linux/fs/ceph/addr.c
Linus Torvalds f008b1d6e1 Netfs prep for write helpers
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAmI1HOwACgkQ+7dXa6fL
 C2u9mA/+LUdXHqlvET/PAtFTg75bUPeOFGLnuDnYl1Ng2FCKMSodAohpbVtENxsK
 E/gTVS7uiVZFQgC+YmNA00z6eIQkAaDVyvKyEcUbKREBbUgONfJ/HLeaK/NvVKxx
 TY5gx/POdG6yHRQXL6JGBqSJUB8bZrGKwnJm8ebzeKOji9n7GSJBYiMlYBA7EAhs
 Aut/P7Y39ISHLw3y+y5czBeRoubljmTyznbP20xUZEzrRwhTpNwpJVzBGUZU635T
 93Sqcp//0U5LIdn6Pg6DUGHBMBTNDNJChb21ZoBusF/HHswXsOOnf/mcRUBSJUTI
 M1WSpNLk8PRBgajMdIymQpGU1sCZZzJ3krrSA3RcXdN6GPHwZg8kKjoroHsLDL6l
 igPbDSMJ5wfiwA2A2gXbY1CkAl3ik5ccb7ZqhTwS0WBk0vOnHmAsE9cs/bBo7Xii
 GTiWXEFOgtJiXANPMS2P9DiOS3ZQNf+wxotCYdkGPOXuX9wnIo1Kmy8XfujQ1bXf
 pJsEZKfeyROKrzyKWgqLI64/Kg5xNueoFQZfDpOlZYzF1uDstynADPUt0eQD706q
 jcuKaXLN3rn5gSPun5mWOYbRtXVgOLdFL/7zptMVJwFKBFguQENhjG4UMNZcjkVA
 3Mr0kGocsgoCSk1oDBkFlrw1wIsXxWbkRBL1Pww6kovivuGUwoo=
 =j0yx
 -----END PGP SIGNATURE-----

Merge tag 'netfs-prep-20220318' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull netfs updates from David Howells:
 "Netfs prep for write helpers.

  Having had a go at implementing write helpers and content encryption
  support in netfslib, it seems that the netfs_read_{,sub}request
  structs and the equivalent write request structs were almost the same
  and so should be merged, thereby requiring only one set of
  alloc/get/put functions and a common set of tracepoints.

  Merging the structs also has the advantage that if a bounce buffer is
  added to the request struct, a read operation can be performed to fill
  the bounce buffer, the contents of the buffer can be modified and then
  a write operation can be performed on it to send the data wherever it
  needs to go using the same request structure all the way through. The
  I/O handlers would then transparently perform any required crypto.
  This should make it easier to perform RMW cycles if needed.

  The potentially common functions and structs, however, by their names
  all proclaim themselves to be associated with the read side of things.

  The bulk of these changes alter this in the following ways:

   - Rename struct netfs_read_{,sub}request to netfs_io_{,sub}request.

   - Rename some enums, members and flags to make them more appropriate.

   - Adjust some comments to match.

   - Drop "read"/"rreq" from the names of common functions. For
     instance, netfs_get_read_request() becomes netfs_get_request().

   - The ->init_rreq() and ->issue_op() methods become ->init_request()
     and ->issue_read(). I've kept the latter as a read-specific
     function and in another branch added an ->issue_write() method.

  The driver source is then reorganised into a number of files:

        fs/netfs/buffered_read.c        Create read reqs to the pagecache
        fs/netfs/io.c                   Dispatchers for read and write reqs
        fs/netfs/main.c                 Some general miscellaneous bits
        fs/netfs/objects.c              Alloc, get and put functions
        fs/netfs/stats.c                Optional procfs statistics.

  and future development can be fitted into this scheme, e.g.:

        fs/netfs/buffered_write.c       Modify the pagecache
        fs/netfs/buffered_flush.c       Writeback from the pagecache
        fs/netfs/direct_read.c          DIO read support
        fs/netfs/direct_write.c         DIO write support
        fs/netfs/unbuffered_write.c     Write modifications directly back

  Beyond the above changes, there are also some changes that affect how
  things work:

   - Make fscache_end_operation() generally available.

