linux/drivers/media/i2c/imx415.c
Laurent Pinchart b2b5905aa5 media: i2c: imx415: Replace streaming flag with runtime PM check
The streaming flag in the driver private structure is used for the sole
purpose of gating register writes when setting a V4L2 control. This is
better handled by checking if the sensor is powered up using the runtime
PM API. Do so and drop the streaming flag.

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
[Sakari Ailus: Runtime PM put when setting analgue gain.]
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
2023-09-27 09:39:57 +02:00

1290 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for the Sony IMX415 CMOS Image Sensor.
*
* Copyright (C) 2023 WolfVision GmbH.
*/
#include <linux/clk.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#define IMX415_PIXEL_ARRAY_TOP 0
#define IMX415_PIXEL_ARRAY_LEFT 0
#define IMX415_PIXEL_ARRAY_WIDTH 3864
#define IMX415_PIXEL_ARRAY_HEIGHT 2192
#define IMX415_PIXEL_ARRAY_VBLANK 58
#define IMX415_NUM_CLK_PARAM_REGS 11
#define IMX415_REG_8BIT(n) ((1 << 16) | (n))
#define IMX415_REG_16BIT(n) ((2 << 16) | (n))
#define IMX415_REG_24BIT(n) ((3 << 16) | (n))
#define IMX415_REG_SIZE_SHIFT 16
#define IMX415_REG_ADDR_MASK 0xffff
#define IMX415_MODE IMX415_REG_8BIT(0x3000)
#define IMX415_MODE_OPERATING (0)
#define IMX415_MODE_STANDBY BIT(0)
#define IMX415_REGHOLD IMX415_REG_8BIT(0x3001)
#define IMX415_REGHOLD_INVALID (0)
#define IMX415_REGHOLD_VALID BIT(0)
#define IMX415_XMSTA IMX415_REG_8BIT(0x3002)
#define IMX415_XMSTA_START (0)
#define IMX415_XMSTA_STOP BIT(0)
#define IMX415_BCWAIT_TIME IMX415_REG_16BIT(0x3008)
#define IMX415_CPWAIT_TIME IMX415_REG_16BIT(0x300A)
#define IMX415_WINMODE IMX415_REG_8BIT(0x301C)
#define IMX415_ADDMODE IMX415_REG_8BIT(0x3022)
#define IMX415_REVERSE IMX415_REG_8BIT(0x3030)
#define IMX415_HREVERSE_SHIFT (0)
#define IMX415_VREVERSE_SHIFT BIT(0)
#define IMX415_ADBIT IMX415_REG_8BIT(0x3031)
#define IMX415_MDBIT IMX415_REG_8BIT(0x3032)
#define IMX415_SYS_MODE IMX415_REG_8BIT(0x3033)
#define IMX415_OUTSEL IMX415_REG_8BIT(0x30C0)
#define IMX415_DRV IMX415_REG_8BIT(0x30C1)
#define IMX415_VMAX IMX415_REG_24BIT(0x3024)
#define IMX415_HMAX IMX415_REG_16BIT(0x3028)
#define IMX415_SHR0 IMX415_REG_24BIT(0x3050)
#define IMX415_GAIN_PCG_0 IMX415_REG_16BIT(0x3090)
#define IMX415_AGAIN_MIN 0
#define IMX415_AGAIN_MAX 100
#define IMX415_AGAIN_STEP 1
#define IMX415_BLKLEVEL IMX415_REG_16BIT(0x30E2)
#define IMX415_BLKLEVEL_DEFAULT 50
#define IMX415_TPG_EN_DUOUT IMX415_REG_8BIT(0x30E4)
#define IMX415_TPG_PATSEL_DUOUT IMX415_REG_8BIT(0x30E6)
#define IMX415_TPG_COLORWIDTH IMX415_REG_8BIT(0x30E8)
#define IMX415_TESTCLKEN_MIPI IMX415_REG_8BIT(0x3110)
#define IMX415_INCKSEL1 IMX415_REG_8BIT(0x3115)
#define IMX415_INCKSEL2 IMX415_REG_8BIT(0x3116)
#define IMX415_INCKSEL3 IMX415_REG_16BIT(0x3118)
#define IMX415_INCKSEL4 IMX415_REG_16BIT(0x311A)
#define IMX415_INCKSEL5 IMX415_REG_8BIT(0x311E)
#define IMX415_DIG_CLP_MODE IMX415_REG_8BIT(0x32C8)
#define IMX415_WRJ_OPEN IMX415_REG_8BIT(0x3390)
#define IMX415_SENSOR_INFO IMX415_REG_16BIT(0x3F12)
#define IMX415_SENSOR_INFO_MASK 0xFFF
#define IMX415_CHIP_ID 0x514
#define IMX415_LANEMODE IMX415_REG_16BIT(0x4001)
#define IMX415_LANEMODE_2 1
#define IMX415_LANEMODE_4 3
#define IMX415_TXCLKESC_FREQ IMX415_REG_16BIT(0x4004)
#define IMX415_INCKSEL6 IMX415_REG_8BIT(0x400C)
#define IMX415_TCLKPOST IMX415_REG_16BIT(0x4018)
#define IMX415_TCLKPREPARE IMX415_REG_16BIT(0x401A)
#define IMX415_TCLKTRAIL IMX415_REG_16BIT(0x401C)
#define IMX415_TCLKZERO IMX415_REG_16BIT(0x401E)
#define IMX415_THSPREPARE IMX415_REG_16BIT(0x4020)
#define IMX415_THSZERO IMX415_REG_16BIT(0x4022)
#define IMX415_THSTRAIL IMX415_REG_16BIT(0x4024)
#define IMX415_THSEXIT IMX415_REG_16BIT(0x4026)
#define IMX415_TLPX IMX415_REG_16BIT(0x4028)
#define IMX415_INCKSEL7 IMX415_REG_8BIT(0x4074)
struct imx415_reg {
u32 address;
u32 val;
};
static const char *const imx415_supply_names[] = {
"dvdd",
"ovdd",
"avdd",
};
/*
* The IMX415 data sheet uses lane rates but v4l2 uses link frequency to
* describe MIPI CSI-2 speed. This driver uses lane rates wherever possible
* and converts them to link frequencies by a factor of two when needed.
