linux/drivers/gpu/drm/i915/intel_dp.c
Paulo Zanoni 636352173a drm/i915: get power domain in case the BIOS enabled eDP VDD
If I unplug the eDP monitor, the BIOS of my machine will enable the
VDD bit, then when the driver loads it will think VDD is enabled. It
will detect that the eDP is not enabled and return false from
intel_edp_init_connector. This will trigger a call to
edp_panel_vdd_off_sync(), which trigger a WARN saying that the
refcount of the power domain is less than zero.

The problem happens because the driver gets a refcount whenever it
enables the VDD bit, and puts the refcount whenever it disables the
VDD bit. But on this case, the BIOS enabled VDD, so all we do is to
call put() without calling get() first, so the code added is there to
make sure we always have the get() in case the BIOS enabled the bit.

This regression was introduced in
commit e9cb81a228
Author: Paulo Zanoni <paulo.r.zanoni@intel.com>
Date:   Thu Nov 21 13:47:23 2013 -0200

    drm/i915: get a runtime PM reference when the panel VDD is on

v2: - Rebase

Tested-by: Chris Wilson <chris@chris-wilson.co.uk> (v1)
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: stable@vger.kernel.org (v3.13+)
Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
2014-04-23 11:13:25 +03:00

3870 lines
109 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <drm/drmP.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include "intel_drv.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
struct dp_link_dpll {
int link_bw;
struct dpll dpll;
};
static const struct dp_link_dpll gen4_dpll[] = {
{ DP_LINK_BW_1_62,
{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
{ DP_LINK_BW_2_7,
{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};
static const struct dp_link_dpll pch_dpll[] = {
{ DP_LINK_BW_1_62,
{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
{ DP_LINK_BW_2_7,
{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};
static const struct dp_link_dpll vlv_dpll[] = {
{ DP_LINK_BW_1_62,
{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
{ DP_LINK_BW_2_7,
{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};
/**
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return true, and false otherwise.
*/
static bool is_edp(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
}
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
return intel_dig_port->base.base.dev;
}
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
}
static void intel_dp_link_down(struct intel_dp *intel_dp);
static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
static int
intel_dp_max_link_bw(struct intel_dp *intel_dp)
{
int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
struct drm_device *dev = intel_dp->attached_connector->base.dev;
switch (max_link_bw) {
case DP_LINK_BW_1_62:
case DP_LINK_BW_2_7:
break;
case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
max_link_bw = DP_LINK_BW_5_4;
else
max_link_bw = DP_LINK_BW_2_7;
break;
default:
WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
max_link_bw);
max_link_bw = DP_LINK_BW_1_62;
break;
}
return max_link_bw;
}
/*
* The units on the numbers in the next two are... bizarre. Examples will
* make it clearer; this one parallels an example in the eDP spec.
*
* intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
*
* 270000 * 1 * 8 / 10 == 216000
*
* The actual data capacity of that configuration is 2.16Gbit/s, so the
* units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
* or equivalently, kilopixels per second - so for 1680x1050R it'd be
* 119000. At 18bpp that's 2142000 kilobits per second.
*
* Thus the strange-looking division by 10 in intel_dp_link_required, to
* get the result in decakilobits instead of kilobits.
*/
static int
intel_dp_link_required(int pixel_clock, int bpp)
{
return (pixel_clock * bpp + 9) / 10;
}
static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
return (max_link_clock * max_lanes * 8) / 10;
}
static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_connector *intel_connector = to_intel_connector(connector);
struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
int target_clock = mode->clock;
int max_rate, mode_rate, max_lanes, max_link_clock;
if (is_edp(intel_dp) && fixed_mode) {
if (mode->hdisplay > fixed_mode->hdisplay)
return MODE_PANEL;
if (mode->vdisplay > fixed_mode->vdisplay)
return MODE_PANEL;
target_clock = fixed_mode->clock;
}
max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
mode_rate = intel_dp_link_required(target_clock, 18);
if (mode_rate > max_rate)
return MODE_CLOCK_HIGH;
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
return MODE_H_ILLEGAL;
return MODE_OK;
}
static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
int i;
uint32_t v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((uint32_t) src[i]) << ((3-i) * 8);
return v;
}
static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t clkcfg;
/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
if (IS_VALLEYVIEW(dev))
return 200;
clkcfg = I915_READ(CLKCFG);
switch (clkcfg & CLKCFG_FSB_MASK) {
case CLKCFG_FSB_400:
return 100;
case CLKCFG_FSB_533:
return 133;
case CLKCFG_FSB_667:
return 166;
case CLKCFG_FSB_800:
return 200;
case CLKCFG_FSB_1067:
return 266;
case CLKCFG_FSB_1333:
return 333;
/* these two are just a guess; one of them might be right */
case CLKCFG_FSB_1600:
case CLKCFG_FSB_1600_ALT:
return 400;
default:
return 133;
}
}
static void
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
struct intel_dp *intel_dp,
struct edp_power_seq *out);
static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
struct intel_dp *intel_dp,
struct edp_power_seq *out);
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_dig_port->port;
enum pipe pipe;
/* modeset should have pipe */
if (crtc)
return to_intel_crtc(crtc)->pipe;
/* init time, try to find a pipe with this port selected */
for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
PANEL_PORT_SELECT_MASK;
if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
return pipe;
if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
return pipe;
}
/* shrug */
return PIPE_A;
}
static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
if (HAS_PCH_SPLIT(dev))
return PCH_PP_CONTROL;
else
return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
}
static u32 _pp_stat_reg(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
if (HAS_PCH_SPLIT(dev))
return PCH_PP_STATUS;
else
return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
}
static bool edp_have_panel_power(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
}
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
return !dev_priv->pm.suspended &&
(I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
}
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
if (!is_edp(intel_dp))
return;
if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
WARN(1, "eDP powered off while attempting aux channel communication.\n");
DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
I915_READ(_pp_stat_reg(intel_dp)),
I915_READ(_pp_ctrl_reg(intel_dp)));
}
}
static uint32_t
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
uint32_t status;
bool done;
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
if (has_aux_irq)
done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
msecs_to_jiffies_timeout(10));
else
done = wait_for_atomic(C, 10) == 0;
if (!done)
DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
has_aux_irq);
#undef C
return status;
}
static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
/*
* The clock divider is based off the hrawclk, and would like to run at
* 2MHz. So, take the hrawclk value and divide by 2 and use that
*/
return index ? 0 : intel_hrawclk(dev) / 2;
}
static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
if (index)
return 0;
if (intel_dig_port->port == PORT_A) {
if (IS_GEN6(dev) || IS_GEN7(dev))
return 200; /* SNB & IVB eDP input clock at 400Mhz */
else
return 225; /* eDP input clock at 450Mhz */
} else {
return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
}
}
static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (intel_dig_port->port == PORT_A) {
if (index)
return 0;
return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
/* Workaround for non-ULT HSW */
switch (index) {
case 0: return 63;
case 1: return 72;
default: return 0;
}
} else {
return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
}
}
static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
return index ? 0 : 100;
}
static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
bool has_aux_irq,
int send_bytes,
uint32_t aux_clock_divider)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
uint32_t precharge, timeout;
if (IS_GEN6(dev))
precharge = 3;
else
precharge = 5;
if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
else
timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
return DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_DONE |
(has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
timeout |
DP_AUX_CH_CTL_RECEIVE_ERROR |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
}
static int
intel_dp_aux_ch(struct intel_dp *intel_dp,
uint8_t *send, int send_bytes,
uint8_t *recv, int recv_size)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
uint32_t ch_data = ch_ctl + 4;
uint32_t aux_clock_divider;
int i, ret, recv_bytes;
uint32_t status;
int try, clock = 0;
bool has_aux_irq = HAS_AUX_IRQ(dev);
bool vdd;
vdd = _edp_panel_vdd_on(intel_dp);
/* dp aux is extremely sensitive to irq latency, hence request the
* lowest possible wakeup latency and so prevent the cpu from going into
* deep sleep states.
