposure->flags |= V4L2_CTRL_FLAG_VOLATILE;
sensor->pa.gain->flags |= V4L2_CTRL_FLAG_VOLATILE;
}
}
static void mt9m114_pa_ctrl_update_blanking(struct mt9m114 *sensor,
const struct v4l2_mbus_framefmt *format)
{
unsigned int max_blank;
/* Update the blanking controls ranges based on the output size. */
max_blank = MT9M114_CAM_SENSOR_CFG_LINE_LENGTH_PCK_MAX
- format->width;
__v4l2_ctrl_modify_range(sensor->pa.hblank, MT9M114_MIN_HBLANK,
max_blank, 1, MT9M114_DEF_HBLANK);
max_blank = MT9M114_CAM_SENSOR_CFG_FRAME_LENGTH_LINES_MAX
- format->height;
__v4l2_ctrl_modify_range(sensor->pa.vblank, MT9M114_MIN_VBLANK,
max_blank, 1, MT9M114_DEF_VBLANK);
}
/* -----------------------------------------------------------------------------
* Pixel Array Subdev Operations
*/
static inline struct mt9m114 *pa_to_mt9m114(struct v4l2_subdev *sd)
{
return container_of(sd, struct mt9m114, pa.sd);
}
static int mt9m114_pa_init_cfg(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state)
{
struct v4l2_mbus_framefmt *format;
struct v4l2_rect *crop;
crop = v4l2_subdev_get_pad_crop(sd, state, 0);
crop->left = 0;
crop->top = 0;
crop->width = MT9M114_PIXEL_ARRAY_WIDTH;
crop->height = MT9M114_PIXEL_ARRAY_HEIGHT;
format = v4l2_subdev_get_pad_format(sd, state, 0);
format->width = MT9M114_PIXEL_ARRAY_WIDTH;
format->height = MT9M114_PIXEL_ARRAY_HEIGHT;
format->code = MEDIA_BUS_FMT_SGRBG10_1X10;
format->field = V4L2_FIELD_NONE;
format->colorspace = V4L2_COLORSPACE_RAW;
format->ycbcr_enc = V4L2_YCBCR_ENC_601;
format->quantization = V4L2_QUANTIZATION_FULL_RANGE;
format->xfer_func = V4L2_XFER_FUNC_NONE;
return 0;
}
static int mt9m114_pa_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index > 0)
return -EINVAL;
code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
return 0;
}
static int mt9m114_pa_enum_framesizes(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index > 1)
return -EINVAL;
if (fse->code != MEDIA_BUS_FMT_SGRBG10_1X10)
return -EINVAL;
/* Report binning capability through frame size enumeration. */
fse->min_width = MT9M114_PIXEL_ARRAY_WIDTH / (fse->index + 1);
fse->max_width = MT9M114_PIXEL_ARRAY_WIDTH / (fse->index + 1);
fse->min_height = MT9M114_PIXEL_ARRAY_HEIGHT / (fse->index + 1);
fse->max_height = MT9M114_PIXEL_ARRAY_HEIGHT / (fse->index + 1);
return 0;
}
static int mt9m114_pa_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *fmt)
{
struct mt9m114 *sensor = pa_to_mt9m114(sd);
struct v4l2_mbus_framefmt *format;
struct v4l2_rect *crop;
unsigned int hscale;
unsigned int vscale;
crop = v4l2_subdev_get_pad_crop(sd, state, fmt->pad);
format = v4l2_subdev_get_pad_format(sd, state, fmt->pad);
/* The sensor can bin horizontally and vertically. */
hscale = DIV_ROUND_CLOSEST(crop->width, fmt->format.width ? : 1);
vscale = DIV_ROUND_CLOSEST(crop->height, fmt->format.height ? : 1);
format->width = crop->width / clamp(hscale, 1U, 2U);
format->height = crop->height / clamp(vscale, 1U, 2U);
fmt->format = *format;
if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
mt9m114_pa_ctrl_update_blanking(sensor, format);
return 0;
}
static int mt9m114_pa_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_selection *sel)
{
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
sel->r = *v4l2_subdev_get_pad_crop(sd, state, sel->pad);
return 0;
case V4L2_SEL_TGT_CROP_DEFAULT:
case V4L2_SEL_TGT_CROP_BOUNDS:
case V4L2_SEL_TGT_NATIVE_SIZE:
sel->r.left = 0;
sel->r.top = 0;
sel->r.width = MT9M114_PIXEL_ARRAY_WIDTH;
sel->r.height = MT9M114_PIXEL_ARRAY_HEIGHT;
return 0;
default:
return -EINVAL;
}
}
static int mt9m114_pa_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_selection *sel)
{
struct mt9m114 *sensor = pa_to_mt9m114(sd);
struct v4l2_mbus_framefmt *format;
struct v4l2_rect *crop;
if (sel->target != V4L2_SEL_TGT_CROP)
return -EINVAL;
crop = v4l2_subdev_get_pad_crop(sd, state, sel->pad);
format = v4l2_subdev_get_pad_format(sd, state, sel->pad);
/*
* Clamp the crop rectangle. The vertical coordinates must be even, and
* the horizontal coordinates must be a multiple of 4.
*
* FIXME: The horizontal coordinates must be a multiple of 8 when
* binning, but binning is configured after setting the selection, so
* we can't know tell here if it will be used.