*/
static const s64 link_freq_menu_items[] = {
594000000 / 2, 720000000 / 2, 891000000 / 2,
1440000000 / 2, 1485000000 / 2,
};
struct imx415_clk_params {
u64 lane_rate;
u64 inck;
struct imx415_reg regs[IMX415_NUM_CLK_PARAM_REGS];
};
/* INCK Settings - includes all lane rate and INCK dependent registers */
static const struct imx415_clk_params imx415_clk_params[] = {
{
.lane_rate = 594000000,
.inck = 27000000,
.regs[0] = { IMX415_BCWAIT_TIME, 0x05D },
.regs[1] = { IMX415_CPWAIT_TIME, 0x042 },
.regs[2] = { IMX415_SYS_MODE, 0x7 },
.regs[3] = { IMX415_INCKSEL1, 0x00 },
.regs[4] = { IMX415_INCKSEL2, 0x23 },
.regs[5] = { IMX415_INCKSEL3, 0x084 },
.regs[6] = { IMX415_INCKSEL4, 0x0E7 },
.regs[7] = { IMX415_INCKSEL5, 0x23 },
.regs[8] = { IMX415_INCKSEL6, 0x0 },
.regs[9] = { IMX415_INCKSEL7, 0x1 },
.regs[10] = { IMX415_TXCLKESC_FREQ, 0x06C0 },
},
{
.lane_rate = 720000000,
.inck = 24000000,
.regs[0] = { IMX415_BCWAIT_TIME, 0x054 },
.regs[1] = { IMX415_CPWAIT_TIME, 0x03B },
.regs[2] = { IMX415_SYS_MODE, 0x9 },
.regs[3] = { IMX415_INCKSEL1, 0x00 },
.regs[4] = { IMX415_INCKSEL2, 0x23 },
.regs[5] = { IMX415_INCKSEL3, 0x0B4 },
.regs[6] = { IMX415_INCKSEL4, 0x0FC },
.regs[7] = { IMX415_INCKSEL5, 0x23 },
.regs[8] = { IMX415_INCKSEL6, 0x0 },
.regs[9] = { IMX415_INCKSEL7, 0x1 },
.regs[10] = { IMX415_TXCLKESC_FREQ, 0x0600 },
},
{
.lane_rate = 891000000,
.inck = 27000000,
.regs[0] = { IMX415_BCWAIT_TIME, 0x05D },
.regs[1] = { IMX415_CPWAIT_TIME, 0x042 },
.regs[2] = { IMX415_SYS_MODE, 0x5 },
.regs[3] = { IMX415_INCKSEL1, 0x00 },
.regs[4] = { IMX415_INCKSEL2, 0x23 },
.regs[5] = { IMX415_INCKSEL3, 0x0C6 },
.regs[6] = { IMX415_INCKSEL4, 0x0E7 },
.regs[7] = { IMX415_INCKSEL5, 0x23 },
.regs[8] = { IMX415_INCKSEL6, 0x0 },
.regs[9] = { IMX415_INCKSEL7, 0x1 },
.regs[10] = { IMX415_TXCLKESC_FREQ, 0x06C0 },
},
{
.lane_rate = 1440000000,
.inck = 24000000,
.regs[0] = { IMX415_BCWAIT_TIME, 0x054 },
.regs[1] = { IMX415_CPWAIT_TIME, 0x03B },
.regs[2] = { IMX415_SYS_MODE, 0x8 },
.regs[3] = { IMX415_INCKSEL1, 0x00 },
.regs[4] = { IMX415_INCKSEL2, 0x23 },
.regs[5] = { IMX415_INCKSEL3, 0x0B4 },
.regs[6] = { IMX415_INCKSEL4, 0x0FC },
.regs[7] = { IMX415_INCKSEL5, 0x23 },
.regs[8] = { IMX415_INCKSEL6, 0x1 },
.regs[9] = { IMX415_INCKSEL7, 0x0 },
.regs[10] = { IMX415_TXCLKESC_FREQ, 0x0600 },
},
{
.lane_rate = 1485000000,
.inck = 27000000,
.regs[0] = { IMX415_BCWAIT_TIME, 0x05D },
.regs[1] = { IMX415_CPWAIT_TIME, 0x042 },
.regs[2] = { IMX415_SYS_MODE, 0x8 },
.regs[3] = { IMX415_INCKSEL1, 0x00 },
.regs[4] = { IMX415_INCKSEL2, 0x23 },
.regs[5] = { IMX415_INCKSEL3, 0x0A5 },
.regs[6] = { IMX415_INCKSEL4, 0x0E7 },
.regs[7] = { IMX415_INCKSEL5, 0x23 },
.regs[8] = { IMX415_INCKSEL6, 0x1 },
.regs[9] = { IMX415_INCKSEL7, 0x0 },
.regs[10] = { IMX415_TXCLKESC_FREQ, 0x06C0 },
},
};
/* all-pixel 2-lane 720 Mbps 15.74 Hz mode */
static const struct imx415_reg imx415_mode_2_720[] = {
{ IMX415_VMAX, 0x08CA },
{ IMX415_HMAX, 0x07F0 },
{ IMX415_LANEMODE, IMX415_LANEMODE_2 },
{ IMX415_TCLKPOST, 0x006F },
{ IMX415_TCLKPREPARE, 0x002F },
{ IMX415_TCLKTRAIL, 0x002F },
{ IMX415_TCLKZERO, 0x00BF },
{ IMX415_THSPREPARE, 0x002F },
{ IMX415_THSZERO, 0x0057 },
{ IMX415_THSTRAIL, 0x002F },
{ IMX415_THSEXIT, 0x004F },
{ IMX415_TLPX, 0x0027 },
};
/* all-pixel 2-lane 1440 Mbps 30.01 Hz mode */
static const struct imx415_reg imx415_mode_2_1440[] = {
{ IMX415_VMAX, 0x08CA },
{ IMX415_HMAX, 0x042A },