   - In the netfs tracing header, generate enums from the symbol ->
     string mapping tables rather than manually coding them.

   - Add a struct for filesystems that uses netfslib to put into their
     inode wrapper structs to hold extra state that netfslib is
     interested in, such as the fscache cookie. This allows netfslib
     functions to be set in filesystem operation tables and jumped to
     directly without having to have a filesystem wrapper.

   - Add a member to the struct added above to track the remote inode
     length as that may differ if local modifications are buffered. We
     may need to supply an appropriate EOF pointer when storing data (in
     AFS for example).

   - Pass extra information to netfs_alloc_request() so that the
     ->init_request() hook can access it and retain information to
     indicate the origin of the operation.

   - Make the ->init_request() hook return an error, thereby allowing a
     filesystem that isn't allowed to cache an inode (ceph or cifs, for
     example) to skip readahead.

   - Switch to using refcount_t for subrequests and add tracepoints to
     log refcount changes for the request and subrequest structs.

   - Add a function to consolidate dispatching a read request. Similar
     code is used in three places and another couple are likely to be
     added in the future"

Link: https://lore.kernel.org/all/2639515.1648483225@warthog.procyon.org.uk/

* tag 'netfs-prep-20220318' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  afs: Maintain netfs_i_context::remote_i_size
  netfs: Keep track of the actual remote file size
  netfs: Split some core bits out into their own file
  netfs: Split fs/netfs/read_helper.c
  netfs: Rename read_helper.c to io.c
  netfs: Prepare to split read_helper.c
  netfs: Add a function to consolidate beginning a read
  netfs: Add a netfs inode context
  ceph: Make ceph_init_request() check caps on readahead
  netfs: Change ->init_request() to return an error code
  netfs: Refactor arguments for netfs_alloc_read_request
  netfs: Adjust the netfs_failure tracepoint to indicate non-subreq lines
  netfs: Trace refcounting on the netfs_io_subrequest struct
  netfs: Trace refcounting on the netfs_io_request struct
  netfs: Adjust the netfs_rreq tracepoint slightly
  netfs: Split netfs_io_* object handling out
  netfs: Finish off rename of netfs_read_request to netfs_io_request
  netfs: Rename netfs_read_*request to netfs_io_*request
  netfs: Generate enums from trace symbol mapping lists
  fscache: export fscache_end_operation()
2022-03-31 15:49:36 -07:00