*/
pm_qos_update_request(&dev_priv->pm_qos, 0);
intel_dp_check_edp(intel_dp);
intel_aux_display_runtime_get(dev_priv);
/* Try to wait for any previous AUX channel activity */
for (try = 0; try < 3; try++) {
status = I915_READ_NOTRACE(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
msleep(1);
}
if (try == 3) {
WARN(1, "dp_aux_ch not started status 0x%08x\n",
I915_READ(ch_ctl));
ret = -EBUSY;
goto out;
}
/* Only 5 data registers! */
if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
ret = -E2BIG;
goto out;
}
while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
has_aux_irq,
send_bytes,
aux_clock_divider);
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4)
I915_WRITE(ch_data + i,
pack_aux(send + i, send_bytes - i));
/* Send the command and wait for it to complete */
I915_WRITE(ch_ctl, send_ctl);
status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
/* Clear done status and any errors */
I915_WRITE(ch_ctl,
status |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR))
continue;
if (status & DP_AUX_CH_CTL_DONE)
break;
}
if (status & DP_AUX_CH_CTL_DONE)
break;
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
ret = -EBUSY;
goto out;
}
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
ret = -EIO;
goto out;
}
/* Timeouts occur when the device isn't connected, so they're
* "normal" -- don't fill the kernel log with these */
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
ret = -ETIMEDOUT;
goto out;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4)
unpack_aux(I915_READ(ch_data + i),
recv + i, recv_bytes - i);
ret = recv_bytes;
out:
pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
intel_aux_display_runtime_put(dev_priv);
if (vdd)
edp_panel_vdd_off(intel_dp, false);
return ret;
}
#define BARE_ADDRESS_SIZE 3
#define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
{
struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
uint8_t txbuf[20], rxbuf[20];
size_t txsize, rxsize;
int ret;
txbuf[0] = msg->request << 4;
txbuf[1] = msg->address >> 8;
txbuf[2] = msg->address & 0xff;
txbuf[3] = msg->size - 1;
switch (msg->request & ~DP_AUX_I2C_MOT) {
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE:
txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
rxsize = 1;
if (WARN_ON(txsize > 20))
return -E2BIG;
memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
if (ret > 0) {
msg->reply = rxbuf[0] >> 4;
/* Return payload size. */
ret = msg->size;
}
break;
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
rxsize = msg->size + 1;
if (WARN_ON(rxsize > 20))
return -E2BIG;
ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
if (ret > 0) {
msg->reply = rxbuf[0] >> 4;
/*
* Assume happy day, and copy the data. The caller is
* expected to check msg->reply before touching it.
*
* Return payload size.
*/
ret--;
memcpy(msg->buffer, rxbuf + 1, ret);
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static void
intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->port;
const char *name = NULL;
int ret;
switch (port) {
case PORT_A:
intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
name = "DPDDC-A";
break;
case PORT_B:
intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
name = "DPDDC-B";
break;
case PORT_C:
intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
name = "DPDDC-C";
break;
case PORT_D:
intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
name = "DPDDC-D";
break;
default:
BUG();
}
if (!HAS_DDI(dev))
intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
intel_dp->aux.name = name;
intel_dp->aux.dev = dev->dev;
intel_dp->aux.transfer = intel_dp_aux_transfer;
DRM_DEBUG_KMS("registering %s bus for %s\n", name,
connector->base.kdev->kobj.name);
ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
if (ret < 0) {
DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
name, ret);
return;
}
ret = sysfs_create_link(&connector->base.kdev->kobj,
&intel_dp->aux.ddc.dev.kobj,
intel_dp->aux.ddc.dev.kobj.name);
if (ret < 0) {
DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
}
}
static void
intel_dp_connector_unregister(struct intel_connector *intel_connector)
{
struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
sysfs_remove_link(&intel_connector->base.kdev->kobj,
intel_dp->aux.ddc.dev.kobj.name);
intel_connector_unregister(intel_connector);
}
static void
intel_dp_set_clock(struct intel_encoder *encoder,
struct intel_crtc_config *pipe_config, int link_bw)
{
struct drm_device *dev = encoder->base.dev;
const struct dp_link_dpll *divisor = NULL;
int i, count = 0;
if (IS_G4X(dev)) {
divisor = gen4_dpll;
count = ARRAY_SIZE(gen4_dpll);
} else if (IS_HASWELL(dev)) {
/* Haswell has special-purpose DP DDI clocks. */
} else if (HAS_PCH_SPLIT(dev)) {
divisor = pch_dpll;
count = ARRAY_SIZE(pch_dpll);
} else if (IS_VALLEYVIEW(dev)) {
divisor = vlv_dpll;
count = ARRAY_SIZE(vlv_dpll);
}
if (divisor && count) {
for (i = 0; i < count; i++) {
if (link_bw == divisor[i].link_bw) {
pipe_config->dpll = divisor[i].dpll;
pipe_config->clock_set = true;
break;
}
}
}
}
bool
intel_dp_compute_config(struct intel_encoder *encoder,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = dp_to_dig_port(intel_dp)->port;
struct intel_crtc *intel_crtc = encoder->new_crtc;
struct intel_connector *intel_connector = intel_dp->attached_connector;
int lane_count, clock;
int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
/* Conveniently, the link BW constants become indices with a shift...*/
int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
int bpp, mode_rate;
static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
int link_avail, link_clock;
if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
pipe_config->has_pch_encoder = true;
pipe_config->has_dp_encoder = true;
if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
adjusted_mode);
if (!HAS_PCH_SPLIT(dev))
intel_gmch_panel_fitting(intel_crtc, pipe_config,
intel_connector->panel.fitting_mode);
else
intel_pch_panel_fitting(intel_crtc, pipe_config,
intel_connector->panel.fitting_mode);
}
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
return false;
DRM_DEBUG_KMS("DP link computation with max lane count %i "
"max bw %02x pixel clock %iKHz\n",
max_lane_count, bws[max_clock],
adjusted_mode->crtc_clock);
/* Walk through all bpp values. Luckily they're all nicely spaced with 2
* bpc in between. */
bpp = pipe_config->pipe_bpp;
if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
dev_priv->vbt.edp_bpp < bpp) {
DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
dev_priv->vbt.edp_bpp);
bpp = dev_priv->vbt.edp_bpp;
}
for (; bpp >= 6*3; bpp -= 2*3) {
mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
bpp);
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
for (clock = 0; clock <= max_clock; clock++) {
link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
link_avail = intel_dp_max_data_rate(link_clock,
lane_count);
if (mode_rate <= link_avail) {
goto found;
}
}
}
}
return false;
found:
if (intel_dp->color_range_auto) {
/*
* See:
* CEA-861-E - 5.1 Default Encoding Parameters
* VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
*/
if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
intel_dp->color_range = DP_COLOR_RANGE_16_235;
else
intel_dp->color_range = 0;
}
if (intel_dp->color_range)
pipe_config->limited_color_range = true;
intel_dp->link_bw = bws[clock];
intel_dp->lane_count = lane_count;
pipe_config->pipe_bpp = bpp;
pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
intel_dp->link_bw, intel_dp->lane_count,
pipe_config->port_clock, bpp);
DRM_DEBUG_KMS("DP link bw required %i available %i\n",
mode_rate, link_avail);
intel_link_compute_m_n(bpp, lane_count,
adjusted_mode->crtc_clock,
pipe_config->port_clock,
&pipe_config->dp_m_n);
intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
return true;
}
static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
dpa_ctl = I915_READ(DP_A);
dpa_ctl &= ~DP_PLL_FREQ_MASK;
if (crtc->config.port_clock == 162000) {
/* For a long time we've carried around a ILK-DevA w/a for the
* 160MHz clock. If we're really unlucky, it's still required.
*/
DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
dpa_ctl |= DP_PLL_FREQ_160MHZ;
intel_dp->DP |= DP_PLL_FREQ_160MHZ;
} else {
dpa_ctl |= DP_PLL_FREQ_270MHZ;
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
}
I915_WRITE(DP_A, dpa_ctl);
POSTING_READ(DP_A);
udelay(500);
}
static void intel_dp_mode_set(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = dp_to_dig_port(intel_dp)->port;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
/*
* There are four kinds of DP registers:
*
* IBX PCH
* SNB CPU
* IVB CPU
* CPT PCH
*
* IBX PCH and CPU are the same for almost everything,
* except that the CPU DP PLL is configured in this
* register
*
* CPT PCH is quite different, having many bits moved
* to the TRANS_DP_CTL register instead. That
* configuration happens (oddly) in ironlake_pch_enable
*/
/* Preserve the BIOS-computed detected bit. This is
* supposed to be read-only.