{ IMX415_LANEMODE, IMX415_LANEMODE_2 },
{ IMX415_TCLKPOST, 0x009F },
{ IMX415_TCLKPREPARE, 0x0057 },
{ IMX415_TCLKTRAIL, 0x0057 },
{ IMX415_TCLKZERO, 0x0187 },
{ IMX415_THSPREPARE, 0x005F },
{ IMX415_THSZERO, 0x00A7 },
{ IMX415_THSTRAIL, 0x005F },
{ IMX415_THSEXIT, 0x0097 },
{ IMX415_TLPX, 0x004F },
};
/* all-pixel 4-lane 891 Mbps 30 Hz mode */
static const struct imx415_reg imx415_mode_4_891[] = {
{ IMX415_VMAX, 0x08CA },
{ IMX415_HMAX, 0x044C },
{ IMX415_LANEMODE, IMX415_LANEMODE_4 },
{ IMX415_TCLKPOST, 0x007F },
{ IMX415_TCLKPREPARE, 0x0037 },
{ IMX415_TCLKTRAIL, 0x0037 },
{ IMX415_TCLKZERO, 0x00F7 },
{ IMX415_THSPREPARE, 0x003F },
{ IMX415_THSZERO, 0x006F },
{ IMX415_THSTRAIL, 0x003F },
{ IMX415_THSEXIT, 0x005F },
{ IMX415_TLPX, 0x002F },
};
struct imx415_mode_reg_list {
u32 num_of_regs;
const struct imx415_reg *regs;
};
/*
* Mode : number of lanes, lane rate and frame rate dependent settings
*
* pixel_rate and hmax_pix are needed to calculate hblank for the v4l2 ctrl
* interface. These values can not be found in the data sheet and should be
* treated as virtual values. Use following table when adding new modes.
*
* lane_rate lanes fps hmax_pix pixel_rate
*
* 594 2 10.000 4400 99000000
* 891 2 15.000 4400 148500000
* 720 2 15.748 4064 144000000
* 1782 2 30.000 4400 297000000
* 2079 2 30.000 4400 297000000
* 1440 2 30.019 4510 304615385
*
* 594 4 20.000 5500 247500000
* 594 4 25.000 4400 247500000
* 720 4 25.000 4400 247500000
* 720 4 30.019 4510 304615385
* 891 4 30.000 4400 297000000
* 1440 4 30.019 4510 304615385
* 1440 4 60.038 4510 609230769
* 1485 4 60.000 4400 594000000
* 1782 4 60.000 4400 594000000
* 2079 4 60.000 4400 594000000
* 2376 4 90.164 4392 891000000
*/
struct imx415_mode {
u64 lane_rate;
u32 lanes;
u32 hmax_pix;
u64 pixel_rate;
struct imx415_mode_reg_list reg_list;
};
/* mode configs */
static const struct imx415_mode supported_modes[] = {
{
.lane_rate = 720000000,
.lanes = 2,
.hmax_pix = 4064,
.pixel_rate = 144000000,
.reg_list = {
.num_of_regs = ARRAY_SIZE(imx415_mode_2_720),
.regs = imx415_mode_2_720,
},
},
{
.lane_rate = 1440000000,
.lanes = 2,
.hmax_pix = 4510,
.pixel_rate = 304615385,
.reg_list = {
.num_of_regs = ARRAY_SIZE(imx415_mode_2_1440),
.regs = imx415_mode_2_1440,
},
},
{
.lane_rate = 891000000,
.lanes = 4,
.hmax_pix = 4400,
.pixel_rate = 297000000,
.reg_list = {
.num_of_regs = ARRAY_SIZE(imx415_mode_4_891),
.regs = imx415_mode_4_891,
},
},
};
static const struct regmap_config imx415_regmap_config = {
.reg_bits = 16,
.val_bits = 8,
};
static const char *const imx415_test_pattern_menu[] = {
"disabled",
"solid black",
"solid white",
"solid dark gray",
"solid light gray",
"stripes light/dark grey",
"stripes dark/light grey",
"stripes black/dark grey",
"stripes dark grey/black",
"stripes black/white",
"stripes white/black",
"horizontal color bar",
"vertical color bar",
};
struct imx415 {
struct device *dev;
struct clk *clk;
struct regulator_bulk_data supplies[ARRAY_SIZE(imx415_supply_names)];
struct gpio_desc *reset;
struct regmap *regmap;
const struct imx415_clk_params *clk_params;
struct v4l2_subdev subdev;
struct media_pad pad;
struct v4l2_ctrl_handler ctrls;
struct v4l2_ctrl *vblank;
struct v4l2_ctrl *hflip;
struct v4l2_ctrl *vflip;
unsigned int cur_mode;
unsigned int num_data_lanes;
};
/*
* This table includes fixed register settings and a bunch of undocumented
* registers that have to be set to another value than default.