*/
crop->left = ALIGN(sel->r.left, 4);
crop->top = ALIGN(sel->r.top, 2);
crop->width = clamp_t(unsigned int, ALIGN(sel->r.width, 4),
MT9M114_PIXEL_ARRAY_MIN_OUTPUT_WIDTH,
MT9M114_PIXEL_ARRAY_WIDTH - crop->left);
crop->height = clamp_t(unsigned int, ALIGN(sel->r.height, 2),
MT9M114_PIXEL_ARRAY_MIN_OUTPUT_HEIGHT,
MT9M114_PIXEL_ARRAY_HEIGHT - crop->top);
sel->r = *crop;
/* Reset the format. */
format->width = crop->width;
format->height = crop->height;
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
mt9m114_pa_ctrl_update_blanking(sensor, format);
return 0;
}
static const struct v4l2_subdev_pad_ops mt9m114_pa_pad_ops = {
.init_cfg = mt9m114_pa_init_cfg,
.enum_mbus_code = mt9m114_pa_enum_mbus_code,
.enum_frame_size = mt9m114_pa_enum_framesizes,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = mt9m114_pa_set_fmt,
.get_selection = mt9m114_pa_get_selection,
.set_selection = mt9m114_pa_set_selection,
};
static const struct v4l2_subdev_ops mt9m114_pa_ops = {
.pad = &mt9m114_pa_pad_ops,
};
static int mt9m114_pa_init(struct mt9m114 *sensor)
{
struct v4l2_ctrl_handler *hdl = &sensor->pa.hdl;
struct v4l2_subdev *sd = &sensor->pa.sd;
struct media_pad *pads = &sensor->pa.pad;
const struct v4l2_mbus_framefmt *format;
struct v4l2_subdev_state *state;
unsigned int max_exposure;
int ret;
/* Initialize the subdev. */
v4l2_subdev_init(sd, &mt9m114_pa_ops);
v4l2_i2c_subdev_set_name(sd, sensor->client, NULL, " pixel array");
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
sd->owner = THIS_MODULE;
sd->dev = &sensor->client->dev;
v4l2_set_subdevdata(sd, sensor->client);
/* Initialize the media entity. */
sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
sd->entity.ops = &mt9m114_entity_ops;
pads[0].flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&sd->entity, 1, pads);
if (ret < 0)
return ret;
/* Initialize the control handler. */
v4l2_ctrl_handler_init(hdl, 7);
/* The range of the HBLANK and VBLANK controls will be updated below. */
sensor->pa.hblank = v4l2_ctrl_new_std(hdl, &mt9m114_pa_ctrl_ops,
V4L2_CID_HBLANK,
MT9M114_DEF_HBLANK,
MT9M114_DEF_HBLANK, 1,
MT9M114_DEF_HBLANK);
sensor->pa.vblank = v4l2_ctrl_new_std(hdl, &mt9m114_pa_ctrl_ops,
V4L2_CID_VBLANK,
MT9M114_DEF_VBLANK,
MT9M114_DEF_VBLANK, 1,
MT9M114_DEF_VBLANK);
/*
* The maximum coarse integration time is the frame length in lines
* minus two. The default is taken directly from the datasheet, but
* makes little sense as auto-exposure is enabled by default.
*/
max_exposure = MT9M114_PIXEL_ARRAY_HEIGHT + MT9M114_MIN_VBLANK - 2;
sensor->pa.exposure = v4l2_ctrl_new_std(hdl, &mt9m114_pa_ctrl_ops,
V4L2_CID_EXPOSURE, 1,
max_exposure, 1, 16);
if (sensor->pa.exposure)
sensor->pa.exposure->flags |= V4L2_CTRL_FLAG_VOLATILE;
sensor->pa.gain = v4l2_ctrl_new_std(hdl, &mt9m114_pa_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN, 1,
511, 1, 32);
if (sensor->pa.gain)
sensor->pa.gain->flags |= V4L2_CTRL_FLAG_VOLATILE;
v4l2_ctrl_new_std(hdl, &mt9m114_pa_ctrl_ops,
V4L2_CID_PIXEL_RATE,
sensor->pixrate, sensor->pixrate, 1,
sensor->pixrate);
v4l2_ctrl_new_std(hdl, &mt9m114_pa_ctrl_ops,
V4L2_CID_HFLIP,
0, 1, 1, 0);
v4l2_ctrl_new_std(hdl, &mt9m114_pa_ctrl_ops,
V4L2_CID_VFLIP,
0, 1, 1, 0);
if (hdl->error) {
ret = hdl->error;
goto error;
}
sd->state_lock = hdl->lock;
ret = v4l2_subdev_init_finalize(sd);
if (ret)
goto error;
/* Update the range of the blanking controls based on the format. */