*/
intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
/* Handle DP bits in common between all three register formats */
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
if (intel_dp->has_audio) {
DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
pipe_name(crtc->pipe));
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
intel_write_eld(&encoder->base, adjusted_mode);
}
/* Split out the IBX/CPU vs CPT settings */
if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
intel_dp->DP |= DP_ENHANCED_FRAMING;
intel_dp->DP |= crtc->pipe << 29;
} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
intel_dp->DP |= intel_dp->color_range;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
intel_dp->DP |= DP_ENHANCED_FRAMING;
if (crtc->pipe == 1)
intel_dp->DP |= DP_PIPEB_SELECT;
} else {
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
}
if (port == PORT_A && !IS_VALLEYVIEW(dev))
ironlake_set_pll_cpu_edp(intel_dp);
}
#define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
#define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
#define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
#define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
static void wait_panel_status(struct intel_dp *intel_dp,
u32 mask,
u32 value)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp_stat_reg, pp_ctrl_reg;
pp_stat_reg = _pp_stat_reg(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
mask, value,
I915_READ(pp_stat_reg),
I915_READ(pp_ctrl_reg));
if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
DRM_ERROR("Panel status timeout: status %08x control %08x\n",
I915_READ(pp_stat_reg),
I915_READ(pp_ctrl_reg));
}
DRM_DEBUG_KMS("Wait complete\n");
}
static void wait_panel_on(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power on\n");
wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
}
static void wait_panel_off(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power off time\n");
wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
}
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power cycle\n");
/* When we disable the VDD override bit last we have to do the manual
* wait. */
wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
intel_dp->panel_power_cycle_delay);
wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
}
static void wait_backlight_on(struct intel_dp *intel_dp)
{
wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
intel_dp->backlight_on_delay);
}
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
{
wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
intel_dp->backlight_off_delay);
}
/* Read the current pp_control value, unlocking the register if it
* is locked
*/
static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 control;
control = I915_READ(_pp_ctrl_reg(intel_dp));
control &= ~PANEL_UNLOCK_MASK;
control |= PANEL_UNLOCK_REGS;
return control;
}
static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
u32 pp_stat_reg, pp_ctrl_reg;
bool need_to_disable = !intel_dp->want_panel_vdd;
if (!is_edp(intel_dp))
return false;
intel_dp->want_panel_vdd = true;
if (edp_have_panel_vdd(intel_dp))
return need_to_disable;
intel_runtime_pm_get(dev_priv);
DRM_DEBUG_KMS("Turning eDP VDD on\n");
if (!edp_have_panel_power(intel_dp))
wait_panel_power_cycle(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
pp |= EDP_FORCE_VDD;
pp_stat_reg = _pp_stat_reg(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
/*
* If the panel wasn't on, delay before accessing aux channel
*/
if (!edp_have_panel_power(intel_dp)) {
DRM_DEBUG_KMS("eDP was not running\n");
msleep(intel_dp->panel_power_up_delay);
}
return need_to_disable;
}
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
{
if (is_edp(intel_dp)) {
bool vdd = _edp_panel_vdd_on(intel_dp);
WARN(!vdd, "eDP VDD already requested on\n");
}
}
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
u32 pp_stat_reg, pp_ctrl_reg;
WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
DRM_DEBUG_KMS("Turning eDP VDD off\n");
pp = ironlake_get_pp_control(intel_dp);
pp &= ~EDP_FORCE_VDD;
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
pp_stat_reg = _pp_stat_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
/* Make sure sequencer is idle before allowing subsequent activity */
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
if ((pp & POWER_TARGET_ON) == 0)
intel_dp->last_power_cycle = jiffies;
intel_runtime_pm_put(dev_priv);
}
}
static void edp_panel_vdd_work(struct work_struct *__work)
{
struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
struct intel_dp, panel_vdd_work);
struct drm_device *dev = intel_dp_to_dev(intel_dp);
mutex_lock(&dev->mode_config.mutex);
edp_panel_vdd_off_sync(intel_dp);
mutex_unlock(&dev->mode_config.mutex);
}
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
{
if (!is_edp(intel_dp))
return;
WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
intel_dp->want_panel_vdd = false;
if (sync) {
edp_panel_vdd_off_sync(intel_dp);
} else {
/*
* Queue the timer to fire a long
* time from now (relative to the power down delay)
* to keep the panel power up across a sequence of operations
*/
schedule_delayed_work(&intel_dp->panel_vdd_work,
msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
}
}
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
u32 pp_ctrl_reg;
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP power on\n");
if (edp_have_panel_power(intel_dp)) {
DRM_DEBUG_KMS("eDP power already on\n");
return;
}
wait_panel_power_cycle(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
if (IS_GEN5(dev)) {
/* ILK workaround: disable reset around power sequence */
pp &= ~PANEL_POWER_RESET;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
}
pp |= POWER_TARGET_ON;
if (!IS_GEN5(dev))
pp |= PANEL_POWER_RESET;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
wait_panel_on(intel_dp);
intel_dp->last_power_on = jiffies;
if (IS_GEN5(dev)) {
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
}
}
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
u32 pp_ctrl_reg;
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP power off\n");
edp_wait_backlight_off(intel_dp);
WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
pp = ironlake_get_pp_control(intel_dp);
/* We need to switch off panel power _and_ force vdd, for otherwise some
* panels get very unhappy and cease to work. */
pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
EDP_BLC_ENABLE);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
intel_dp->want_panel_vdd = false;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
intel_dp->last_power_cycle = jiffies;
wait_panel_off(intel_dp);
/* We got a reference when we enabled the VDD. */
intel_runtime_pm_put(dev_priv);
}
void intel_edp_backlight_on(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
u32 pp_ctrl_reg;
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("\n");
/*
* If we enable the backlight right away following a panel power
* on, we may see slight flicker as the panel syncs with the eDP
* link. So delay a bit to make sure the image is solid before
* allowing it to appear.
*/
wait_backlight_on(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
pp |= EDP_BLC_ENABLE;
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
intel_panel_enable_backlight(intel_dp->attached_connector);
}
void intel_edp_backlight_off(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
u32 pp_ctrl_reg;
if (!is_edp(intel_dp))
return;
intel_panel_disable_backlight(intel_dp->attached_connector);
DRM_DEBUG_KMS("\n");
pp = ironlake_get_pp_control(intel_dp);
pp &= ~EDP_BLC_ENABLE;
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
intel_dp->last_backlight_off = jiffies;
}
static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
assert_pipe_disabled(dev_priv,
to_intel_crtc(crtc)->pipe);
DRM_DEBUG_KMS("\n");
dpa_ctl = I915_READ(DP_A);
WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
/* We don't adjust intel_dp->DP while tearing down the link, to
* facilitate link retraining (e.g. after hotplug). Hence clear all
* enable bits here to ensure that we don't enable too much. */
intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
intel_dp->DP |= DP_PLL_ENABLE;
I915_WRITE(DP_A, intel_dp->DP);
POSTING_READ(DP_A);
udelay(200);
}
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
assert_pipe_disabled(dev_priv,
to_intel_crtc(crtc)->pipe);
dpa_ctl = I915_READ(DP_A);
WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
"dp pll off, should be on\n");
WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
/* We can't rely on the value tracked for the DP register in
* intel_dp->DP because link_down must not change that (otherwise link
* re-training will fail. */
dpa_ctl &= ~DP_PLL_ENABLE;
I915_WRITE(DP_A, dpa_ctl);
POSTING_READ(DP_A);
udelay(200);
}
/* If the sink supports it, try to set the power state appropriately */
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
{
int ret, i;
/* Should have a valid DPCD by this point */
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
if (mode != DRM_MODE_DPMS_ON) {
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
DP_SET_POWER_D3);
if (ret != 1)
DRM_DEBUG_DRIVER("failed to write sink power state\n");
} else {
/*
* When turning on, we need to retry for 1ms to give the sink
* time to wake up.
*/
for (i = 0; i < 3; i++) {
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
DP_SET_POWER_D0);
if (ret == 1)
break;
msleep(1);
}
}
}
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = dp_to_dig_port(intel_dp)->port;
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain power_domain;
u32 tmp;
power_domain = intel_display_port_power_domain(encoder);
if (!intel_display_power_enabled(dev_priv, power_domain))
return false;
tmp = I915_READ(intel_dp->output_reg);
if (!(tmp & DP_PORT_EN))
return false;
if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
*pipe = PORT_TO_PIPE_CPT(tmp);
} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
*pipe = PORT_TO_PIPE(tmp);
} else {
u32 trans_sel;
u32 trans_dp;
int i;
switch (intel_dp->output_reg) {
case PCH_DP_B:
trans_sel = TRANS_DP_PORT_SEL_B;
break;
case PCH_DP_C:
trans_sel = TRANS_DP_PORT_SEL_C;
break;
case PCH_DP_D:
trans_sel = TRANS_DP_PORT_SEL_D;
break;
default:
return true;
}
for_each_pipe(i) {
trans_dp = I915_READ(TRANS_DP_CTL(i));
if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
*pipe = i;
return true;
}
}
DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
intel_dp->output_reg);
}
return true;
}
static void intel_dp_get_config(struct intel_encoder *encoder,
struct intel_crtc_config *pipe_config)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
u32 tmp, flags = 0;
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = dp_to_dig_port(intel_dp)->port;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
int dotclock;
if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
tmp = I915_READ(intel_dp->output_reg);
if (tmp & DP_SYNC_HS_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (tmp & DP_SYNC_VS_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
} else {
tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
}
pipe_config->adjusted_mode.flags |= flags;
pipe_config->has_dp_encoder = true;
intel_dp_get_m_n(crtc, pipe_config);
if (port == PORT_A) {
if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
pipe_config->port_clock = 162000;
else
pipe_config->port_clock = 270000;
}
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
ironlake_check_encoder_dotclock(pipe_config, dotclock);
pipe_config->adjusted_mode.crtc_clock = dotclock;
if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
/*
* This is a big fat ugly hack.
*
* Some machines in UEFI boot mode provide us a VBT that has 18
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
* unknown we fail to light up. Yet the same BIOS boots up with
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
* max, not what it tells us to use.
*
* Note: This will still be broken if the eDP panel is not lit
* up by the BIOS, and thus we can't get the mode at module
* load.