*/
static const struct imx415_reg imx415_init_table[] = {
/* use all-pixel readout mode, no flip */
{ IMX415_WINMODE, 0x00 },
{ IMX415_ADDMODE, 0x00 },
{ IMX415_REVERSE, 0x00 },
/* use RAW 10-bit mode */
{ IMX415_ADBIT, 0x00 },
{ IMX415_MDBIT, 0x00 },
/* output VSYNC on XVS and low on XHS */
{ IMX415_OUTSEL, 0x22 },
{ IMX415_DRV, 0x00 },
/* SONY magic registers */
{ IMX415_REG_8BIT(0x32D4), 0x21 },
{ IMX415_REG_8BIT(0x32EC), 0xA1 },
{ IMX415_REG_8BIT(0x3452), 0x7F },
{ IMX415_REG_8BIT(0x3453), 0x03 },
{ IMX415_REG_8BIT(0x358A), 0x04 },
{ IMX415_REG_8BIT(0x35A1), 0x02 },
{ IMX415_REG_8BIT(0x36BC), 0x0C },
{ IMX415_REG_8BIT(0x36CC), 0x53 },
{ IMX415_REG_8BIT(0x36CD), 0x00 },
{ IMX415_REG_8BIT(0x36CE), 0x3C },
{ IMX415_REG_8BIT(0x36D0), 0x8C },
{ IMX415_REG_8BIT(0x36D1), 0x00 },
{ IMX415_REG_8BIT(0x36D2), 0x71 },
{ IMX415_REG_8BIT(0x36D4), 0x3C },
{ IMX415_REG_8BIT(0x36D6), 0x53 },
{ IMX415_REG_8BIT(0x36D7), 0x00 },
{ IMX415_REG_8BIT(0x36D8), 0x71 },
{ IMX415_REG_8BIT(0x36DA), 0x8C },
{ IMX415_REG_8BIT(0x36DB), 0x00 },
{ IMX415_REG_8BIT(0x3724), 0x02 },
{ IMX415_REG_8BIT(0x3726), 0x02 },
{ IMX415_REG_8BIT(0x3732), 0x02 },
{ IMX415_REG_8BIT(0x3734), 0x03 },
{ IMX415_REG_8BIT(0x3736), 0x03 },
{ IMX415_REG_8BIT(0x3742), 0x03 },
{ IMX415_REG_8BIT(0x3862), 0xE0 },
{ IMX415_REG_8BIT(0x38CC), 0x30 },
{ IMX415_REG_8BIT(0x38CD), 0x2F },
{ IMX415_REG_8BIT(0x395C), 0x0C },
{ IMX415_REG_8BIT(0x3A42), 0xD1 },
{ IMX415_REG_8BIT(0x3A4C), 0x77 },
{ IMX415_REG_8BIT(0x3AE0), 0x02 },
{ IMX415_REG_8BIT(0x3AEC), 0x0C },
{ IMX415_REG_8BIT(0x3B00), 0x2E },
{ IMX415_REG_8BIT(0x3B06), 0x29 },
{ IMX415_REG_8BIT(0x3B98), 0x25 },
{ IMX415_REG_8BIT(0x3B99), 0x21 },
{ IMX415_REG_8BIT(0x3B9B), 0x13 },
{ IMX415_REG_8BIT(0x3B9C), 0x13 },
{ IMX415_REG_8BIT(0x3B9D), 0x13 },
{ IMX415_REG_8BIT(0x3B9E), 0x13 },
{ IMX415_REG_8BIT(0x3BA1), 0x00 },
{ IMX415_REG_8BIT(0x3BA2), 0x06 },
{ IMX415_REG_8BIT(0x3BA3), 0x0B },
{ IMX415_REG_8BIT(0x3BA4), 0x10 },
{ IMX415_REG_8BIT(0x3BA5), 0x14 },
{ IMX415_REG_8BIT(0x3BA6), 0x18 },
{ IMX415_REG_8BIT(0x3BA7), 0x1A },
{ IMX415_REG_8BIT(0x3BA8), 0x1A },
{ IMX415_REG_8BIT(0x3BA9), 0x1A },
{ IMX415_REG_8BIT(0x3BAC), 0xED },
{ IMX415_REG_8BIT(0x3BAD), 0x01 },
{ IMX415_REG_8BIT(0x3BAE), 0xF6 },
{ IMX415_REG_8BIT(0x3BAF), 0x02 },
{ IMX415_REG_8BIT(0x3BB0), 0xA2 },
{ IMX415_REG_8BIT(0x3BB1), 0x03 },
{ IMX415_REG_8BIT(0x3BB2), 0xE0 },
{ IMX415_REG_8BIT(0x3BB3), 0x03 },
{ IMX415_REG_8BIT(0x3BB4), 0xE0 },
{ IMX415_REG_8BIT(0x3BB5), 0x03 },
{ IMX415_REG_8BIT(0x3BB6), 0xE0 },
{ IMX415_REG_8BIT(0x3BB7), 0x03 },
{ IMX415_REG_8BIT(0x3BB8), 0xE0 },
{ IMX415_REG_8BIT(0x3BBA), 0xE0 },
{ IMX415_REG_8BIT(0x3BBC), 0xDA },
{ IMX415_REG_8BIT(0x3BBE), 0x88 },
{ IMX415_REG_8BIT(0x3BC0), 0x44 },
{ IMX415_REG_8BIT(0x3BC2), 0x7B },
{ IMX415_REG_8BIT(0x3BC4), 0xA2 },
{ IMX415_REG_8BIT(0x3BC8), 0xBD },
{ IMX415_REG_8BIT(0x3BCA), 0xBD },
};
static inline struct imx415 *to_imx415(struct v4l2_subdev *sd)
{
return container_of(sd, struct imx415, subdev);
}
static int imx415_read(struct imx415 *sensor, u32 addr)
{
u8 data[3] = { 0 };
int ret;
ret = regmap_raw_read(sensor->regmap, addr & IMX415_REG_ADDR_MASK, data,
(addr >> IMX415_REG_SIZE_SHIFT) & 3);
if (ret < 0)
return ret;
return (data[2] << 16) | (data[1] << 8) | data[0];
}
static int imx415_write(struct imx415 *sensor, u32 addr, u32 value)
{
u8 data[3] = { value & 0xff, (value >> 8) & 0xff, value >> 16 };
int ret;
ret = regmap_raw_write(sensor->regmap, addr & IMX415_REG_ADDR_MASK,
data, (addr >> IMX415_REG_SIZE_SHIFT) & 3);
if (ret < 0)
dev_err_ratelimited(sensor->dev,
"%u-bit write to 0x%04x failed: %d\n",
((addr >> IMX415_REG_SIZE_SHIFT) & 3) * 8,
addr & IMX415_REG_ADDR_MASK, ret);
return 0;
}
static int imx415_set_testpattern(struct imx415 *sensor, int val)
{
int ret;
if (val) {
ret = imx415_write(sensor, IMX415_BLKLEVEL, 0x00);
if (ret)
return ret;
ret = imx415_write(sensor, IMX415_TPG_EN_DUOUT, 0x01);
if (ret)
return ret;