state = v4l2_subdev_lock_and_get_active_state(sd);
format = v4l2_subdev_get_pad_format(sd, state, 0);
mt9m114_pa_ctrl_update_blanking(sensor, format);
v4l2_subdev_unlock_state(state);
sd->ctrl_handler = hdl;
return 0;
error:
v4l2_ctrl_handler_free(&sensor->pa.hdl);
media_entity_cleanup(&sensor->pa.sd.entity);
return ret;
}
static void mt9m114_pa_cleanup(struct mt9m114 *sensor)
{
v4l2_ctrl_handler_free(&sensor->pa.hdl);
media_entity_cleanup(&sensor->pa.sd.entity);
}
/* -----------------------------------------------------------------------------
* Image Flow Processor Control Operations
*/
static const char * const mt9m114_test_pattern_menu[] = {
"Disabled",
"Solid Color",
"100% Color Bars",
"Pseudo-Random",
"Fade-to-Gray Color Bars",
"Walking Ones 10-bit",
"Walking Ones 8-bit",
};
/* Keep in sync with mt9m114_test_pattern_menu */
static const unsigned int mt9m114_test_pattern_value[] = {
MT9M114_CAM_MODE_TEST_PATTERN_SELECT_SOLID,
MT9M114_CAM_MODE_TEST_PATTERN_SELECT_SOLID_BARS,
MT9M114_CAM_MODE_TEST_PATTERN_SELECT_RANDOM,
MT9M114_CAM_MODE_TEST_PATTERN_SELECT_FADING_BARS,
MT9M114_CAM_MODE_TEST_PATTERN_SELECT_WALKING_1S_10B,
MT9M114_CAM_MODE_TEST_PATTERN_SELECT_WALKING_1S_8B,
};
static inline struct mt9m114 *ifp_ctrl_to_mt9m114(struct v4l2_ctrl *ctrl)
{
return container_of(ctrl->handler, struct mt9m114, ifp.hdl);
}
static int mt9m114_ifp_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9m114 *sensor = ifp_ctrl_to_mt9m114(ctrl);
u32 value;
int ret = 0;
if (ctrl->id == V4L2_CID_EXPOSURE_AUTO)
mt9m114_pa_ctrl_update_exposure(sensor,
ctrl->val != V4L2_EXPOSURE_AUTO);
/* V4L2 controls values are applied only when power is up. */
if (!pm_runtime_get_if_in_use(&sensor->client->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_AUTO_WHITE_BALANCE:
/* Control both the AWB mode and the CCM algorithm. */
if (ctrl->val)
value = MT9M114_CAM_AWB_MODE_AUTO
| MT9M114_CAM_AWB_MODE_EXCLUSIVE_AE;
else
value = 0;
cci_write(sensor->regmap, MT9M114_CAM_AWB_AWBMODE, value, &ret);
if (ctrl->val)
value = MT9M114_CCM_EXEC_CALC_CCM_MATRIX | 0x22;
else
value = 0;
cci_write(sensor->regmap, MT9M114_CCM_ALGO, value, &ret);
break;
case V4L2_CID_EXPOSURE_AUTO:
if (ctrl->val == V4L2_EXPOSURE_AUTO)
value = MT9M114_AE_TRACK_EXEC_AUTOMATIC_EXPOSURE
| 0x00fe;
else
value = 0;
cci_write(sensor->regmap, MT9M114_AE_TRACK_ALGO, value, &ret);
if (ret)
break;
break;
case V4L2_CID_TEST_PATTERN:
case V4L2_CID_TEST_PATTERN_RED:
case V4L2_CID_TEST_PATTERN_GREENR:
case V4L2_CID_TEST_PATTERN_BLUE: {
unsigned int pattern = sensor->ifp.tpg[MT9M114_TPG_PATTERN]->val;
if (pattern) {
cci_write(sensor->regmap, MT9M114_CAM_MODE_SELECT,
MT9M114_CAM_MODE_SELECT_TEST_PATTERN, &ret);
cci_write(sensor->regmap,
MT9M114_CAM_MODE_TEST_PATTERN_SELECT,
mt9m114_test_pattern_value[pattern - 1], &ret);
cci_write(sensor->regmap,
MT9M114_CAM_MODE_TEST_PATTERN_RED,
sensor->ifp.tpg[MT9M114_TPG_RED]->val, &ret);
cci_write(sensor->regmap,
MT9M114_CAM_MODE_TEST_PATTERN_GREEN,
sensor->ifp.tpg[MT9M114_TPG_GREEN]->val, &ret);
cci_write(sensor->regmap,
MT9M114_CAM_MODE_TEST_PATTERN_BLUE,
sensor->ifp.tpg[MT9M114_TPG_BLUE]->val, &ret);
} else {
cci_write(sensor->regmap, MT9M114_CAM_MODE_SELECT,
MT9M114_CAM_MODE_SELECT_NORMAL, &ret);
}
/*
* A Config-Change needs to be issued for the change to take
* effect. If we're not streaming ignore this, the change will
* be applied when the stream is started.
