linux/crypto/asymmetric_keys/public_key.c
Thomas Gleixner b4d0d230cc treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 36
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public licence as published by
  the free software foundation either version 2 of the licence or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 114 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:27:11 +02:00

345 lines
8.4 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* In-software asymmetric public-key crypto subtype
*
* See Documentation/crypto/asymmetric-keys.txt
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#define pr_fmt(fmt) "PKEY: "fmt
#include <linux/module.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/scatterlist.h>
#include <keys/asymmetric-subtype.h>
#include <crypto/public_key.h>
#include <crypto/akcipher.h>
MODULE_DESCRIPTION("In-software asymmetric public-key subtype");
MODULE_AUTHOR("Red Hat, Inc.");
MODULE_LICENSE("GPL");
/*
* Provide a part of a description of the key for /proc/keys.
*/
static void public_key_describe(const struct key *asymmetric_key,
struct seq_file *m)
{
struct public_key *key = asymmetric_key->payload.data[asym_crypto];
if (key)
seq_printf(m, "%s.%s", key->id_type, key->pkey_algo);
}
/*
* Destroy a public key algorithm key.
*/
void public_key_free(struct public_key *key)
{
if (key) {
kfree(key->key);
kfree(key->params);
kfree(key);
}
}
EXPORT_SYMBOL_GPL(public_key_free);
/*
* Destroy a public key algorithm key.
*/
static void public_key_destroy(void *payload0, void *payload3)
{
public_key_free(payload0);
public_key_signature_free(payload3);
}
/*
* Determine the crypto algorithm name.
*/
static
int software_key_determine_akcipher(const char *encoding,
const char *hash_algo,
const struct public_key *pkey,
char alg_name[CRYPTO_MAX_ALG_NAME])
{
int n;
if (strcmp(encoding, "pkcs1") == 0) {
/* The data wangled by the RSA algorithm is typically padded
* and encoded in some manner, such as EMSA-PKCS1-1_5 [RFC3447
* sec 8.2].
*/
if (!hash_algo)
n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
"pkcs1pad(%s)",
pkey->pkey_algo);
else
n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
"pkcs1pad(%s,%s)",
pkey->pkey_algo, hash_algo);
return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0;
}
if (strcmp(encoding, "raw") == 0) {
strcpy(alg_name, pkey->pkey_algo);
return 0;
}
return -ENOPKG;
}
static u8 *pkey_pack_u32(u8 *dst, u32 val)
{
memcpy(dst, &val, sizeof(val));
return dst + sizeof(val);
}
/*
* Query information about a key.
*/
static int software_key_query(const struct kernel_pkey_params *params,
struct kernel_pkey_query *info)
{
struct crypto_akcipher *tfm;
struct public_key *pkey = params->key->payload.data[asym_crypto];
char alg_name[CRYPTO_MAX_ALG_NAME];
u8 *key, *ptr;
int ret, len;
ret = software_key_determine_akcipher(params->encoding,
params->hash_algo,
pkey, alg_name);
if (ret < 0)
return ret;
tfm = crypto_alloc_akcipher(alg_name, 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
GFP_KERNEL);
if (!key)
goto error_free_tfm;
memcpy(key, pkey->key, pkey->keylen);
ptr = key + pkey->keylen;
ptr = pkey_pack_u32(ptr, pkey->algo);
ptr = pkey_pack_u32(ptr, pkey->paramlen);
memcpy(ptr, pkey->params, pkey->paramlen);
if (pkey->key_is_private)
ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
else
ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
if (ret < 0)
goto error_free_key;
len = crypto_akcipher_maxsize(tfm);
info->key_size = len * 8;
info->max_data_size = len;
info->max_sig_size = len;
info->max_enc_size = len;
info->max_dec_size = len;
info->supported_ops = (KEYCTL_SUPPORTS_ENCRYPT |
KEYCTL_SUPPORTS_VERIFY);
if (pkey->key_is_private)
info->supported_ops |= (KEYCTL_SUPPORTS_DECRYPT |
KEYCTL_SUPPORTS_SIGN);
ret = 0;
error_free_key:
kfree(key);
error_free_tfm:
crypto_free_akcipher(tfm);
pr_devel("<==%s() = %d\n", __func__, ret);
return ret;
}
/*
* Do encryption, decryption and signing ops.