ret = imx415_write(sensor, IMX415_TPG_PATSEL_DUOUT, val - 1);
if (ret)
return ret;
ret = imx415_write(sensor, IMX415_TPG_COLORWIDTH, 0x01);
if (ret)
return ret;
ret = imx415_write(sensor, IMX415_TESTCLKEN_MIPI, 0x20);
if (ret)
return ret;
ret = imx415_write(sensor, IMX415_DIG_CLP_MODE, 0x00);
if (ret)
return ret;
ret = imx415_write(sensor, IMX415_WRJ_OPEN, 0x00);
} else {
ret = imx415_write(sensor, IMX415_BLKLEVEL,
IMX415_BLKLEVEL_DEFAULT);
if (ret)
return ret;
ret = imx415_write(sensor, IMX415_TPG_EN_DUOUT, 0x00);
if (ret)
return ret;
ret = imx415_write(sensor, IMX415_TESTCLKEN_MIPI, 0x00);
if (ret)
return ret;
ret = imx415_write(sensor, IMX415_DIG_CLP_MODE, 0x01);
if (ret)
return ret;
ret = imx415_write(sensor, IMX415_WRJ_OPEN, 0x01);
}
return 0;
}
static int imx415_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct imx415 *sensor = container_of(ctrl->handler, struct imx415,
ctrls);
const struct v4l2_mbus_framefmt *format;
struct v4l2_subdev_state *state;
unsigned int vmax;
unsigned int flip;
int ret;
if (!pm_runtime_get_if_in_use(sensor->dev))
return 0;
state = v4l2_subdev_get_locked_active_state(&sensor->subdev);
format = v4l2_subdev_get_pad_format(&sensor->subdev, state, 0);
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
/* clamp the exposure value to VMAX. */
vmax = format->height + sensor->vblank->cur.val;
ctrl->val = min_t(int, ctrl->val, vmax);
ret = imx415_write(sensor, IMX415_SHR0, vmax - ctrl->val);
break;
case V4L2_CID_ANALOGUE_GAIN:
/* analogue gain in 0.3 dB step size */
ret = imx415_write(sensor, IMX415_GAIN_PCG_0, ctrl->val);
break;
case V4L2_CID_HFLIP:
case V4L2_CID_VFLIP:
flip = (sensor->hflip->val << IMX415_HREVERSE_SHIFT) |
(sensor->vflip->val << IMX415_VREVERSE_SHIFT);
ret = imx415_write(sensor, IMX415_REVERSE, flip);
break;
case V4L2_CID_TEST_PATTERN:
ret = imx415_set_testpattern(sensor, ctrl->val);
break;
default:
ret = -EINVAL;
break;
}
pm_runtime_put(sensor->dev);
return ret;
}
static const struct v4l2_ctrl_ops imx415_ctrl_ops = {
.s_ctrl = imx415_s_ctrl,
};
static int imx415_ctrls_init(struct imx415 *sensor)
{
struct v4l2_fwnode_device_properties props;
struct v4l2_ctrl *ctrl;
u64 pixel_rate = supported_modes[sensor->cur_mode].pixel_rate;
u64 lane_rate = supported_modes[sensor->cur_mode].lane_rate;
u32 exposure_max = IMX415_PIXEL_ARRAY_HEIGHT +
IMX415_PIXEL_ARRAY_VBLANK - 8;
u32 hblank;
unsigned int i;
int ret;
ret = v4l2_fwnode_device_parse(sensor->dev, &props);
if (ret < 0)
return ret;
v4l2_ctrl_handler_init(&sensor->ctrls, 10);
for (i = 0; i < ARRAY_SIZE(link_freq_menu_items); ++i) {
if (lane_rate == link_freq_menu_items[i] * 2)
break;
}
if (i == ARRAY_SIZE(link_freq_menu_items)) {
return dev_err_probe(sensor->dev, -EINVAL,
"lane rate %llu not supported\n",
lane_rate);
}
ctrl = v4l2_ctrl_new_int_menu(&sensor->ctrls, &imx415_ctrl_ops,
V4L2_CID_LINK_FREQ,
ARRAY_SIZE(link_freq_menu_items) - 1, i,
link_freq_menu_items);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
v4l2_ctrl_new_std(&sensor->ctrls, &imx415_ctrl_ops, V4L2_CID_EXPOSURE,
4, exposure_max, 1, exposure_max);
v4l2_ctrl_new_std(&sensor->ctrls, &imx415_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN, IMX415_AGAIN_MIN,
IMX415_AGAIN_MAX, IMX415_AGAIN_STEP,
IMX415_AGAIN_MIN);
hblank = supported_modes[sensor->cur_mode].hmax_pix -
IMX415_PIXEL_ARRAY_WIDTH;
ctrl = v4l2_ctrl_new_std(&sensor->ctrls, &imx415_ctrl_ops,
V4L2_CID_HBLANK, hblank, hblank, 1, hblank);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
sensor->vblank = v4l2_ctrl_new_std(&sensor->ctrls, &imx415_ctrl_ops,
V4L2_CID_VBLANK,
IMX415_PIXEL_ARRAY_VBLANK,
IMX415_PIXEL_ARRAY_VBLANK, 1,
IMX415_PIXEL_ARRAY_VBLANK);
if (sensor->vblank)
sensor->vblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
/*
* The pixel rate used here is a virtual value and can be used for
* calculating the frame rate together with hblank. It may not
* necessarily be the physically correct pixel clock.