*/
if (ret || !sensor->streaming)
break;
ret = mt9m114_set_state(sensor,
MT9M114_SYS_STATE_ENTER_CONFIG_CHANGE);
break;
}
default:
ret = -EINVAL;
break;
}
pm_runtime_mark_last_busy(&sensor->client->dev);
pm_runtime_put_autosuspend(&sensor->client->dev);
return ret;
}
static const struct v4l2_ctrl_ops mt9m114_ifp_ctrl_ops = {
.s_ctrl = mt9m114_ifp_s_ctrl,
};
/* -----------------------------------------------------------------------------
* Image Flow Processor Subdev Operations
*/
static inline struct mt9m114 *ifp_to_mt9m114(struct v4l2_subdev *sd)
{
return container_of(sd, struct mt9m114, ifp.sd);
}
static int mt9m114_ifp_s_stream(struct v4l2_subdev *sd, int enable)
{
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
struct v4l2_subdev_state *pa_state;
struct v4l2_subdev_state *ifp_state;
int ret;
if (!enable)
return mt9m114_stop_streaming(sensor);
ifp_state = v4l2_subdev_lock_and_get_active_state(&sensor->ifp.sd);
pa_state = v4l2_subdev_lock_and_get_active_state(&sensor->pa.sd);
ret = mt9m114_start_streaming(sensor, pa_state, ifp_state);
v4l2_subdev_unlock_state(pa_state);
v4l2_subdev_unlock_state(ifp_state);
return ret;
}
static int mt9m114_ifp_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *interval)
{
struct v4l2_fract *ival = &interval->interval;
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
mutex_lock(sensor->ifp.hdl.lock);
ival->numerator = 1;
ival->denominator = sensor->ifp.frame_rate;
mutex_unlock(sensor->ifp.hdl.lock);
return 0;
}
static int mt9m114_ifp_s_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *interval)
{
struct v4l2_fract *ival = &interval->interval;
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
int ret = 0;
mutex_lock(sensor->ifp.hdl.lock);
if (ival->numerator != 0 && ival->denominator != 0)
sensor->ifp.frame_rate = min_t(unsigned int,
ival->denominator / ival->numerator,
MT9M114_MAX_FRAME_RATE);
else
sensor->ifp.frame_rate = MT9M114_MAX_FRAME_RATE;
ival->numerator = 1;
ival->denominator = sensor->ifp.frame_rate;
if (sensor->streaming)
ret = mt9m114_set_frame_rate(sensor);
mutex_unlock(sensor->ifp.hdl.lock);
return ret;
}
static int mt9m114_ifp_init_cfg(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state)
{
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
struct v4l2_mbus_framefmt *format;
struct v4l2_rect *crop;
struct v4l2_rect *compose;
format = v4l2_subdev_get_pad_format(sd, state, 0);
format->width = MT9M114_PIXEL_ARRAY_WIDTH;
format->height = MT9M114_PIXEL_ARRAY_HEIGHT;
format->code = MEDIA_BUS_FMT_SGRBG10_1X10;
format->field = V4L2_FIELD_NONE;
format->colorspace = V4L2_COLORSPACE_RAW;
format->ycbcr_enc = V4L2_YCBCR_ENC_601;
format->quantization = V4L2_QUANTIZATION_FULL_RANGE;
format->xfer_func = V4L2_XFER_FUNC_NONE;
crop = v4l2_subdev_get_pad_crop(sd, state, 0);
crop->left = 4;
crop->top = 4;
crop->width = format->width - 8;
crop->height = format->height - 8;
compose = v4l2_subdev_get_pad_compose(sd, state, 0);
compose->left = 0;
compose->top = 0;
compose->width = crop->width;
compose->height = crop->height;
format = v4l2_subdev_get_pad_format(sd, state, 1);
format->width = compose->width;
format->height = compose->height;
format->code = mt9m114_default_format_info(sensor)->code;
format->field = V4L2_FIELD_NONE;
format->colorspace = V4L2_COLORSPACE_SRGB;
format->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
format->quantization = V4L2_QUANTIZATION_DEFAULT;
format->xfer_func = V4L2_XFER_FUNC_DEFAULT;
return 0;
}
static int mt9m114_ifp_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_mbus_code_enum *code)
{
const unsigned int num_formats = ARRAY_SIZE(mt9m114_format_infos);
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
unsigned int index = 0;
unsigned int flag;
unsigned int i;
switch (code->pad) {
case 0:
if (code->index != 0)
return -EINVAL;
code->code = mt9m114_format_infos[num_formats - 1].code;
return 0;
case 1:
if (sensor->bus_cfg.bus_type == V4L2_MBUS_CSI2_DPHY)
flag = MT9M114_FMT_FLAG_CSI2;
else
flag = MT9M114_FMT_FLAG_PARALLEL;
for (i = 0; i < num_formats; ++i) {
const struct mt9m114_format_info *info =
&mt9m114_format_infos[i];
if (info->flags & flag) {
if (index == code->index) {
code->code = info->code;
return 0;
}
index++;
}
}
return -EINVAL;
default:
return -EINVAL;
}
}
static int mt9m114_ifp_enum_framesizes(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_frame_size_enum *fse)
{
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
const struct mt9m114_format_info *info;
if (fse->index > 0)
return -EINVAL;
info = mt9m114_format_info(sensor, fse->pad, fse->code);
if (!info || info->code != fse->code)
return -EINVAL;
if (fse->pad == 0) {
fse->min_width = MT9M114_PIXEL_ARRAY_MIN_OUTPUT_WIDTH;
fse->max_width = MT9M114_PIXEL_ARRAY_WIDTH;
fse->min_height = MT9M114_PIXEL_ARRAY_MIN_OUTPUT_HEIGHT;
fse->max_height = MT9M114_PIXEL_ARRAY_HEIGHT;
} else {
const struct v4l2_rect *crop;
crop = v4l2_subdev_get_pad_crop(sd, state, 0);
fse->max_width = crop->width;
fse->max_height = crop->height;
fse->min_width = fse->max_width / 4;
fse->min_height = fse->max_height / 4;
}
return 0;
}
static int mt9m114_ifp_enum_frameintervals(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
const struct mt9m114_format_info *info;
if (fie->index > 0)
return -EINVAL;
info = mt9m114_format_info(sensor, fie->pad, fie->code);
if (!info || info->code != fie->code)
return -EINVAL;
fie->interval.numerator = 1;
fie->interval.denominator = MT9M114_MAX_FRAME_RATE;
return 0;
}
static int mt9m114_ifp_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *fmt)
{
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
struct v4l2_mbus_framefmt *format;
format = v4l2_subdev_get_pad_format(sd, state, fmt->pad);
if (fmt->pad == 0) {
/* Only the size can be changed on the sink pad. */
format->width = clamp(ALIGN(fmt->format.width, 8),
MT9M114_PIXEL_ARRAY_MIN_OUTPUT_WIDTH,
MT9M114_PIXEL_ARRAY_WIDTH);
format->height = clamp(ALIGN(fmt->format.height, 8),
MT9M114_PIXEL_ARRAY_MIN_OUTPUT_HEIGHT,
MT9M114_PIXEL_ARRAY_HEIGHT);
} else {
const struct mt9m114_format_info *info;
/* Only the media bus code can be changed on the source pad. */
info = mt9m114_format_info(sensor, 1, fmt->format.code);
format->code = info->code;
/* If the output format is RAW10, bypass the scaler. */
if (format->code == MEDIA_BUS_FMT_SGRBG10_1X10)
*format = *v4l2_subdev_get_pad_format(sd, state, 0);
}
fmt->format = *format;
return 0;
}
static int mt9m114_ifp_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_selection *sel)
{
const struct v4l2_mbus_framefmt *format;
const struct v4l2_rect *crop;
int ret = 0;
/* Crop and compose are only supported on the sink pad. */
if (sel->pad != 0)
return -EINVAL;
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
sel->r = *v4l2_subdev_get_pad_crop(sd, state, 0);
break;
case V4L2_SEL_TGT_CROP_DEFAULT:
case V4L2_SEL_TGT_CROP_BOUNDS:
/*
* The crop default and bounds are equal to the sink
* format size minus 4 pixels on each side for demosaicing.