2042 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/ceph/ceph_debug.h>
#include <linux/backing-dev.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/pagevec.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/signal.h>
#include <linux/iversion.h>
#include <linux/ktime.h>
#include <linux/netfs.h>
#include "super.h"
#include "mds_client.h"
#include "cache.h"
#include "metric.h"
#include <linux/ceph/osd_client.h>
#include <linux/ceph/striper.h>
/*
* Ceph address space ops.
*
* There are a few funny things going on here.
*
* The page->private field is used to reference a struct
* ceph_snap_context for _every_ dirty page. This indicates which
* snapshot the page was logically dirtied in, and thus which snap
* context needs to be associated with the osd write during writeback.
*
* Similarly, struct ceph_inode_info maintains a set of counters to
* count dirty pages on the inode. In the absence of snapshots,
* i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count.
*
* When a snapshot is taken (that is, when the client receives
* notification that a snapshot was taken), each inode with caps and
* with dirty pages (dirty pages implies there is a cap) gets a new
* ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending
* order, new snaps go to the tail). The i_wrbuffer_ref_head count is
* moved to capsnap->dirty. (Unless a sync write is currently in
* progress. In that case, the capsnap is said to be "pending", new
* writes cannot start, and the capsnap isn't "finalized" until the
* write completes (or fails) and a final size/mtime for the inode for
* that snap can be settled upon.) i_wrbuffer_ref_head is reset to 0.
*
* On writeback, we must submit writes to the osd IN SNAP ORDER. So,
* we look for the first capsnap in i_cap_snaps and write out pages in
* that snap context _only_. Then we move on to the next capsnap,
* eventually reaching the "live" or "head" context (i.e., pages that
* are not yet snapped) and are writing the most recently dirtied
* pages.
*
* Invalidate and so forth must take care to ensure the dirty page
* accounting is preserved.
*/
#define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10))
#define CONGESTION_OFF_THRESH(congestion_kb) \
(CONGESTION_ON_THRESH(congestion_kb) - \
(CONGESTION_ON_THRESH(congestion_kb) >> 2))
static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
struct folio *folio, void **_fsdata);
static inline struct ceph_snap_context *page_snap_context(struct page *page)
{
if (PagePrivate(page))
return (void *)page->private;
return NULL;
}
/*
* Dirty a page. Optimistically adjust accounting, on the assumption
* that we won't race with invalidate. If we do, readjust.
*/
static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio)
{
struct inode *inode;
struct ceph_inode_info *ci;
struct ceph_snap_context *snapc;
if (folio_test_dirty(folio)) {
dout("%p dirty_folio %p idx %lu -- already dirty\n",
mapping->host, folio, folio->index);
BUG_ON(!folio_get_private(folio));
return false;
}
inode = mapping->host;
ci = ceph_inode(inode);
/* dirty the head */
spin_lock(&ci->i_ceph_lock);
BUG_ON(ci->i_wr_ref == 0); // caller should hold Fw reference
if (__ceph_have_pending_cap_snap(ci)) {
struct ceph_cap_snap *capsnap =
list_last_entry(&ci->i_cap_snaps,
struct ceph_cap_snap,
ci_item);
snapc = ceph_get_snap_context(capsnap->context);
capsnap->dirty_pages++;
} else {
BUG_ON(!ci->i_head_snapc);
snapc = ceph_get_snap_context(ci->i_head_snapc);
++ci->i_wrbuffer_ref_head;
}
if (ci->i_wrbuffer_ref == 0)
ihold(inode);
++ci->i_wrbuffer_ref;
dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d "
"snapc %p seq %lld (%d snaps)\n",
mapping->host, folio, folio->index,
ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1,
ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
snapc, snapc->seq, snapc->num_snaps);
spin_unlock(&ci->i_ceph_lock);
/*
* Reference snap context in folio->private. Also set
* PagePrivate so that we get invalidate_folio callback.
*/
BUG_ON(folio_get_private(folio));