*/
v4l2_ctrl_new_std(&sensor->ctrls, NULL, V4L2_CID_PIXEL_RATE, pixel_rate,
pixel_rate, 1, pixel_rate);
sensor->hflip = v4l2_ctrl_new_std(&sensor->ctrls, &imx415_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
sensor->vflip = v4l2_ctrl_new_std(&sensor->ctrls, &imx415_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std_menu_items(&sensor->ctrls, &imx415_ctrl_ops,
V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(imx415_test_pattern_menu) - 1,
0, 0, imx415_test_pattern_menu);
v4l2_ctrl_new_fwnode_properties(&sensor->ctrls, &imx415_ctrl_ops,
&props);
if (sensor->ctrls.error) {
dev_err_probe(sensor->dev, sensor->ctrls.error,
"failed to add controls\n");
v4l2_ctrl_handler_free(&sensor->ctrls);
return sensor->ctrls.error;
}
sensor->subdev.ctrl_handler = &sensor->ctrls;
return 0;
}
static int imx415_set_mode(struct imx415 *sensor, int mode)
{
const struct imx415_reg *reg;
unsigned int i;
int ret = 0;
if (mode >= ARRAY_SIZE(supported_modes)) {
dev_err(sensor->dev, "Mode %d not supported\n", mode);
return -EINVAL;
}
for (i = 0; i < supported_modes[mode].reg_list.num_of_regs; ++i) {
reg = &supported_modes[mode].reg_list.regs[i];
ret = imx415_write(sensor, reg->address, reg->val);
if (ret)
return ret;
}
for (i = 0; i < IMX415_NUM_CLK_PARAM_REGS; ++i) {
reg = &sensor->clk_params->regs[i];
ret = imx415_write(sensor, reg->address, reg->val);
if (ret)
return ret;
}
return 0;
}
static int imx415_setup(struct imx415 *sensor, struct v4l2_subdev_state *state)
{
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(imx415_init_table); ++i) {
ret = imx415_write(sensor, imx415_init_table[i].address,
imx415_init_table[i].val);
if (ret)
return ret;
}
return imx415_set_mode(sensor, sensor->cur_mode);
}
static int imx415_wakeup(struct imx415 *sensor)
{
int ret;
ret = imx415_write(sensor, IMX415_MODE, IMX415_MODE_OPERATING);
if (ret)
return ret;
/*
* According to the datasheet we have to wait at least 63 us after
* leaving standby mode. But this doesn't work even after 30 ms.
* So probably this should be 63 ms and therefore we wait for 80 ms.
*/
msleep(80);
return 0;
}
static int imx415_stream_on(struct imx415 *sensor)
{
int ret;
ret = imx415_wakeup(sensor);
if (ret)
return ret;
return imx415_write(sensor, IMX415_XMSTA, IMX415_XMSTA_START);
}
static int imx415_stream_off(struct imx415 *sensor)
{
int ret;
ret = imx415_write(sensor, IMX415_XMSTA, IMX415_XMSTA_STOP);
if (ret)
return ret;
return imx415_write(sensor, IMX415_MODE, IMX415_MODE_STANDBY);
}
static int imx415_s_stream(struct v4l2_subdev *sd, int enable)
{
struct imx415 *sensor = to_imx415(sd);
struct v4l2_subdev_state *state;
int ret;
state = v4l2_subdev_lock_and_get_active_state(sd);
if (!enable) {
ret = imx415_stream_off(sensor);
pm_runtime_mark_last_busy(sensor->dev);
pm_runtime_put_autosuspend(sensor->dev);
goto unlock;
}
ret = pm_runtime_resume_and_get(sensor->dev);
if (ret < 0)
goto unlock;
ret = imx415_setup(sensor, state);
if (ret)
goto err_pm;
ret = __v4l2_ctrl_handler_setup(&sensor->ctrls);
if (ret < 0)
goto err_pm;
ret = imx415_stream_on(sensor);
if (ret)
goto err_pm;
ret = 0;
unlock:
v4l2_subdev_unlock_state(state);
return ret;
err_pm:
/*
* In case of error, turn the power off synchronously as the device
* likely has no other chance to recover.