*/
format = v4l2_subdev_get_pad_format(sd, state, 0);
sel->r.left = 4;
sel->r.top = 4;
sel->r.width = format->width - 8;
sel->r.height = format->height - 8;
break;
case V4L2_SEL_TGT_COMPOSE:
sel->r = *v4l2_subdev_get_pad_compose(sd, state, 0);
break;
case V4L2_SEL_TGT_COMPOSE_DEFAULT:
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
/*
* The compose default and bounds sizes are equal to the sink
* crop rectangle size.
*/
crop = v4l2_subdev_get_pad_crop(sd, state, 0);
sel->r.left = 0;
sel->r.top = 0;
sel->r.width = crop->width;
sel->r.height = crop->height;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int mt9m114_ifp_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_selection *sel)
{
struct v4l2_mbus_framefmt *format;
struct v4l2_rect *crop;
struct v4l2_rect *compose;
if (sel->target != V4L2_SEL_TGT_CROP &&
sel->target != V4L2_SEL_TGT_COMPOSE)
return -EINVAL;
/* Crop and compose are only supported on the sink pad. */
if (sel->pad != 0)
return -EINVAL;
format = v4l2_subdev_get_pad_format(sd, state, 0);
crop = v4l2_subdev_get_pad_crop(sd, state, 0);
compose = v4l2_subdev_get_pad_compose(sd, state, 0);
if (sel->target == V4L2_SEL_TGT_CROP) {
/*
* Clamp the crop rectangle. Demosaicing removes 4 pixels on
* each side of the image.
*/
crop->left = clamp_t(unsigned int, ALIGN(sel->r.left, 2), 4,
format->width - 4 -
MT9M114_SCALER_CROPPED_INPUT_WIDTH);
crop->top = clamp_t(unsigned int, ALIGN(sel->r.top, 2), 4,
format->height - 4 -
MT9M114_SCALER_CROPPED_INPUT_HEIGHT);
crop->width = clamp_t(unsigned int, ALIGN(sel->r.width, 2),
MT9M114_SCALER_CROPPED_INPUT_WIDTH,
format->width - 4 - crop->left);
crop->height = clamp_t(unsigned int, ALIGN(sel->r.height, 2),
MT9M114_SCALER_CROPPED_INPUT_HEIGHT,
format->height - 4 - crop->top);
sel->r = *crop;
/* Propagate to the compose rectangle. */
compose->width = crop->width;
compose->height = crop->height;
} else {
/*
* Clamp the compose rectangle. The scaler can only downscale.