folio_attach_private(folio, snapc);
return ceph_fscache_dirty_folio(mapping, folio);
}
/*
* If we are truncating the full folio (i.e. offset == 0), adjust the
* dirty folio counters appropriately. Only called if there is private
* data on the folio.
*/
static void ceph_invalidate_folio(struct folio *folio, size_t offset,
size_t length)
{
struct inode *inode;
struct ceph_inode_info *ci;
struct ceph_snap_context *snapc;
inode = folio->mapping->host;
ci = ceph_inode(inode);
if (offset != 0 || length != folio_size(folio)) {
dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n",
inode, folio->index, offset, length);
return;
}
WARN_ON(!folio_test_locked(folio));
if (folio_get_private(folio)) {
dout("%p invalidate_folio idx %lu full dirty page\n",
inode, folio->index);
snapc = folio_detach_private(folio);
ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
ceph_put_snap_context(snapc);
}
folio_wait_fscache(folio);
}
static int ceph_releasepage(struct page *page, gfp_t gfp)
{
struct inode *inode = page->mapping->host;
dout("%llx:%llx releasepage %p idx %lu (%sdirty)\n",
ceph_vinop(inode), page,
page->index, PageDirty(page) ? "" : "not ");
if (PagePrivate(page))
return 0;
if (PageFsCache(page)) {
if (current_is_kswapd() || !(gfp & __GFP_FS))
return 0;
wait_on_page_fscache(page);
}
ceph_fscache_note_page_release(inode);
return 1;
}
static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq)
{
struct inode *inode = rreq->inode;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_file_layout *lo = &ci->i_layout;
u32 blockoff;
u64 blockno;
/* Expand the start downward */
blockno = div_u64_rem(rreq->start, lo->stripe_unit, &blockoff);
rreq->start = blockno * lo->stripe_unit;
rreq->len += blockoff;
/* Now, round up the length to the next block */
rreq->len = roundup(rreq->len, lo->stripe_unit);
}
static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq)
{
struct inode *inode = subreq->rreq->inode;
struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
struct ceph_inode_info *ci = ceph_inode(inode);
u64 objno, objoff;
u32 xlen;
/* Truncate the extent at the end of the current block */
ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len,
&objno, &objoff, &xlen);
subreq->len = min(xlen, fsc->mount_options->rsize);
return true;
}
static void finish_netfs_read(struct ceph_osd_request *req)
{
struct ceph_fs_client *fsc = ceph_inode_to_client(req->r_inode);
struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0);
struct netfs_io_subrequest *subreq = req->r_priv;
int num_pages;
int err = req->r_result;
ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency,
req->r_end_latency, osd_data->length, err);
dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result,
subreq->len, i_size_read(req->r_inode));
/* no object means success but no data */
if (err == -ENOENT)
err = 0;
else if (err == -EBLOCKLISTED)
fsc->blocklisted = true;
if (err >= 0 && err < subreq->len)
__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
netfs_subreq_terminated(subreq, err, true);
num_pages = calc_pages_for(osd_data->alignment, osd_data->length);
ceph_put_page_vector(osd_data->pages, num_pages, false);
iput(req->r_inode);
}
static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq)
{
struct netfs_io_request *rreq = subreq->rreq;
struct inode *inode = rreq->inode;
struct ceph_mds_reply_info_parsed *rinfo;
struct ceph_mds_reply_info_in *iinfo;
struct ceph_mds_request *req;
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
struct ceph_inode_info *ci = ceph_inode(inode);
struct iov_iter iter;
ssize_t err = 0;
size_t len;
__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
__clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
if (subreq->start >= inode->i_size)
goto out;
/* We need to fetch the inline data. */
req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, USE_ANY_MDS);
if (IS_ERR(req)) {
err = PTR_ERR(req);
goto out;
}
req->r_ino1 = ci->i_vino;
req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA);