*/
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
}
}
static bool is_edp_psr(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return dev_priv->psr.sink_support;
}
static bool intel_edp_is_psr_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!HAS_PSR(dev))
return false;
return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
}
static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
struct edp_vsc_psr *vsc_psr)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
uint32_t *data = (uint32_t *) vsc_psr;
unsigned int i;
/* As per BSPec (Pipe Video Data Island Packet), we need to disable
the video DIP being updated before program video DIP data buffer
registers for DIP being updated. */
I915_WRITE(ctl_reg, 0);
POSTING_READ(ctl_reg);
for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
if (i < sizeof(struct edp_vsc_psr))
I915_WRITE(data_reg + i, *data++);
else
I915_WRITE(data_reg + i, 0);
}
I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
POSTING_READ(ctl_reg);
}
static void intel_edp_psr_setup(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct edp_vsc_psr psr_vsc;
if (intel_dp->psr_setup_done)
return;
/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
psr_vsc.sdp_header.HB2 = 0x2;
psr_vsc.sdp_header.HB3 = 0x8;
intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
/* Avoid continuous PSR exit by masking memup and hpd */
I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
intel_dp->psr_setup_done = true;
}
static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t aux_clock_divider;
int precharge = 0x3;
int msg_size = 5; /* Header(4) + Message(1) */
aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
/* Enable PSR in sink */
if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
else
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
/* Setup AUX registers */
I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
I915_WRITE(EDP_PSR_AUX_CTL(dev),
DP_AUX_CH_CTL_TIME_OUT_400us |
(msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
}
static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t max_sleep_time = 0x1f;
uint32_t idle_frames = 1;
uint32_t val = 0x0;
const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
val |= EDP_PSR_LINK_STANDBY;
val |= EDP_PSR_TP2_TP3_TIME_0us;
val |= EDP_PSR_TP1_TIME_0us;
val |= EDP_PSR_SKIP_AUX_EXIT;
} else
val |= EDP_PSR_LINK_DISABLE;
I915_WRITE(EDP_PSR_CTL(dev), val |
(IS_BROADWELL(dev) ? 0 : link_entry_time) |
max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
EDP_PSR_ENABLE);
}
static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dig_port->base.base.crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
dev_priv->psr.source_ok = false;
if (!HAS_PSR(dev)) {
DRM_DEBUG_KMS("PSR not supported on this platform\n");
return false;
}
if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
(dig_port->port != PORT_A)) {
DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
return false;
}
if (!i915.enable_psr) {
DRM_DEBUG_KMS("PSR disable by flag\n");
return false;
}
crtc = dig_port->base.base.crtc;
if (crtc == NULL) {
DRM_DEBUG_KMS("crtc not active for PSR\n");
return false;
}
intel_crtc = to_intel_crtc(crtc);
if (!intel_crtc_active(crtc)) {
DRM_DEBUG_KMS("crtc not active for PSR\n");
return false;
}
obj = to_intel_framebuffer(crtc->primary->fb)->obj;
if (obj->tiling_mode != I915_TILING_X ||
obj->fence_reg == I915_FENCE_REG_NONE) {
DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
return false;
}
if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
return false;
}
if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
S3D_ENABLE) {
DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
return false;
}
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
return false;
}
dev_priv->psr.source_ok = true;
return true;
}
static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
if (!intel_edp_psr_match_conditions(intel_dp) ||
intel_edp_is_psr_enabled(dev))
return;
/* Setup PSR once */
intel_edp_psr_setup(intel_dp);
/* Enable PSR on the panel */
intel_edp_psr_enable_sink(intel_dp);
/* Enable PSR on the host */
intel_edp_psr_enable_source(intel_dp);
}
void intel_edp_psr_enable(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
if (intel_edp_psr_match_conditions(intel_dp) &&
!intel_edp_is_psr_enabled(dev))
intel_edp_psr_do_enable(intel_dp);
}
void intel_edp_psr_disable(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
if (!intel_edp_is_psr_enabled(dev))
return;
I915_WRITE(EDP_PSR_CTL(dev),
I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
/* Wait till PSR is idle */
if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
DRM_ERROR("Timed out waiting for PSR Idle State\n");
}
void intel_edp_psr_update(struct drm_device *dev)
{
struct intel_encoder *encoder;
struct intel_dp *intel_dp = NULL;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
if (encoder->type == INTEL_OUTPUT_EDP) {
intel_dp = enc_to_intel_dp(&encoder->base);
if (!is_edp_psr(dev))
return;
if (!intel_edp_psr_match_conditions(intel_dp))
intel_edp_psr_disable(intel_dp);
else
if (!intel_edp_is_psr_enabled(dev))
intel_edp_psr_do_enable(intel_dp);
}
}
static void intel_disable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = dp_to_dig_port(intel_dp)->port;
struct drm_device *dev = encoder->base.dev;
/* Make sure the panel is off before trying to change the mode. But also
* ensure that we have vdd while we switch off the panel. */
intel_edp_panel_vdd_on(intel_dp);
intel_edp_backlight_off(intel_dp);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
intel_edp_panel_off(intel_dp);
/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
intel_dp_link_down(intel_dp);
}
static void intel_post_disable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = dp_to_dig_port(intel_dp)->port;
struct drm_device *dev = encoder->base.dev;
if (port == PORT_A || IS_VALLEYVIEW(dev)) {
intel_dp_link_down(intel_dp);
if (!IS_VALLEYVIEW(dev))
ironlake_edp_pll_off(intel_dp);
}
}
static void intel_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dp_reg = I915_READ(intel_dp->output_reg);
if (WARN_ON(dp_reg & DP_PORT_EN))
return;
intel_edp_panel_vdd_on(intel_dp);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
intel_dp_start_link_train(intel_dp);
intel_edp_panel_on(intel_dp);
edp_panel_vdd_off(intel_dp, true);
intel_dp_complete_link_train(intel_dp);
intel_dp_stop_link_train(intel_dp);
}
static void g4x_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_enable_dp(encoder);
intel_edp_backlight_on(intel_dp);
}
static void vlv_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_edp_backlight_on(intel_dp);
}
static void g4x_pre_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
if (dport->port == PORT_A)
ironlake_edp_pll_on(intel_dp);
}
static void vlv_pre_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
struct edp_power_seq power_seq;
u32 val;
mutex_lock(&dev_priv->dpio_lock);
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
val = 0;
if (pipe)
val |= (1<<21);
else
val &= ~(1<<21);
val |= 0x001000c4;
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
mutex_unlock(&dev_priv->dpio_lock);
if (is_edp(intel_dp)) {
/* init power sequencer on this pipe and port */
intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
&power_seq);
}
intel_enable_dp(encoder);
vlv_wait_port_ready(dev_priv, dport);
}
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
/* Program Tx lane resets to default */
mutex_lock(&dev_priv->dpio_lock);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
DPIO_PCS_TX_LANE2_RESET |
DPIO_PCS_TX_LANE1_RESET);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
(1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
DPIO_PCS_CLK_SOFT_RESET);
/* Fix up inter-pair skew failure */
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
mutex_unlock(&dev_priv->dpio_lock);
}
/*
* Native read with retry for link status and receiver capability reads for
* cases where the sink may still be asleep.
*
* Sinks are *supposed* to come up within 1ms from an off state, but we're also
* supposed to retry 3 times per the spec.