*/
compose->left = 0;
compose->top = 0;
compose->width = clamp_t(unsigned int, ALIGN(sel->r.width, 2),
MT9M114_SCALER_CROPPED_INPUT_WIDTH,
crop->width);
compose->height = clamp_t(unsigned int, ALIGN(sel->r.height, 2),
MT9M114_SCALER_CROPPED_INPUT_HEIGHT,
crop->height);
sel->r = *compose;
}
/* Propagate the compose rectangle to the source format. */
format = v4l2_subdev_get_pad_format(sd, state, 1);
format->width = compose->width;
format->height = compose->height;
return 0;
}
static void mt9m114_ifp_unregistered(struct v4l2_subdev *sd)
{
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
v4l2_device_unregister_subdev(&sensor->pa.sd);
}
static int mt9m114_ifp_registered(struct v4l2_subdev *sd)
{
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
int ret;
ret = v4l2_device_register_subdev(sd->v4l2_dev, &sensor->pa.sd);
if (ret < 0) {
dev_err(&sensor->client->dev,
"Failed to register pixel array subdev\n");
return ret;
}
ret = media_create_pad_link(&sensor->pa.sd.entity, 0,
&sensor->ifp.sd.entity, 0,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
if (ret < 0) {
dev_err(&sensor->client->dev,
"Failed to link pixel array to ifp\n");
v4l2_device_unregister_subdev(&sensor->pa.sd);
return ret;
}
return 0;
}
static const struct v4l2_subdev_video_ops mt9m114_ifp_video_ops = {
.s_stream = mt9m114_ifp_s_stream,
.g_frame_interval = mt9m114_ifp_g_frame_interval,
.s_frame_interval = mt9m114_ifp_s_frame_interval,
};
static const struct v4l2_subdev_pad_ops mt9m114_ifp_pad_ops = {
.init_cfg = mt9m114_ifp_init_cfg,
.enum_mbus_code = mt9m114_ifp_enum_mbus_code,
.enum_frame_size = mt9m114_ifp_enum_framesizes,
.enum_frame_interval = mt9m114_ifp_enum_frameintervals,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = mt9m114_ifp_set_fmt,
.get_selection = mt9m114_ifp_get_selection,
.set_selection = mt9m114_ifp_set_selection,
};
static const struct v4l2_subdev_ops mt9m114_ifp_ops = {
.video = &mt9m114_ifp_video_ops,
.pad = &mt9m114_ifp_pad_ops,
};
static const struct v4l2_subdev_internal_ops mt9m114_ifp_internal_ops = {
.registered = mt9m114_ifp_registered,
.unregistered = mt9m114_ifp_unregistered,
};
static int mt9m114_ifp_init(struct mt9m114 *sensor)
{
struct v4l2_subdev *sd = &sensor->ifp.sd;
struct media_pad *pads = sensor->ifp.pads;
struct v4l2_ctrl_handler *hdl = &sensor->ifp.hdl;
struct v4l2_ctrl *link_freq;
int ret;
/* Initialize the subdev. */
v4l2_i2c_subdev_init(sd, sensor->client, &mt9m114_ifp_ops);
v4l2_i2c_subdev_set_name(sd, sensor->client, NULL, " ifp");
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
sd->internal_ops = &mt9m114_ifp_internal_ops;
/* Initialize the media entity. */
sd->entity.function = MEDIA_ENT_F_PROC_VIDEO_ISP;
sd->entity.ops = &mt9m114_entity_ops;
pads[0].flags = MEDIA_PAD_FL_SINK;
pads[1].flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&sd->entity, 2, pads);
if (ret < 0)
return ret;
sensor->ifp.frame_rate = MT9M114_DEF_FRAME_RATE;
/* Initialize the control handler. */
v4l2_ctrl_handler_init(hdl, 8);
v4l2_ctrl_new_std(hdl, &mt9m114_ifp_ctrl_ops,
V4L2_CID_AUTO_WHITE_BALANCE,
0, 1, 1, 1);
v4l2_ctrl_new_std_menu(hdl, &mt9m114_ifp_ctrl_ops,
V4L2_CID_EXPOSURE_AUTO,
V4L2_EXPOSURE_MANUAL, 0,
V4L2_EXPOSURE_AUTO);
link_freq = v4l2_ctrl_new_int_menu(hdl, &mt9m114_ifp_ctrl_ops,
V4L2_CID_LINK_FREQ,
sensor->bus_cfg.nr_of_link_frequencies - 1,
0, sensor->bus_cfg.link_frequencies);
if (link_freq)
link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY;
v4l2_ctrl_new_std(hdl, &mt9m114_ifp_ctrl_ops,
V4L2_CID_PIXEL_RATE,
sensor->pixrate, sensor->pixrate, 1,
sensor->pixrate);
sensor->ifp.tpg[MT9M114_TPG_PATTERN] =
v4l2_ctrl_new_std_menu_items(hdl, &mt9m114_ifp_ctrl_ops,
V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(mt9m114_test_pattern_menu) - 1,
0, 0, mt9m114_test_pattern_menu);
sensor->ifp.tpg[MT9M114_TPG_RED] =
v4l2_ctrl_new_std(hdl, &mt9m114_ifp_ctrl_ops,
V4L2_CID_TEST_PATTERN_RED,
0, 1023, 1, 1023);
sensor->ifp.tpg[MT9M114_TPG_GREEN] =
v4l2_ctrl_new_std(hdl, &mt9m114_ifp_ctrl_ops,
V4L2_CID_TEST_PATTERN_GREENR,
0, 1023, 1, 1023);
sensor->ifp.tpg[MT9M114_TPG_BLUE] =
v4l2_ctrl_new_std(hdl, &mt9m114_ifp_ctrl_ops,
V4L2_CID_TEST_PATTERN_BLUE,
0, 1023, 1, 1023);
v4l2_ctrl_cluster(ARRAY_SIZE(sensor->ifp.tpg), sensor->ifp.tpg);
if (hdl->error) {
ret = hdl->error;
goto error;
}
sd->ctrl_handler = hdl;
sd->state_lock = hdl->lock;
ret = v4l2_subdev_init_finalize(sd);
if (ret)
goto error;
return 0;
error:
v4l2_ctrl_handler_free(&sensor->ifp.hdl);
media_entity_cleanup(&sensor->ifp.sd.entity);
return ret;
}
static void mt9m114_ifp_cleanup(struct mt9m114 *sensor)
{
v4l2_ctrl_handler_free(&sensor->ifp.hdl);
media_entity_cleanup(&sensor->ifp.sd.entity);
}
/* -----------------------------------------------------------------------------
* Power Management
*/
static int mt9m114_power_on(struct mt9m114 *sensor)
{
int ret;
/* Enable power and clocks. */
ret = regulator_bulk_enable(ARRAY_SIZE(sensor->supplies),
sensor->supplies);
if (ret < 0)
return ret;
ret = clk_prepare_enable(sensor->clk);
if (ret < 0)
goto error_regulator;
/* Perform a hard reset if available, or a soft reset otherwise. */
if (sensor->reset) {
long freq = clk_get_rate(sensor->clk);
unsigned int duration;
/*
* The minimum duration is 50 clock cycles, thus typically
* around 2µs. Double it to be safe.