req->r_num_caps = 2;
err = ceph_mdsc_do_request(mdsc, NULL, req);
if (err < 0)
goto out;
rinfo = &req->r_reply_info;
iinfo = &rinfo->targeti;
if (iinfo->inline_version == CEPH_INLINE_NONE) {
/* The data got uninlined */
ceph_mdsc_put_request(req);
return false;
}
len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len);
iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, subreq->start, len);
err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter);
if (err == 0)
err = -EFAULT;
ceph_mdsc_put_request(req);
out:
netfs_subreq_terminated(subreq, err, false);
return true;
}
static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq)
{
struct netfs_io_request *rreq = subreq->rreq;
struct inode *inode = rreq->inode;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
struct ceph_osd_request *req;
struct ceph_vino vino = ceph_vino(inode);
struct iov_iter iter;
struct page **pages;
size_t page_off;
int err = 0;
u64 len = subreq->len;
if (ci->i_inline_version != CEPH_INLINE_NONE &&
ceph_netfs_issue_op_inline(subreq))
return;
req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino, subreq->start, &len,
0, 1, CEPH_OSD_OP_READ,
CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica,
NULL, ci->i_truncate_seq, ci->i_truncate_size, false);
if (IS_ERR(req)) {
err = PTR_ERR(req);
req = NULL;
goto out;
}
dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len);
iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, subreq->start, len);
err = iov_iter_get_pages_alloc(&iter, &pages, len, &page_off);
if (err < 0) {
dout("%s: iov_ter_get_pages_alloc returned %d\n", __func__, err);
goto out;
}
/* should always give us a page-aligned read */
WARN_ON_ONCE(page_off);
len = err;
osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false, false);
req->r_callback = finish_netfs_read;
req->r_priv = subreq;
req->r_inode = inode;
ihold(inode);
err = ceph_osdc_start_request(req->r_osdc, req, false);
if (err)
iput(inode);
out:
ceph_osdc_put_request(req);
if (err)
netfs_subreq_terminated(subreq, err, false);
dout("%s: result %d\n", __func__, err);
}
static int ceph_init_request(struct netfs_io_request *rreq, struct file *file)
{
struct inode *inode = rreq->inode;
int got = 0, want = CEPH_CAP_FILE_CACHE;
int ret = 0;
if (rreq->origin != NETFS_READAHEAD)
return 0;
if (file) {
struct ceph_rw_context *rw_ctx;
struct ceph_file_info *fi = file->private_data;
rw_ctx = ceph_find_rw_context(fi);
if (rw_ctx)
return 0;
}
/*
* readahead callers do not necessarily hold Fcb caps
* (e.g. fadvise, madvise).
*/
ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got);
if (ret < 0) {
dout("start_read %p, error getting cap\n", inode);
return ret;
}
if (!(got & want)) {
dout("start_read %p, no cache cap\n", inode);
return -EACCES;
}
if (ret == 0)
return -EACCES;
rreq->netfs_priv = (void *)(uintptr_t)got;
return 0;
}
static void ceph_readahead_cleanup(struct address_space *mapping, void *priv)
{
struct inode *inode = mapping->host;
struct ceph_inode_info *ci = ceph_inode(inode);
int got = (uintptr_t)priv;
if (got)
ceph_put_cap_refs(ci, got);
}
const struct netfs_request_ops ceph_netfs_ops = {
.init_request = ceph_init_request,
.begin_cache_operation = ceph_begin_cache_operation,
.issue_read = ceph_netfs_issue_read,
.expand_readahead = ceph_netfs_expand_readahead,
.clamp_length = ceph_netfs_clamp_length,
.check_write_begin = ceph_netfs_check_write_begin,
.cleanup = ceph_readahead_cleanup,
};
#ifdef CONFIG_CEPH_FSCACHE
static void ceph_set_page_fscache(struct page *page)
{
set_page_fscache(page);
}
static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async)
{
struct inode *inode = priv;
if (IS_ERR_VALUE(error) && error != -ENOBUFS)
ceph_fscache_invalidate(inode, false);
}
static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct fscache_cookie *cookie = ceph_fscache_cookie(ci);
fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode),
ceph_fscache_write_terminated, inode, caching);
}
#else
static inline void ceph_set_page_fscache(struct page *page)