*/
static ssize_t
intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
void *buffer, size_t size)
{
ssize_t ret;
int i;
for (i = 0; i < 3; i++) {
ret = drm_dp_dpcd_read(aux, offset, buffer, size);
if (ret == size)
return ret;
msleep(1);
}
return ret;
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
static bool
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
{
return intel_dp_dpcd_read_wake(&intel_dp->aux,
DP_LANE0_1_STATUS,
link_status,
DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
}
/*
* These are source-specific values; current Intel hardware supports
* a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
*/
static uint8_t
intel_dp_voltage_max(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
enum port port = dp_to_dig_port(intel_dp)->port;
if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
return DP_TRAIN_VOLTAGE_SWING_1200;
else if (IS_GEN7(dev) && port == PORT_A)
return DP_TRAIN_VOLTAGE_SWING_800;
else if (HAS_PCH_CPT(dev) && port != PORT_A)
return DP_TRAIN_VOLTAGE_SWING_1200;
else
return DP_TRAIN_VOLTAGE_SWING_800;
}
static uint8_t
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
enum port port = dp_to_dig_port(intel_dp)->port;
if (IS_BROADWELL(dev)) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
} else if (IS_HASWELL(dev)) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_9_5;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
} else if (IS_VALLEYVIEW(dev)) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_9_5;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
} else if (IS_GEN7(dev) && port == PORT_A) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
} else {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
}
}
static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct intel_crtc *intel_crtc =
to_intel_crtc(dport->base.base.crtc);
unsigned long demph_reg_value, preemph_reg_value,
uniqtranscale_reg_value;
uint8_t train_set = intel_dp->train_set[0];
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPHASIS_0:
preemph_reg_value = 0x0004000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
demph_reg_value = 0x2B405555;
uniqtranscale_reg_value = 0x552AB83A;
break;
case DP_TRAIN_VOLTAGE_SWING_600:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x5548B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_800:
demph_reg_value = 0x2B245555;
uniqtranscale_reg_value = 0x5560B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_1200:
demph_reg_value = 0x2B405555;
uniqtranscale_reg_value = 0x5598DA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPHASIS_3_5:
preemph_reg_value = 0x0002000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x5552B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_600:
demph_reg_value = 0x2B404848;
uniqtranscale_reg_value = 0x5580B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_800:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPHASIS_6:
preemph_reg_value = 0x0000000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
demph_reg_value = 0x2B305555;
uniqtranscale_reg_value = 0x5570B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_600:
demph_reg_value = 0x2B2B4040;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPHASIS_9_5:
preemph_reg_value = 0x0006000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
demph_reg_value = 0x1B405555;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
default:
return 0;
}
mutex_lock(&dev_priv->dpio_lock);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
uniqtranscale_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
mutex_unlock(&dev_priv->dpio_lock);
return 0;
}
static void
intel_get_adjust_train(struct intel_dp *intel_dp,
const uint8_t link_status[DP_LINK_STATUS_SIZE])
{
uint8_t v = 0;
uint8_t p = 0;
int lane;
uint8_t voltage_max;
uint8_t preemph_max;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
voltage_max = intel_dp_voltage_max(intel_dp);
if (v >= voltage_max)
v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
if (p >= preemph_max)
p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
for (lane = 0; lane < 4; lane++)
intel_dp->train_set[lane] = v | p;
}
static uint32_t
intel_gen4_signal_levels(uint8_t train_set)
{
uint32_t signal_levels = 0;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
default:
signal_levels |= DP_VOLTAGE_0_4;
break;
case DP_TRAIN_VOLTAGE_SWING_600:
signal_levels |= DP_VOLTAGE_0_6;
break;
case DP_TRAIN_VOLTAGE_SWING_800:
signal_levels |= DP_VOLTAGE_0_8;
break;
case DP_TRAIN_VOLTAGE_SWING_1200:
signal_levels |= DP_VOLTAGE_1_2;
break;
}
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPHASIS_0:
default:
signal_levels |= DP_PRE_EMPHASIS_0;
break;
case DP_TRAIN_PRE_EMPHASIS_3_5:
signal_levels |= DP_PRE_EMPHASIS_3_5;
break;
case DP_TRAIN_PRE_EMPHASIS_6:
signal_levels |= DP_PRE_EMPHASIS_6;
break;
case DP_TRAIN_PRE_EMPHASIS_9_5:
signal_levels |= DP_PRE_EMPHASIS_9_5;
break;
}
return signal_levels;
}
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
}
}
/* Gen7's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen7_edp_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_400MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
return EDP_LINK_TRAIN_400MV_6DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_600MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_800MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_500MV_0DB_IVB;
}
}
/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
static uint32_t
intel_hsw_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_400MV_0DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_400MV_3_5DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
return DDI_BUF_EMP_400MV_6DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
return DDI_BUF_EMP_400MV_9_5DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_600MV_0DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_600MV_3_5DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
return DDI_BUF_EMP_600MV_6DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_800MV_0DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_800MV_3_5DB_HSW;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return DDI_BUF_EMP_400MV_0DB_HSW;
}
}
static uint32_t
intel_bdw_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_400MV_3_5DB_BDW; /* Sel1 */
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
return DDI_BUF_EMP_400MV_6DB_BDW; /* Sel2 */
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_600MV_0DB_BDW; /* Sel3 */
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_600MV_3_5DB_BDW; /* Sel4 */
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
return DDI_BUF_EMP_600MV_6DB_BDW; /* Sel5 */
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_800MV_0DB_BDW; /* Sel6 */
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_800MV_3_5DB_BDW; /* Sel7 */
case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_1200MV_0DB_BDW; /* Sel8 */
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
}
}
/* Properly updates "DP" with the correct signal levels. */
static void
intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->port;
struct drm_device *dev = intel_dig_port->base.base.dev;
uint32_t signal_levels, mask;
uint8_t train_set = intel_dp->train_set[0];
if (IS_BROADWELL(dev)) {
signal_levels = intel_bdw_signal_levels(train_set);
mask = DDI_BUF_EMP_MASK;
} else if (IS_HASWELL(dev)) {
signal_levels = intel_hsw_signal_levels(train_set);
mask = DDI_BUF_EMP_MASK;
} else if (IS_VALLEYVIEW(dev)) {
signal_levels = intel_vlv_signal_levels(intel_dp);
mask = 0;
} else if (IS_GEN7(dev) && port == PORT_A) {
signal_levels = intel_gen7_edp_signal_levels(train_set);
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
} else if (IS_GEN6(dev) && port == PORT_A) {
signal_levels = intel_gen6_edp_signal_levels(train_set);
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
} else {
signal_levels = intel_gen4_signal_levels(train_set);
mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
}
DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
*DP = (*DP & ~mask) | signal_levels;
}
static bool
intel_dp_set_link_train(struct intel_dp *intel_dp,
uint32_t *DP,
uint8_t dp_train_pat)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_dig_port->port;
uint8_t buf[sizeof(intel_dp->train_set) + 1];
int ret, len;
if (HAS_DDI(dev)) {
uint32_t temp = I915_READ(DP_TP_CTL(port));
if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
else
temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
break;
case DP_TRAINING_PATTERN_1:
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
break;
case DP_TRAINING_PATTERN_2:
temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
break;
case DP_TRAINING_PATTERN_3:
temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
break;
}
I915_WRITE(DP_TP_CTL(port), temp);
} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
*DP &= ~DP_LINK_TRAIN_MASK_CPT;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
*DP |= DP_LINK_TRAIN_OFF_CPT;
break;
case DP_TRAINING_PATTERN_1:
*DP |= DP_LINK_TRAIN_PAT_1_CPT;
break;
case DP_TRAINING_PATTERN_2:
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
break;
case DP_TRAINING_PATTERN_3:
DRM_ERROR("DP training pattern 3 not supported\n");
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
break;
}
} else {
*DP &= ~DP_LINK_TRAIN_MASK;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
*DP |= DP_LINK_TRAIN_OFF;
break;
case DP_TRAINING_PATTERN_1:
*DP |= DP_LINK_TRAIN_PAT_1;
break;
case DP_TRAINING_PATTERN_2:
*DP |= DP_LINK_TRAIN_PAT_2;
break;
case DP_TRAINING_PATTERN_3:
DRM_ERROR("DP training pattern 3 not supported\n");
*DP |= DP_LINK_TRAIN_PAT_2;
break;
}
}
I915_WRITE(intel_dp->output_reg, *DP);
POSTING_READ(intel_dp->output_reg);
buf[0] = dp_train_pat;
if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
DP_TRAINING_PATTERN_DISABLE) {
/* don't write DP_TRAINING_LANEx_SET on disable */
len = 1;
} else {
/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
len = intel_dp->lane_count + 1;
}
ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
buf, len);
return ret == len;
}
static bool
intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
uint8_t dp_train_pat)
{
memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
intel_dp_set_signal_levels(intel_dp, DP);
return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
}
static bool
intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
const uint8_t link_status[DP_LINK_STATUS_SIZE])
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
intel_get_adjust_train(intel_dp, link_status);
intel_dp_set_signal_levels(intel_dp, DP);
I915_WRITE(intel_dp->output_reg, *DP);
POSTING_READ(intel_dp->output_reg);
ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
intel_dp->train_set, intel_dp->lane_count);
return ret == intel_dp->lane_count;
}
static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_dig_port->port;
uint32_t val;
if (!HAS_DDI(dev))
return;
val = I915_READ(DP_TP_CTL(port));
val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
val |= DP_TP_CTL_LINK_TRAIN_IDLE;
I915_WRITE(DP_TP_CTL(port), val);
/*
* On PORT_A we can have only eDP in SST mode. There the only reason
* we need to set idle transmission mode is to work around a HW issue
* where we enable the pipe while not in idle link-training mode.
* In this case there is requirement to wait for a minimum number of
* idle patterns to be sent.