*/
duration = DIV_ROUND_UP(2 * 50 * 1000000, freq);
gpiod_set_value(sensor->reset, 1);
udelay(duration);
gpiod_set_value(sensor->reset, 0);
} else {
/*
* The power may have just been turned on, we need to wait for
* the sensor to be ready to accept I2C commands.
*/
usleep_range(44500, 50000);
cci_write(sensor->regmap, MT9M114_RESET_AND_MISC_CONTROL,
MT9M114_RESET_SOC, &ret);
cci_write(sensor->regmap, MT9M114_RESET_AND_MISC_CONTROL, 0,
&ret);
if (ret < 0) {
dev_err(&sensor->client->dev, "Soft reset failed\n");
goto error_clock;
}
}
/*
* Wait for the sensor to be ready to accept I2C commands by polling the
* command register to wait for initialization to complete.
*/
usleep_range(44500, 50000);
ret = mt9m114_poll_command(sensor, MT9M114_COMMAND_REGISTER_SET_STATE);
if (ret < 0)
goto error_clock;
if (sensor->bus_cfg.bus_type == V4L2_MBUS_PARALLEL) {
/*
* In parallel mode (OE set to low), the sensor will enter the
* streaming state after initialization. Enter the standby
* manually to stop streaming.
*/
ret = mt9m114_set_state(sensor,
MT9M114_SYS_STATE_ENTER_STANDBY);
if (ret < 0)
goto error_clock;
}
/*
* Before issuing any Set-State command, we must ensure that the sensor
* reaches the standby mode (either initiated manually above in
* parallel mode, or automatically after reset in MIPI mode).
*/
ret = mt9m114_poll_state(sensor, MT9M114_SYS_STATE_STANDBY);
if (ret < 0)
goto error_clock;
return 0;
error_clock:
clk_disable_unprepare(sensor->clk);
error_regulator:
regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
return ret;
}
static void mt9m114_power_off(struct mt9m114 *sensor)
{
clk_disable_unprepare(sensor->clk);
regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
}
static int __maybe_unused mt9m114_runtime_resume(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
int ret;
ret = mt9m114_power_on(sensor);
if (ret)
return ret;
ret = mt9m114_initialize(sensor);
if (ret) {
mt9m114_power_off(sensor);
return ret;
}
return 0;
}
static int __maybe_unused mt9m114_runtime_suspend(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
mt9m114_power_off(sensor);
return 0;
}
static const struct dev_pm_ops mt9m114_pm_ops = {
SET_RUNTIME_PM_OPS(mt9m114_runtime_suspend, mt9m114_runtime_resume, NULL)
};
/* -----------------------------------------------------------------------------
* Probe & Remove
*/
static int mt9m114_clk_init(struct mt9m114 *sensor)
{
unsigned int link_freq;
/* Hardcode the PLL multiplier and dividers to default settings. */
sensor->pll.m = 32;
sensor->pll.n = 1;
sensor->pll.p = 7;
/*
* Calculate the pixel rate and link frequency. The CSI-2 bus is clocked
* for 16-bit per pixel, transmitted in DDR over a single lane. For
* parallel mode, the sensor ouputs one pixel in two PIXCLK cycles.
*/
sensor->pixrate = clk_get_rate(sensor->clk) * sensor->pll.m
/ ((sensor->pll.n + 1) * (sensor->pll.p + 1));
link_freq = sensor->bus_cfg.bus_type == V4L2_MBUS_CSI2_DPHY
? sensor->pixrate * 8 : sensor->pixrate * 2;
if (sensor->bus_cfg.nr_of_link_frequencies != 1 ||
sensor->bus_cfg.link_frequencies[0] != link_freq) {
dev_err(&sensor->client->dev, "Unsupported DT link-frequencies\n");
return -EINVAL;
}
return 0;
}
static int mt9m114_identify(struct mt9m114 *sensor)
{
u64 major, minor, release, customer;
u64 value;
int ret;
ret = cci_read(sensor->regmap, MT9M114_CHIP_ID, &value, NULL);
if (ret) {
dev_err(&sensor->client->dev, "Failed to read chip ID\n");
return -ENXIO;
}
if (value != 0x2481) {
dev_err(&sensor->client->dev, "Invalid chip ID 0x%04llx\n",
value);
return -ENXIO;
}
cci_read(sensor->regmap, MT9M114_MON_MAJOR_VERSION, &major, &ret);
cci_read(sensor->regmap, MT9M114_MON_MINOR_VERSION, &minor, &ret);
cci_read(sensor->regmap, MT9M114_MON_RELEASE_VERSION, &release, &ret);
cci_read(sensor->regmap, MT9M114_CUSTOMER_REV, &customer, &ret);
if (ret) {
dev_err(&sensor->client->dev, "Failed to read version\n");
return -ENXIO;
}
dev_dbg(&sensor->client->dev,
"monitor v%llu.%llu.%04llx customer rev 0x%04llx\n",
major, minor, release, customer);
return 0;
}
static int mt9m114_parse_dt(struct mt9m114 *sensor)
{
struct fwnode_handle *fwnode = dev_fwnode(&sensor->client->dev);
struct fwnode_handle *ep;
int ret;
ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
if (!ep) {
dev_err(&sensor->client->dev, "No endpoint found\n");