{
}
static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
{
}
#endif /* CONFIG_CEPH_FSCACHE */
struct ceph_writeback_ctl
{
loff_t i_size;
u64 truncate_size;
u32 truncate_seq;
bool size_stable;
bool head_snapc;
};
/*
* Get ref for the oldest snapc for an inode with dirty data... that is, the
* only snap context we are allowed to write back.
*/
static struct ceph_snap_context *
get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl,
struct ceph_snap_context *page_snapc)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_snap_context *snapc = NULL;
struct ceph_cap_snap *capsnap = NULL;
spin_lock(&ci->i_ceph_lock);
list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap,
capsnap->context, capsnap->dirty_pages);
if (!capsnap->dirty_pages)
continue;
/* get i_size, truncate_{seq,size} for page_snapc? */
if (snapc && capsnap->context != page_snapc)
continue;
if (ctl) {
if (capsnap->writing) {
ctl->i_size = i_size_read(inode);
ctl->size_stable = false;
} else {
ctl->i_size = capsnap->size;
ctl->size_stable = true;
}
ctl->truncate_size = capsnap->truncate_size;
ctl->truncate_seq = capsnap->truncate_seq;
ctl->head_snapc = false;
}
if (snapc)
break;
snapc = ceph_get_snap_context(capsnap->context);
if (!page_snapc ||
page_snapc == snapc ||
page_snapc->seq > snapc->seq)
break;
}
if (!snapc && ci->i_wrbuffer_ref_head) {
snapc = ceph_get_snap_context(ci->i_head_snapc);
dout(" head snapc %p has %d dirty pages\n",
snapc, ci->i_wrbuffer_ref_head);
if (ctl) {
ctl->i_size = i_size_read(inode);
ctl->truncate_size = ci->i_truncate_size;
ctl->truncate_seq = ci->i_truncate_seq;
ctl->size_stable = false;
ctl->head_snapc = true;
}
}
spin_unlock(&ci->i_ceph_lock);
return snapc;
}
static u64 get_writepages_data_length(struct inode *inode,
struct page *page, u64 start)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_snap_context *snapc = page_snap_context(page);
struct ceph_cap_snap *capsnap = NULL;
u64 end = i_size_read(inode);
if (snapc != ci->i_head_snapc) {
bool found = false;
spin_lock(&ci->i_ceph_lock);
list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
if (capsnap->context == snapc) {
if (!capsnap->writing)
end = capsnap->size;
found = true;
break;
}
}
spin_unlock(&ci->i_ceph_lock);
WARN_ON(!found);
}
if (end > page_offset(page) + thp_size(page))
end = page_offset(page) + thp_size(page);
return end > start ? end - start : 0;
}
/*
* Write a single page, but leave the page locked.
*
* If we get a write error, mark the mapping for error, but still adjust the
* dirty page accounting (i.e., page is no longer dirty).
*/
static int writepage_nounlock(struct page *page, struct writeback_control *wbc)
{
struct folio *folio = page_folio(page);
struct inode *inode = page->mapping->host;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
struct ceph_snap_context *snapc, *oldest;
loff_t page_off = page_offset(page);
int err;
loff_t len = thp_size(page);
struct ceph_writeback_ctl ceph_wbc;
struct ceph_osd_client *osdc = &fsc->client->osdc;
struct ceph_osd_request *req;
bool caching = ceph_is_cache_enabled(inode);
dout("writepage %p idx %lu\n", page, page->index);
/* verify this is a writeable snap context */
snapc = page_snap_context(page);
if (!snapc) {
dout("writepage %p page %p not dirty?\n", inode, page);
return 0;
}
oldest = get_oldest_context(inode, &ceph_wbc, snapc);
if (snapc->seq > oldest->seq) {
dout("writepage %p page %p snapc %p not writeable - noop\n",
inode, page, snapc);
/* we should only noop if called by kswapd */
WARN_ON(!(current->flags & PF_MEMALLOC));
ceph_put_snap_context(oldest);
redirty_page_for_writepage(wbc, page);
return 0;
}
ceph_put_snap_context(oldest);
/* is this a partial page at end of file? */
if (page_off >= ceph_wbc.i_size) {
dout("folio at %lu beyond eof %llu\n", folio->index,
ceph_wbc.i_size);
folio_invalidate(folio, 0, folio_size(folio));
return 0;
}
if (ceph_wbc.i_size < page_off + len)
len = ceph_wbc.i_size - page_off;
dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n",