*/
if (port == PORT_A)
return;
if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
1))
DRM_ERROR("Timed out waiting for DP idle patterns\n");
}
/* Enable corresponding port and start training pattern 1 */
void
intel_dp_start_link_train(struct intel_dp *intel_dp)
{
struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
struct drm_device *dev = encoder->dev;
int i;
uint8_t voltage;
int voltage_tries, loop_tries;
uint32_t DP = intel_dp->DP;
uint8_t link_config[2];
if (HAS_DDI(dev))
intel_ddi_prepare_link_retrain(encoder);
/* Write the link configuration data */
link_config[0] = intel_dp->link_bw;
link_config[1] = intel_dp->lane_count;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
link_config[0] = 0;
link_config[1] = DP_SET_ANSI_8B10B;
drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
DP |= DP_PORT_EN;
/* clock recovery */
if (!intel_dp_reset_link_train(intel_dp, &DP,
DP_TRAINING_PATTERN_1 |
DP_LINK_SCRAMBLING_DISABLE)) {
DRM_ERROR("failed to enable link training\n");
return;
}
voltage = 0xff;
voltage_tries = 0;
loop_tries = 0;
for (;;) {
uint8_t link_status[DP_LINK_STATUS_SIZE];
drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
if (!intel_dp_get_link_status(intel_dp, link_status)) {
DRM_ERROR("failed to get link status\n");
break;
}
if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
DRM_DEBUG_KMS("clock recovery OK\n");
break;
}
/* Check to see if we've tried the max voltage */
for (i = 0; i < intel_dp->lane_count; i++)
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
if (i == intel_dp->lane_count) {
++loop_tries;
if (loop_tries == 5) {
DRM_ERROR("too many full retries, give up\n");
break;
}
intel_dp_reset_link_train(intel_dp, &DP,
DP_TRAINING_PATTERN_1 |
DP_LINK_SCRAMBLING_DISABLE);
voltage_tries = 0;
continue;
}
/* Check to see if we've tried the same voltage 5 times */
if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++voltage_tries;
if (voltage_tries == 5) {
DRM_ERROR("too many voltage retries, give up\n");
break;
}
} else
voltage_tries = 0;
voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Update training set as requested by target */
if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
DRM_ERROR("failed to update link training\n");
break;
}
}
intel_dp->DP = DP;
}
void
intel_dp_complete_link_train(struct intel_dp *intel_dp)
{
bool channel_eq = false;
int tries, cr_tries;
uint32_t DP = intel_dp->DP;
uint32_t training_pattern = DP_TRAINING_PATTERN_2;
/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
training_pattern = DP_TRAINING_PATTERN_3;
/* channel equalization */
if (!intel_dp_set_link_train(intel_dp, &DP,
training_pattern |
DP_LINK_SCRAMBLING_DISABLE)) {
DRM_ERROR("failed to start channel equalization\n");
return;
}
tries = 0;
cr_tries = 0;
channel_eq = false;
for (;;) {
uint8_t link_status[DP_LINK_STATUS_SIZE];
if (cr_tries > 5) {
DRM_ERROR("failed to train DP, aborting\n");
break;
}
drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
if (!intel_dp_get_link_status(intel_dp, link_status)) {
DRM_ERROR("failed to get link status\n");
break;
}
/* Make sure clock is still ok */
if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
intel_dp_start_link_train(intel_dp);
intel_dp_set_link_train(intel_dp, &DP,
training_pattern |
DP_LINK_SCRAMBLING_DISABLE);
cr_tries++;
continue;
}
if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
channel_eq = true;
break;
}
/* Try 5 times, then try clock recovery if that fails */
if (tries > 5) {
intel_dp_link_down(intel_dp);
intel_dp_start_link_train(intel_dp);
intel_dp_set_link_train(intel_dp, &DP,
training_pattern |
DP_LINK_SCRAMBLING_DISABLE);
tries = 0;
cr_tries++;
continue;
}
/* Update training set as requested by target */
if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
DRM_ERROR("failed to update link training\n");
break;
}
++tries;
}
intel_dp_set_idle_link_train(intel_dp);
intel_dp->DP = DP;
if (channel_eq)
DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
}
void intel_dp_stop_link_train(struct intel_dp *intel_dp)
{
intel_dp_set_link_train(intel_dp, &intel_dp->DP,
DP_TRAINING_PATTERN_DISABLE);
}
static void
intel_dp_link_down(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->port;
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(intel_dig_port->base.base.crtc);
uint32_t DP = intel_dp->DP;
/*
* DDI code has a strict mode set sequence and we should try to respect
* it, otherwise we might hang the machine in many different ways. So we
* really should be disabling the port only on a complete crtc_disable
* sequence. This function is just called under two conditions on DDI
* code:
* - Link train failed while doing crtc_enable, and on this case we
* really should respect the mode set sequence and wait for a
* crtc_disable.
* - Someone turned the monitor off and intel_dp_check_link_status
* called us. We don't need to disable the whole port on this case, so
* when someone turns the monitor on again,
* intel_ddi_prepare_link_retrain will take care of redoing the link
* train.
*/
if (HAS_DDI(dev))
return;
if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
return;
DRM_DEBUG_KMS("\n");
if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
DP &= ~DP_LINK_TRAIN_MASK_CPT;
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
} else {
DP &= ~DP_LINK_TRAIN_MASK;
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
}
POSTING_READ(intel_dp->output_reg);
/* We don't really know why we're doing this */
intel_wait_for_vblank(dev, intel_crtc->pipe);
if (HAS_PCH_IBX(dev) &&
I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
/* Hardware workaround: leaving our transcoder select
* set to transcoder B while it's off will prevent the
* corresponding HDMI output on transcoder A.
*
* Combine this with another hardware workaround:
* transcoder select bit can only be cleared while the
* port is enabled.
*/
DP &= ~DP_PIPEB_SELECT;
I915_WRITE(intel_dp->output_reg, DP);
/* Changes to enable or select take place the vblank
* after being written.
*/
if (WARN_ON(crtc == NULL)) {
/* We should never try to disable a port without a crtc
* attached. For paranoia keep the code around for a
* bit. */
POSTING_READ(intel_dp->output_reg);
msleep(50);
} else
intel_wait_for_vblank(dev, intel_crtc->pipe);
}
DP &= ~DP_AUDIO_OUTPUT_ENABLE;
I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
POSTING_READ(intel_dp->output_reg);
msleep(intel_dp->panel_power_down_delay);
}
static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
sizeof(intel_dp->dpcd)) < 0)
return false; /* aux transfer failed */
hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
if (intel_dp->dpcd[DP_DPCD_REV] == 0)
return false; /* DPCD not present */
/* Check if the panel supports PSR */
memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
if (is_edp(intel_dp)) {
intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
intel_dp->psr_dpcd,
sizeof(intel_dp->psr_dpcd));
if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
dev_priv->psr.sink_support = true;
DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
}
}
/* Training Pattern 3 support */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
intel_dp->use_tps3 = true;
DRM_DEBUG_KMS("Displayport TPS3 supported");
} else
intel_dp->use_tps3 = false;
if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
DP_DWN_STRM_PORT_PRESENT))
return true; /* native DP sink */
if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
return true; /* no per-port downstream info */
if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
intel_dp->downstream_ports,
DP_MAX_DOWNSTREAM_PORTS) < 0)
return false; /* downstream port status fetch failed */
return true;
}
static void
intel_dp_probe_oui(struct intel_dp *intel_dp)
{
u8 buf[3];
if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
return;
intel_edp_panel_vdd_on(intel_dp);
if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
buf[0], buf[1], buf[2]);
if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
buf[0], buf[1], buf[2]);
edp_panel_vdd_off(intel_dp, false);
}
int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct intel_crtc *intel_crtc =
to_intel_crtc(intel_dig_port->base.base.crtc);
u8 buf[1];
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
return -EAGAIN;
if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
return -ENOTTY;
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
DP_TEST_SINK_START) < 0)
return -EAGAIN;
/* Wait 2 vblanks to be sure we will have the correct CRC value */
intel_wait_for_vblank(dev, intel_crtc->pipe);
intel_wait_for_vblank(dev, intel_crtc->pipe);
if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
return -EAGAIN;
drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
return 0;
}
static bool
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
return intel_dp_dpcd_read_wake(&intel_dp->aux,
DP_DEVICE_SERVICE_IRQ_VECTOR,
sink_irq_vector, 1) == 1;
}
static void
intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
/* NAK by default */
drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
}
/*
* According to DP spec
* 5.1.2:
* 1. Read DPCD
* 2. Configure link according to Receiver Capabilities
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
* 4. Check link status on receipt of hot-plug interrupt
*/
void
intel_dp_check_link_status(struct intel_dp *intel_dp)
{
struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
u8 sink_irq_vector;
u8 link_status[DP_LINK_STATUS_SIZE];
if (!intel_encoder->connectors_active)
return;
if (WARN_ON(!intel_encoder->base.crtc))
return;
/* Try to read receiver status if the link appears to be up */
if (!intel_dp_get_link_status(intel_dp, link_status)) {
return;
}
/* Now read the DPCD to see if it's actually running */
if (!intel_dp_get_dpcd(intel_dp)) {
return;
}
/* Try to read the source of the interrupt */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
/* Clear interrupt source */
drm_dp_dpcd_writeb(&intel_dp->aux,
DP_DEVICE_SERVICE_IRQ_VECTOR,
sink_irq_vector);
if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
intel_dp_handle_test_request(intel_dp);
if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
}
if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
drm_get_encoder_name(&intel_encoder->base));
intel_dp_start_link_train(intel_dp);
intel_dp_complete_link_train(intel_dp);
intel_dp_stop_link_train(intel_dp);
}
}
/* XXX this is probably wrong for multiple downstream ports */
static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
{
uint8_t *dpcd = intel_dp->dpcd;
uint8_t type;
if (!intel_dp_get_dpcd(intel_dp))
return connector_status_disconnected;
/* if there's no downstream port, we're done */
if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
return connector_status_connected;
/* If we're HPD-aware, SINK_COUNT changes dynamically */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
uint8_t reg;
if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
&reg, 1) < 0)
return connector_status_unknown;
return DP_GET_SINK_COUNT(reg) ? connector_status_connected
: connector_status_disconnected;
}
/* If no HPD, poke DDC gently */
if (drm_probe_ddc(&intel_dp->aux.ddc))
return connector_status_connected;
/* Well we tried, say unknown for unreliable port types */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
if (type == DP_DS_PORT_TYPE_VGA ||
type == DP_DS_PORT_TYPE_NON_EDID)
return connector_status_unknown;
} else {
type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
DP_DWN_STRM_PORT_TYPE_MASK;
if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
type == DP_DWN_STRM_PORT_TYPE_OTHER)
return connector_status_unknown;
}
/* Anything else is out of spec, warn and ignore */
DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
return connector_status_disconnected;
}
static enum drm_connector_status
ironlake_dp_detect(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum drm_connector_status status;
/* Can't disconnect eDP, but you can close the lid... */
if (is_edp(intel_dp)) {
status = intel_panel_detect(dev);
if (status == connector_status_unknown)
status = connector_status_connected;
return status;
}
if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
return connector_status_disconnected;
return intel_dp_detect_dpcd(intel_dp);
}
static enum drm_connector_status
g4x_dp_detect(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
uint32_t bit;
/* Can't disconnect eDP, but you can close the lid... */
if (is_edp(intel_dp)) {
enum drm_connector_status status;