*/
static int software_key_eds_op(struct kernel_pkey_params *params,
const void *in, void *out)
{
const struct public_key *pkey = params->key->payload.data[asym_crypto];
struct akcipher_request *req;
struct crypto_akcipher *tfm;
struct crypto_wait cwait;
struct scatterlist in_sg, out_sg;
char alg_name[CRYPTO_MAX_ALG_NAME];
char *key, *ptr;
int ret;
pr_devel("==>%s()\n", __func__);
ret = software_key_determine_akcipher(params->encoding,
params->hash_algo,
pkey, alg_name);
if (ret < 0)
return ret;
tfm = crypto_alloc_akcipher(alg_name, 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
req = akcipher_request_alloc(tfm, GFP_KERNEL);
if (!req)
goto error_free_tfm;
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
GFP_KERNEL);
if (!key)
goto error_free_req;
memcpy(key, pkey->key, pkey->keylen);
ptr = key + pkey->keylen;
ptr = pkey_pack_u32(ptr, pkey->algo);
ptr = pkey_pack_u32(ptr, pkey->paramlen);
memcpy(ptr, pkey->params, pkey->paramlen);
if (pkey->key_is_private)
ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
else
ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
if (ret)
goto error_free_key;
sg_init_one(&in_sg, in, params->in_len);
sg_init_one(&out_sg, out, params->out_len);
akcipher_request_set_crypt(req, &in_sg, &out_sg, params->in_len,
params->out_len);
crypto_init_wait(&cwait);
akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &cwait);
/* Perform the encryption calculation. */
switch (params->op) {
case kernel_pkey_encrypt:
ret = crypto_akcipher_encrypt(req);
break;
case kernel_pkey_decrypt:
ret = crypto_akcipher_decrypt(req);
break;
case kernel_pkey_sign:
ret = crypto_akcipher_sign(req);
break;
default:
BUG();
}
ret = crypto_wait_req(ret, &cwait);
if (ret == 0)
ret = req->dst_len;
error_free_key:
kfree(key);
error_free_req:
akcipher_request_free(req);
error_free_tfm:
crypto_free_akcipher(tfm);
pr_devel("<==%s() = %d\n", __func__, ret);
return ret;
}
/*
* Verify a signature using a public key.
*/
int public_key_verify_signature(const struct public_key *pkey,
const struct public_key_signature *sig)
{
struct crypto_wait cwait;
struct crypto_akcipher *tfm;
struct akcipher_request *req;
struct scatterlist src_sg[2];
char alg_name[CRYPTO_MAX_ALG_NAME];
char *key, *ptr;
int ret;
pr_devel("==>%s()\n", __func__);
BUG_ON(!pkey);
BUG_ON(!sig);
BUG_ON(!sig->s);
ret = software_key_determine_akcipher(sig->encoding,
sig->hash_algo,
pkey, alg_name);
if (ret < 0)
return ret;
tfm = crypto_alloc_akcipher(alg_name, 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
ret = -ENOMEM;
req = akcipher_request_alloc(tfm, GFP_KERNEL);
if (!req)
goto error_free_tfm;
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
GFP_KERNEL);
if (!key)
goto error_free_req;
memcpy(key, pkey->key, pkey->keylen);
ptr = key + pkey->keylen;
ptr = pkey_pack_u32(ptr, pkey->algo);
ptr = pkey_pack_u32(ptr, pkey->paramlen);
memcpy(ptr, pkey->params, pkey->paramlen);
if (pkey->key_is_private)
ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
else
ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
if (ret)
goto error_free_key;
sg_init_table(src_sg, 2);
sg_set_buf(&src_sg[0], sig->s, sig->s_size);
sg_set_buf(&src_sg[1], sig->digest, sig->digest_size);
akcipher_request_set_crypt(req, src_sg, NULL, sig->s_size,
sig->digest_size);
crypto_init_wait(&cwait);
akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &cwait);
ret = crypto_wait_req(crypto_akcipher_verify(req), &cwait);
error_free_key:
kfree(key);
error_free_req:
akcipher_request_free(req);
error_free_tfm:
crypto_free_akcipher(tfm);
pr_devel("<==%s() = %d\n", __func__, ret);
if (WARN_ON_ONCE(ret > 0))
ret = -EINVAL;
return ret;
}
EXPORT_SYMBOL_GPL(public_key_verify_signature);
static int public_key_verify_signature_2(const struct key *key,
const struct public_key_signature *sig)
{
const struct public_key *pk = key->payload.data[asym_crypto];
return public_key_verify_signature(pk, sig);
}
/*
* Public key algorithm asymmetric key subtype
*/
struct asymmetric_key_subtype public_key_subtype = {
.owner = THIS_MODULE,
.name = "public_key",
.name_len = sizeof("public_key") - 1,
.describe = public_key_describe,
.destroy = public_key_destroy,
.query = software_key_query,
.eds_op = software_key_eds_op,
.verify_signature = public_key_verify_signature_2,
};
EXPORT_SYMBOL_GPL(public_key_subtype);