*/
pm_runtime_put_sync(sensor->dev);
goto unlock;
}
static int imx415_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index != 0)
return -EINVAL;
code->code = MEDIA_BUS_FMT_SGBRG10_1X10;
return 0;
}
static int imx415_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_frame_size_enum *fse)
{
const struct v4l2_mbus_framefmt *format;
format = v4l2_subdev_get_pad_format(sd, state, fse->pad);
if (fse->index > 0 || fse->code != format->code)
return -EINVAL;
fse->min_width = IMX415_PIXEL_ARRAY_WIDTH;
fse->max_width = fse->min_width;
fse->min_height = IMX415_PIXEL_ARRAY_HEIGHT;
fse->max_height = fse->min_height;
return 0;
}
static int imx415_set_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *fmt)
{
struct v4l2_mbus_framefmt *format;
format = v4l2_subdev_get_pad_format(sd, state, fmt->pad);
format->width = fmt->format.width;
format->height = fmt->format.height;
format->code = MEDIA_BUS_FMT_SGBRG10_1X10;
format->field = V4L2_FIELD_NONE;
format->colorspace = V4L2_COLORSPACE_RAW;
format->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
format->quantization = V4L2_QUANTIZATION_DEFAULT;
format->xfer_func = V4L2_XFER_FUNC_NONE;
fmt->format = *format;
return 0;
}
static int imx415_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
case V4L2_SEL_TGT_CROP_DEFAULT:
case V4L2_SEL_TGT_CROP_BOUNDS:
sel->r.top = IMX415_PIXEL_ARRAY_TOP;
sel->r.left = IMX415_PIXEL_ARRAY_LEFT;
sel->r.width = IMX415_PIXEL_ARRAY_WIDTH;
sel->r.height = IMX415_PIXEL_ARRAY_HEIGHT;
return 0;
}
return -EINVAL;
}
static int imx415_init_cfg(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state)
{
struct v4l2_subdev_format format = {
.format = {
.width = IMX415_PIXEL_ARRAY_WIDTH,
.height = IMX415_PIXEL_ARRAY_HEIGHT,
},
};
imx415_set_format(sd, state, &format);
return 0;
}
static const struct v4l2_subdev_video_ops imx415_subdev_video_ops = {
.s_stream = imx415_s_stream,
};
static const struct v4l2_subdev_pad_ops imx415_subdev_pad_ops = {
.enum_mbus_code = imx415_enum_mbus_code,
.enum_frame_size = imx415_enum_frame_size,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = imx415_set_format,
.get_selection = imx415_get_selection,
.init_cfg = imx415_init_cfg,
};
static const struct v4l2_subdev_ops imx415_subdev_ops = {
.video = &imx415_subdev_video_ops,
.pad = &imx415_subdev_pad_ops,
};
static int imx415_subdev_init(struct imx415 *sensor)
{
struct i2c_client *client = to_i2c_client(sensor->dev);
int ret;
v4l2_i2c_subdev_init(&sensor->subdev, client, &imx415_subdev_ops);
ret = imx415_ctrls_init(sensor);
if (ret)
return ret;
sensor->subdev.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
V4L2_SUBDEV_FL_HAS_EVENTS;
sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
sensor->subdev.entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sensor->subdev.entity, 1, &sensor->pad);
if (ret < 0) {
v4l2_ctrl_handler_free(&sensor->ctrls);
return ret;
}
sensor->subdev.state_lock = sensor->subdev.ctrl_handler->lock;
v4l2_subdev_init_finalize(&sensor->subdev);
return 0;
}
static void imx415_subdev_cleanup(struct imx415 *sensor)
{
media_entity_cleanup(&sensor->subdev.entity);
v4l2_ctrl_handler_free(&sensor->ctrls);
}
static int imx415_power_on(struct imx415 *sensor)
{
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(sensor->supplies),
sensor->supplies);
if (ret < 0)
return ret;
gpiod_set_value_cansleep(sensor->reset, 0);
udelay(1);
ret = clk_prepare_enable(sensor->clk);
if (ret < 0)
goto err_reset;
/*
* Data sheet states that 20 us are required before communication start,
* but this doesn't work in all cases. Use 100 us to be on the safe
* side.
*/
usleep_range(100, 200);
return 0;
err_reset:
gpiod_set_value_cansleep(sensor->reset, 1);
regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
return ret;
}
static void imx415_power_off(struct imx415 *sensor)
{
clk_disable_unprepare(sensor->clk);
gpiod_set_value_cansleep(sensor->reset, 1);
regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
}
static int imx415_identify_model(struct imx415 *sensor)
{
int model, ret;
/*
* While most registers can be read when the sensor is in standby, this
* is not the case of the sensor info register :-(
*/
ret = imx415_wakeup(sensor);
if (ret)
return dev_err_probe(sensor->dev, ret,
"failed to get sensor out of standby\n");
ret = imx415_read(sensor, IMX415_SENSOR_INFO);
if (ret < 0) {
dev_err_probe(sensor->dev, ret,
"failed to read sensor information\n");
goto done;
}
model = ret & IMX415_SENSOR_INFO_MASK;
switch (model) {
case IMX415_CHIP_ID:
dev_info(sensor->dev, "Detected IMX415 image sensor\n");
break;
default:
ret = dev_err_probe(sensor->dev, -ENODEV,
"invalid device model 0x%04x\n", model);
goto done;
}
ret = 0;
done:
imx415_write(sensor, IMX415_MODE, IMX415_MODE_STANDBY);
return ret;
}
static int imx415_check_inck(unsigned long inck, u64 link_frequency)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(imx415_clk_params); ++i) {
if ((imx415_clk_params[i].lane_rate == link_frequency * 2) &&
imx415_clk_params[i].inck == inck)
break;
}
if (i == ARRAY_SIZE(imx415_clk_params))
return -EINVAL;
else
return 0;
}
static int imx415_parse_hw_config(struct imx415 *sensor)
{
struct v4l2_fwnode_endpoint bus_cfg = {
.bus_type = V4L2_MBUS_CSI2_DPHY,
};
struct fwnode_handle *ep;
u64 lane_rate;
unsigned long inck;
unsigned int i, j;
int ret;
for (i = 0; i < ARRAY_SIZE(sensor->supplies); ++i)
sensor->supplies[i].supply = imx415_supply_names[i];
ret = devm_regulator_bulk_get(sensor->dev, ARRAY_SIZE(sensor->supplies),
sensor->supplies);
if (ret)
return dev_err_probe(sensor->dev, ret,
"failed to get supplies\n");
sensor->reset = devm_gpiod_get_optional(sensor->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(sensor->reset))
return dev_err_probe(sensor->dev, PTR_ERR(sensor->reset),
"failed to get reset GPIO\n");
sensor->clk = devm_clk_get(sensor->dev, "inck");
if (IS_ERR(sensor->clk))
return dev_err_probe(sensor->dev, PTR_ERR(sensor->clk),
"failed to get clock\n");
ep = fwnode_graph_get_next_endpoint(dev_fwnode(sensor->dev), NULL);
if (!ep)
return -ENXIO;
ret = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
fwnode_handle_put(ep);
if (ret)
return ret;
switch (bus_cfg.bus.mipi_csi2.num_data_lanes) {
case 2:
case 4:
sensor->num_data_lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
break;
default:
ret = dev_err_probe(sensor->dev, -EINVAL,
"invalid number of CSI2 data lanes %d\n",
bus_cfg.bus.mipi_csi2.num_data_lanes);
goto done_endpoint_free;
}
if (!bus_cfg.nr_of_link_frequencies) {
ret = dev_err_probe(sensor->dev, -EINVAL,
"no link frequencies defined");
goto done_endpoint_free;
}
/*
* Check if there exists a sensor mode defined for current INCK,
* number of lanes and given lane rates.