status = intel_panel_detect(dev);
if (status == connector_status_unknown)
status = connector_status_connected;
return status;
}
if (IS_VALLEYVIEW(dev)) {
switch (intel_dig_port->port) {
case PORT_B:
bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
break;
case PORT_C:
bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
break;
case PORT_D:
bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
break;
default:
return connector_status_unknown;
}
} else {
switch (intel_dig_port->port) {
case PORT_B:
bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
break;
case PORT_C:
bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
break;
case PORT_D:
bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
break;
default:
return connector_status_unknown;
}
}
if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
return connector_status_disconnected;
return intel_dp_detect_dpcd(intel_dp);
}
static struct edid *
intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
/* use cached edid if we have one */
if (intel_connector->edid) {
/* invalid edid */
if (IS_ERR(intel_connector->edid))
return NULL;
return drm_edid_duplicate(intel_connector->edid);
}
return drm_get_edid(connector, adapter);
}
static int
intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
/* use cached edid if we have one */
if (intel_connector->edid) {
/* invalid edid */
if (IS_ERR(intel_connector->edid))
return 0;
return intel_connector_update_modes(connector,
intel_connector->edid);
}
return intel_ddc_get_modes(connector, adapter);
}
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector, bool force)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = connector->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum drm_connector_status status;
enum intel_display_power_domain power_domain;
struct edid *edid = NULL;
intel_runtime_pm_get(dev_priv);
power_domain = intel_display_port_power_domain(intel_encoder);
intel_display_power_get(dev_priv, power_domain);
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, drm_get_connector_name(connector));
intel_dp->has_audio = false;
if (HAS_PCH_SPLIT(dev))
status = ironlake_dp_detect(intel_dp);
else
status = g4x_dp_detect(intel_dp);
if (status != connector_status_connected)
goto out;
intel_dp_probe_oui(intel_dp);
if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
} else {
edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
if (edid) {
intel_dp->has_audio = drm_detect_monitor_audio(edid);
kfree(edid);
}
}
if (intel_encoder->type != INTEL_OUTPUT_EDP)
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
status = connector_status_connected;
out:
intel_display_power_put(dev_priv, power_domain);
intel_runtime_pm_put(dev_priv);
return status;
}
static int intel_dp_get_modes(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct intel_connector *intel_connector = to_intel_connector(connector);
struct drm_device *dev = connector->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain power_domain;
int ret;
/* We should parse the EDID data and find out if it has an audio sink
*/
power_domain = intel_display_port_power_domain(intel_encoder);
intel_display_power_get(dev_priv, power_domain);
ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
intel_display_power_put(dev_priv, power_domain);
if (ret)
return ret;
/* if eDP has no EDID, fall back to fixed mode */
if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
struct drm_display_mode *mode;
mode = drm_mode_duplicate(dev,
intel_connector->panel.fixed_mode);
if (mode) {
drm_mode_probed_add(connector, mode);
return 1;
}
}
return 0;
}
static bool
intel_dp_detect_audio(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = connector->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain power_domain;
struct edid *edid;
bool has_audio = false;
power_domain = intel_display_port_power_domain(intel_encoder);
intel_display_power_get(dev_priv, power_domain);
edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
if (edid) {
has_audio = drm_detect_monitor_audio(edid);
kfree(edid);
}
intel_display_power_put(dev_priv, power_domain);
return has_audio;
}
static int
intel_dp_set_property(struct drm_connector *connector,
struct drm_property *property,
uint64_t val)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
struct intel_connector *intel_connector = to_intel_connector(connector);
struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
int ret;
ret = drm_object_property_set_value(&connector->base, property, val);
if (ret)
return ret;
if (property == dev_priv->force_audio_property) {
int i = val;
bool has_audio;
if (i == intel_dp->force_audio)
return 0;
intel_dp->force_audio = i;
if (i == HDMI_AUDIO_AUTO)
has_audio = intel_dp_detect_audio(connector);
else
has_audio = (i == HDMI_AUDIO_ON);
if (has_audio == intel_dp->has_audio)
return 0;
intel_dp->has_audio = has_audio;
goto done;
}
if (property == dev_priv->broadcast_rgb_property) {
bool old_auto = intel_dp->color_range_auto;
uint32_t old_range = intel_dp->color_range;
switch (val) {
case INTEL_BROADCAST_RGB_AUTO:
intel_dp->color_range_auto = true;
break;
case INTEL_BROADCAST_RGB_FULL:
intel_dp->color_range_auto = false;
intel_dp->color_range = 0;
break;
case INTEL_BROADCAST_RGB_LIMITED:
intel_dp->color_range_auto = false;
intel_dp->color_range = DP_COLOR_RANGE_16_235;
break;
default:
return -EINVAL;
}
if (old_auto == intel_dp->color_range_auto &&
old_range == intel_dp->color_range)
return 0;
goto done;
}
if (is_edp(intel_dp) &&
property == connector->dev->mode_config.scaling_mode_property) {
if (val == DRM_MODE_SCALE_NONE) {
DRM_DEBUG_KMS("no scaling not supported\n");
return -EINVAL;
}
if (intel_connector->panel.fitting_mode == val) {
/* the eDP scaling property is not changed */
return 0;
}
intel_connector->panel.fitting_mode = val;
goto done;
}
return -EINVAL;
done:
if (intel_encoder->base.crtc)
intel_crtc_restore_mode(intel_encoder->base.crtc);
return 0;
}
static void
intel_dp_connector_destroy(struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
if (!IS_ERR_OR_NULL(intel_connector->edid))
kfree(intel_connector->edid);
/* Can't call is_edp() since the encoder may have been destroyed
* already. */
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
intel_panel_fini(&intel_connector->panel);
drm_connector_cleanup(connector);
kfree(connector);
}
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct drm_device *dev = intel_dp_to_dev(intel_dp);
drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
drm_encoder_cleanup(encoder);
if (is_edp(intel_dp)) {
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
mutex_lock(&dev->mode_config.mutex);
edp_panel_vdd_off_sync(intel_dp);
mutex_unlock(&dev->mode_config.mutex);
}
kfree(intel_dig_port);
}
static const struct drm_connector_funcs intel_dp_connector_funcs = {
.dpms = intel_connector_dpms,
.detect = intel_dp_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = intel_dp_set_property,
.destroy = intel_dp_connector_destroy,
};
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
.get_modes = intel_dp_get_modes,
.mode_valid = intel_dp_mode_valid,
.best_encoder = intel_best_encoder,
};
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
.destroy = intel_dp_encoder_destroy,
};
static void
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
intel_dp_check_link_status(intel_dp);
}
/* Return which DP Port should be selected for Transcoder DP control */
int
intel_trans_dp_port_sel(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *intel_encoder;
struct intel_dp *intel_dp;
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
intel_dp = enc_to_intel_dp(&intel_encoder->base);
if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
intel_encoder->type == INTEL_OUTPUT_EDP)
return intel_dp->output_reg;
}
return -1;
}
/* check the VBT to see whether the eDP is on DP-D port */
bool intel_dp_is_edp(struct drm_device *dev, enum port port)
{
struct drm_i915_private *dev_priv = dev->dev_private;
union child_device_config *p_child;
int i;
static const short port_mapping[] = {
[PORT_B] = PORT_IDPB,
[PORT_C] = PORT_IDPC,
[PORT_D] = PORT_IDPD,
};
if (port == PORT_A)
return true;
if (!dev_priv->vbt.child_dev_num)
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
p_child = dev_priv->vbt.child_dev + i;
if (p_child->common.dvo_port == port_mapping[port] &&
(p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
(DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
return true;
}
return false;
}
static void
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
intel_attach_force_audio_property(connector);
intel_attach_broadcast_rgb_property(connector);
intel_dp->color_range_auto = true;
if (is_edp(intel_dp)) {
drm_mode_create_scaling_mode_property(connector->dev);
drm_object_attach_property(
&connector->base,
connector->dev->mode_config.scaling_mode_property,
DRM_MODE_SCALE_ASPECT);
intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
}
}
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
intel_dp->last_power_cycle = jiffies;
intel_dp->last_power_on = jiffies;
intel_dp->last_backlight_off = jiffies;
}
static void
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
struct intel_dp *intel_dp,
struct edp_power_seq *out)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct edp_power_seq cur, vbt, spec, final;
u32 pp_on, pp_off, pp_div, pp;
int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
if (HAS_PCH_SPLIT(dev)) {
pp_ctrl_reg = PCH_PP_CONTROL;
pp_on_reg = PCH_PP_ON_DELAYS;
pp_off_reg = PCH_PP_OFF_DELAYS;
pp_div_reg = PCH_PP_DIVISOR;
} else {
enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
}
/* Workaround: Need to write PP_CONTROL with the unlock key as
* the very first thing. */
pp = ironlake_get_pp_control(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
pp_on = I915_READ(pp_on_reg);
pp_off = I915_READ(pp_off_reg);
pp_div = I915_READ(pp_div_reg);
/* Pull timing values out of registers */
cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
PANEL_POWER_UP_DELAY_SHIFT;
cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
PANEL_LIGHT_ON_DELAY_SHIFT;
cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
PANEL_LIGHT_OFF_DELAY_SHIFT;
cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
PANEL_POWER_DOWN_DELAY_SHIFT;
cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
vbt = dev_priv->vbt.edp_pps;
/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
* our hw here, which are all in 100usec. */
spec.t1_t3 = 210 * 10;
spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
spec.t10 = 500 * 10;
/* This one is special and actually in units of 100ms, but zero
* based in the hw (so we need to add 100 ms). But the sw vbt
* table multiplies it with 1000 to make it in units of 100usec,
* too. */
spec.t11_t12 = (510 + 100) * 10;
DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
/* Use the max of the register settings and vbt. If both are
* unset, fall back to the spec limits. */
#define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
spec.field : \
max(cur.field, vbt.field))
assign_final(t1_t3);
assign_final(t8);
assign_final(t9);
assign_final(t10);
assign_final(t11_t12);
#undef assign_final
#define get_delay(field) (DIV_ROUND_UP(final.field, 10))
intel_dp->panel_power_up_delay = get_delay(t1_t3);
intel_dp->backlight_on_delay = get_delay(t8);
intel_dp->backlight_off_delay = get_delay(t9);
intel_dp->panel_power_down_delay = get_delay(t10);
intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
intel_dp->panel_power_cycle_delay);
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
if (out)
*out = final;
}
static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
struct intel_dp *intel_dp,
struct edp_power_seq *seq)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp_on, pp_off, pp_div, port_sel = 0;
int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
int pp_on_reg, pp_off_reg, pp_div_reg;
if (HAS_PCH_SPLIT(dev)) {
pp_on_reg = PCH_PP_ON_DELAYS;
pp_off_reg = PCH_PP_OFF_DELAYS;
pp_div_reg = PCH_PP_DIVISOR;
} else {
enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
}
/*
* And finally store the new values in the power sequencer. The
* backlight delays are set to 1 because we do manual waits on them. For
* T8, even BSpec recommends doing it. For T9, if we don't do this,
* we'll end up waiting for the backlight off delay twice: once when we
* do the manual sleep, and once when we disable the panel and wait for
* the PP_STATUS bit to become zero.