return -EINVAL;
}
sensor->bus_cfg.bus_type = V4L2_MBUS_UNKNOWN;
ret = v4l2_fwnode_endpoint_alloc_parse(ep, &sensor->bus_cfg);
fwnode_handle_put(ep);
if (ret < 0) {
dev_err(&sensor->client->dev, "Failed to parse endpoint\n");
goto error;
}
switch (sensor->bus_cfg.bus_type) {
case V4L2_MBUS_CSI2_DPHY:
case V4L2_MBUS_PARALLEL:
break;
default:
dev_err(&sensor->client->dev, "unsupported bus type %u\n",
sensor->bus_cfg.bus_type);
ret = -EINVAL;
goto error;
}
return 0;
error:
v4l2_fwnode_endpoint_free(&sensor->bus_cfg);
return ret;
}
static int mt9m114_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct mt9m114 *sensor;
int ret;
sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor)
return -ENOMEM;
sensor->client = client;
sensor->regmap = devm_cci_regmap_init_i2c(client, 16);
if (IS_ERR(sensor->regmap)) {
dev_err(dev, "Unable to initialize I2C\n");
return -ENODEV;
}
ret = mt9m114_parse_dt(sensor);
if (ret < 0)
return ret;
/* Acquire clocks, GPIOs and regulators. */
sensor->clk = devm_clk_get(dev, NULL);
if (IS_ERR(sensor->clk)) {
ret = PTR_ERR(sensor->clk);
dev_err_probe(dev, ret, "Failed to get clock\n");
goto error_ep_free;
}
sensor->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(sensor->reset)) {
ret = PTR_ERR(sensor->reset);
dev_err_probe(dev, ret, "Failed to get reset GPIO\n");
goto error_ep_free;
}
sensor->supplies[0].supply = "vddio";
sensor->supplies[1].supply = "vdd";
sensor->supplies[2].supply = "vaa";
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sensor->supplies),
sensor->supplies);
if (ret < 0) {
dev_err_probe(dev, ret, "Failed to get regulators\n");
goto error_ep_free;
}
ret = mt9m114_clk_init(sensor);
if (ret)
return ret;
/*
* Identify the sensor. The driver supports runtime PM, but needs to
* work when runtime PM is disabled in the kernel. To that end, power
* the sensor on manually here, and initialize it after identification
* to reach the same state as if resumed through runtime PM.
*/
ret = mt9m114_power_on(sensor);
if (ret < 0) {
dev_err_probe(dev, ret, "Could not power on the device\n");
return ret;
}
ret = mt9m114_identify(sensor);
if (ret < 0)
goto error_power_off;
ret = mt9m114_initialize(sensor);
if (ret < 0)
goto error_power_off;
/*
* Enable runtime PM with autosuspend. As the device has been powered
* manually, mark it as active, and increase the usage count without
* resuming the device.
*/
pm_runtime_set_active(dev);
pm_runtime_get_noresume(dev);
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev, 1000);
pm_runtime_use_autosuspend(dev);
/* Initialize the subdevices. */
ret = mt9m114_pa_init(sensor);
if (ret < 0)
goto error_pm_cleanup;
ret = mt9m114_ifp_init(sensor);
if (ret < 0)
goto error_pa_cleanup;
ret = v4l2_async_register_subdev(&sensor->ifp.sd);
if (ret < 0)
goto error_ifp_cleanup;
/*
* Decrease the PM usage count. The device will get suspended after the
* autosuspend delay, turning the power off.
*/
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
error_ifp_cleanup:
mt9m114_ifp_cleanup(sensor);
error_pa_cleanup:
mt9m114_pa_cleanup(sensor);
error_pm_cleanup:
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
error_power_off:
mt9m114_power_off(sensor);
error_ep_free:
v4l2_fwnode_endpoint_free(&sensor->bus_cfg);
return ret;
}
static void mt9m114_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct mt9m114 *sensor = ifp_to_mt9m114(sd);
struct device *dev = &client->dev;
v4l2_async_unregister_subdev(&sensor->ifp.sd);
mt9m114_ifp_cleanup(sensor);
mt9m114_pa_cleanup(sensor);
v4l2_fwnode_endpoint_free(&sensor->bus_cfg);
/*
* Disable runtime PM. In case runtime PM is disabled in the kernel,
* make sure to turn power off manually.
*/
pm_runtime_disable(dev);
if (!pm_runtime_status_suspended(dev))
mt9m114_power_off(sensor);
pm_runtime_set_suspended(dev);
}
static const struct of_device_id mt9m114_of_ids[] = {
{ .compatible = "onnn,mt9m114" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mt9m114_of_ids);
static struct i2c_driver mt9m114_driver = {
.driver = {
.name = "mt9m114",
.pm = &mt9m114_pm_ops,
.of_match_table = mt9m114_of_ids,
},
.probe = mt9m114_probe,
.remove = mt9m114_remove,
};
module_i2c_driver(mt9m114_driver);
MODULE_DESCRIPTION("onsemi MT9M114 Sensor Driver");
MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
MODULE_LICENSE("GPL");