*/
inck = clk_get_rate(sensor->clk);
for (i = 0; i < bus_cfg.nr_of_link_frequencies; ++i) {
if (imx415_check_inck(inck, bus_cfg.link_frequencies[i])) {
dev_dbg(sensor->dev,
"INCK %lu Hz not supported for this link freq",
inck);
continue;
}
for (j = 0; j < ARRAY_SIZE(supported_modes); ++j) {
if (sensor->num_data_lanes != supported_modes[j].lanes)
continue;
if (bus_cfg.link_frequencies[i] * 2 !=
supported_modes[j].lane_rate)
continue;
sensor->cur_mode = j;
break;
}
if (j < ARRAY_SIZE(supported_modes))
break;
}
if (i == bus_cfg.nr_of_link_frequencies) {
ret = dev_err_probe(sensor->dev, -EINVAL,
"no valid sensor mode defined\n");
goto done_endpoint_free;
}
lane_rate = supported_modes[sensor->cur_mode].lane_rate;
for (i = 0; i < ARRAY_SIZE(imx415_clk_params); ++i) {
if (lane_rate == imx415_clk_params[i].lane_rate &&
inck == imx415_clk_params[i].inck) {
sensor->clk_params = &imx415_clk_params[i];
break;
}
}
if (i == ARRAY_SIZE(imx415_clk_params)) {
ret = dev_err_probe(sensor->dev, -EINVAL,
"Mode %d not supported\n",
sensor->cur_mode);
goto done_endpoint_free;
}
ret = 0;
dev_dbg(sensor->dev, "clock: %lu Hz, lane_rate: %llu bps, lanes: %d\n",
inck, lane_rate, sensor->num_data_lanes);
done_endpoint_free:
v4l2_fwnode_endpoint_free(&bus_cfg);
return ret;
}
static int imx415_probe(struct i2c_client *client)
{
struct imx415 *sensor;
int ret;
sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor)
return -ENOMEM;
sensor->dev = &client->dev;
ret = imx415_parse_hw_config(sensor);
if (ret)
return ret;
sensor->regmap = devm_regmap_init_i2c(client, &imx415_regmap_config);
if (IS_ERR(sensor->regmap))
return PTR_ERR(sensor->regmap);
/*
* Enable power management. The driver supports runtime PM, but needs to
* work when runtime PM is disabled in the kernel. To that end, power
* the sensor on manually here, identify it, and fully initialize it.
*/
ret = imx415_power_on(sensor);
if (ret)
return ret;
ret = imx415_identify_model(sensor);
if (ret)
goto err_power;
ret = imx415_subdev_init(sensor);
if (ret)
goto err_power;
/*
* Enable runtime PM. As the device has been powered manually, mark it
* as active, and increase the usage count without resuming the device.
*/
pm_runtime_set_active(sensor->dev);
pm_runtime_get_noresume(sensor->dev);
pm_runtime_enable(sensor->dev);
ret = v4l2_async_register_subdev_sensor(&sensor->subdev);
if (ret < 0)
goto err_pm;
/*
* Finally, enable autosuspend and decrease the usage count. The device
* will get suspended after the autosuspend delay, turning the power
* off.
*/
pm_runtime_set_autosuspend_delay(sensor->dev, 1000);
pm_runtime_use_autosuspend(sensor->dev);
pm_runtime_put_autosuspend(sensor->dev);
return 0;
err_pm:
pm_runtime_disable(sensor->dev);
pm_runtime_put_noidle(sensor->dev);
imx415_subdev_cleanup(sensor);
err_power:
imx415_power_off(sensor);
return ret;
}
static void imx415_remove(struct i2c_client *client)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct imx415 *sensor = to_imx415(subdev);
v4l2_async_unregister_subdev(subdev);
imx415_subdev_cleanup(sensor);
/*
* Disable runtime PM. In case runtime PM is disabled in the kernel,
* make sure to turn power off manually.
*/
pm_runtime_disable(sensor->dev);
if (!pm_runtime_status_suspended(sensor->dev))
imx415_power_off(sensor);
pm_runtime_set_suspended(sensor->dev);
}
static int imx415_runtime_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct imx415 *sensor = to_imx415(subdev);
return imx415_power_on(sensor);
}
static int imx415_runtime_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct imx415 *sensor = to_imx415(subdev);
imx415_power_off(sensor);
return 0;
}
static DEFINE_RUNTIME_DEV_PM_OPS(imx415_pm_ops, imx415_runtime_suspend,
imx415_runtime_resume, NULL);
static const struct of_device_id imx415_of_match[] = {
{ .compatible = "sony,imx415" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx415_of_match);
static struct i2c_driver imx415_driver = {
.probe = imx415_probe,
.remove = imx415_remove,
.driver = {
.name = "imx415",
.of_match_table = imx415_of_match,
.pm = pm_ptr(&imx415_pm_ops),
},
};
module_i2c_driver(imx415_driver);
MODULE_DESCRIPTION("Sony IMX415 image sensor driver");
MODULE_AUTHOR("Gerald Loacker <gerald.loacker@wolfvision.net>");
MODULE_AUTHOR("Michael Riesch <michael.riesch@wolfvision.net>");
MODULE_LICENSE("GPL");