*/
pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
(seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
/* Compute the divisor for the pp clock, simply match the Bspec
* formula. */
pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
<< PANEL_POWER_CYCLE_DELAY_SHIFT);
/* Haswell doesn't have any port selection bits for the panel
* power sequencer any more. */
if (IS_VALLEYVIEW(dev)) {
if (dp_to_dig_port(intel_dp)->port == PORT_B)
port_sel = PANEL_PORT_SELECT_DPB_VLV;
else
port_sel = PANEL_PORT_SELECT_DPC_VLV;
} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
if (dp_to_dig_port(intel_dp)->port == PORT_A)
port_sel = PANEL_PORT_SELECT_DPA;
else
port_sel = PANEL_PORT_SELECT_DPD;
}
pp_on |= port_sel;
I915_WRITE(pp_on_reg, pp_on);
I915_WRITE(pp_off_reg, pp_off);
I915_WRITE(pp_div_reg, pp_div);
DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
I915_READ(pp_on_reg),
I915_READ(pp_off_reg),
I915_READ(pp_div_reg));
}
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
struct intel_connector *intel_connector,
struct edp_power_seq *power_seq)
{
struct drm_connector *connector = &intel_connector->base;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_display_mode *fixed_mode = NULL;
bool has_dpcd;
struct drm_display_mode *scan;
struct edid *edid;
if (!is_edp(intel_dp))
return true;
/* The VDD bit needs a power domain reference, so if the bit is already
* enabled when we boot, grab this reference. */
if (edp_have_panel_vdd(intel_dp)) {
enum intel_display_power_domain power_domain;
power_domain = intel_display_port_power_domain(intel_encoder);
intel_display_power_get(dev_priv, power_domain);
}
/* Cache DPCD and EDID for edp. */
intel_edp_panel_vdd_on(intel_dp);
has_dpcd = intel_dp_get_dpcd(intel_dp);
edp_panel_vdd_off(intel_dp, false);
if (has_dpcd) {
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
dev_priv->no_aux_handshake =
intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
} else {
/* if this fails, presume the device is a ghost */
DRM_INFO("failed to retrieve link info, disabling eDP\n");
return false;
}
/* We now know it's not a ghost, init power sequence regs. */
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
mutex_lock(&dev->mode_config.mutex);
edid = drm_get_edid(connector, &intel_dp->aux.ddc);
if (edid) {
if (drm_add_edid_modes(connector, edid)) {
drm_mode_connector_update_edid_property(connector,
edid);
drm_edid_to_eld(connector, edid);
} else {
kfree(edid);
edid = ERR_PTR(-EINVAL);
}
} else {
edid = ERR_PTR(-ENOENT);
}
intel_connector->edid = edid;
/* prefer fixed mode from EDID if available */
list_for_each_entry(scan, &connector->probed_modes, head) {
if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
fixed_mode = drm_mode_duplicate(dev, scan);
break;
}
}
/* fallback to VBT if available for eDP */
if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
fixed_mode = drm_mode_duplicate(dev,
dev_priv->vbt.lfp_lvds_vbt_mode);
if (fixed_mode)
fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
}
mutex_unlock(&dev->mode_config.mutex);
intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
intel_panel_setup_backlight(connector);
return true;
}
bool
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_dig_port->port;
struct edp_power_seq power_seq = { 0 };
int type;
/* intel_dp vfuncs */
if (IS_VALLEYVIEW(dev))
intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
else if (HAS_PCH_SPLIT(dev))
intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
else
intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
/* Preserve the current hw state. */
intel_dp->DP = I915_READ(intel_dp->output_reg);
intel_dp->attached_connector = intel_connector;
if (intel_dp_is_edp(dev, port))
type = DRM_MODE_CONNECTOR_eDP;
else
type = DRM_MODE_CONNECTOR_DisplayPort;
/*
* For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
* for DP the encoder type can be set by the caller to
* INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
*/
if (type == DRM_MODE_CONNECTOR_eDP)
intel_encoder->type = INTEL_OUTPUT_EDP;
DRM_DEBUG_KMS("Adding %s connector on port %c\n",
type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
port_name(port));
drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
connector->interlace_allowed = true;
connector->doublescan_allowed = 0;
INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
edp_panel_vdd_work);
intel_connector_attach_encoder(intel_connector, intel_encoder);
drm_sysfs_connector_add(connector);
if (HAS_DDI(dev))
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
else
intel_connector->get_hw_state = intel_connector_get_hw_state;
intel_connector->unregister = intel_dp_connector_unregister;
/* Set up the hotplug pin. */
switch (port) {
case PORT_A:
intel_encoder->hpd_pin = HPD_PORT_A;
break;
case PORT_B:
intel_encoder->hpd_pin = HPD_PORT_B;
break;
case PORT_C:
intel_encoder->hpd_pin = HPD_PORT_C;
break;
case PORT_D:
intel_encoder->hpd_pin = HPD_PORT_D;
break;
default:
BUG();
}
if (is_edp(intel_dp)) {
intel_dp_init_panel_power_timestamps(intel_dp);
intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
}
intel_dp_aux_init(intel_dp, intel_connector);
intel_dp->psr_setup_done = false;
if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
if (is_edp(intel_dp)) {
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
mutex_lock(&dev->mode_config.mutex);
edp_panel_vdd_off_sync(intel_dp);
mutex_unlock(&dev->mode_config.mutex);
}
drm_sysfs_connector_remove(connector);
drm_connector_cleanup(connector);
return false;
}
intel_dp_add_properties(intel_dp, connector);
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
* 0xd. Failure to do so will result in spurious interrupts being
* generated on the port when a cable is not attached.
*/
if (IS_G4X(dev) && !IS_GM45(dev)) {
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
}
return true;
}
void
intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
{
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
struct intel_connector *intel_connector;
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return;
intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
if (!intel_connector) {
kfree(intel_dig_port);
return;
}
intel_encoder = &intel_dig_port->base;
encoder = &intel_encoder->base;
drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
DRM_MODE_ENCODER_TMDS);
intel_encoder->compute_config = intel_dp_compute_config;
intel_encoder->mode_set = intel_dp_mode_set;
intel_encoder->disable = intel_disable_dp;
intel_encoder->post_disable = intel_post_disable_dp;
intel_encoder->get_hw_state = intel_dp_get_hw_state;
intel_encoder->get_config = intel_dp_get_config;
if (IS_VALLEYVIEW(dev)) {
intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
intel_encoder->pre_enable = vlv_pre_enable_dp;
intel_encoder->enable = vlv_enable_dp;
} else {
intel_encoder->pre_enable = g4x_pre_enable_dp;
intel_encoder->enable = g4x_enable_dp;
}
intel_dig_port->port = port;
intel_dig_port->dp.output_reg = output_reg;
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
intel_encoder->cloneable = 0;
intel_encoder->hot_plug = intel_dp_hot_plug;
if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
drm_encoder_cleanup(encoder);
kfree(intel_dig_port);
kfree(intel_connector);
}
}