inode, page, page->index, page_off, len, snapc, snapc->seq);
if (atomic_long_inc_return(&fsc->writeback_count) >
CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb))
fsc->write_congested = true;
req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode), page_off, &len, 0, 1,
CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, snapc,
ceph_wbc.truncate_seq, ceph_wbc.truncate_size,
true);
if (IS_ERR(req))
return PTR_ERR(req);
set_page_writeback(page);
if (caching)
ceph_set_page_fscache(page);
ceph_fscache_write_to_cache(inode, page_off, len, caching);
/* it may be a short write due to an object boundary */
WARN_ON_ONCE(len > thp_size(page));
osd_req_op_extent_osd_data_pages(req, 0, &page, len, 0, false, false);
dout("writepage %llu~%llu (%llu bytes)\n", page_off, len, len);
req->r_mtime = inode->i_mtime;
err = ceph_osdc_start_request(osdc, req, true);
if (!err)
err = ceph_osdc_wait_request(osdc, req);
ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
req->r_end_latency, len, err);
ceph_osdc_put_request(req);
if (err == 0)
err = len;
if (err < 0) {
struct writeback_control tmp_wbc;
if (!wbc)
wbc = &tmp_wbc;
if (err == -ERESTARTSYS) {
/* killed by SIGKILL */
dout("writepage interrupted page %p\n", page);
redirty_page_for_writepage(wbc, page);
end_page_writeback(page);
return err;
}
if (err == -EBLOCKLISTED)
fsc->blocklisted = true;
dout("writepage setting page/mapping error %d %p\n",
err, page);
mapping_set_error(&inode->i_data, err);
wbc->pages_skipped++;
} else {
dout("writepage cleaned page %p\n", page);
err = 0; /* vfs expects us to return 0 */
}
oldest = detach_page_private(page);
WARN_ON_ONCE(oldest != snapc);
end_page_writeback(page);
ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
ceph_put_snap_context(snapc); /* page's reference */
if (atomic_long_dec_return(&fsc->writeback_count) <
CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb))
fsc->write_congested = false;
return err;
}
static int ceph_writepage(struct page *page, struct writeback_control *wbc)
{
int err;
struct inode *inode = page->mapping->host;
BUG_ON(!inode);
ihold(inode);
if (wbc->sync_mode == WB_SYNC_NONE &&
ceph_inode_to_client(inode)->write_congested)
return AOP_WRITEPAGE_ACTIVATE;
wait_on_page_fscache(page);
err = writepage_nounlock(page, wbc);
if (err == -ERESTARTSYS) {
/* direct memory reclaimer was killed by SIGKILL. return 0
* to prevent caller from setting mapping/page error */
err = 0;
}
unlock_page(page);
iput(inode);
return err;
}
/*
* async writeback completion handler.
*
* If we get an error, set the mapping error bit, but not the individual
* page error bits.
*/
static void writepages_finish(struct ceph_osd_request *req)
{
struct inode *inode = req->r_inode;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_osd_data *osd_data;
struct page *page;
int num_pages, total_pages = 0;
int i, j;
int rc = req->r_result;
struct ceph_snap_context *snapc = req->r_snapc;
struct address_space *mapping = inode->i_mapping;
struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
unsigned int len = 0;
bool remove_page;
dout("writepages_finish %p rc %d\n", inode, rc);
if (rc < 0) {
mapping_set_error(mapping, rc);
ceph_set_error_write(ci);
if (rc == -EBLOCKLISTED)
fsc->blocklisted = true;
} else {
ceph_clear_error_write(ci);
}
/*
* We lost the cache cap, need to truncate the page before
* it is unlocked, otherwise we'd truncate it later in the
* page truncation thread, possibly losing some data that
* raced its way in
*/
remove_page = !(ceph_caps_issued(ci) &
(CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO));
/* clean all pages */
for (i = 0; i < req->r_num_ops; i++) {
if (req->r_ops[i].op != CEPH_OSD_OP_WRITE)
break;
osd_data = osd_req_op_extent_osd_data(req, i);
BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES);
len += osd_data->length;
num_pages = calc_pages_for((u64)osd_data->alignment,
(u64)osd_data->length);
total_pages += num_pages;
for (j = 0; j < num_pages; j++) {
page = osd_data->pages[j];
BUG_ON(!page);
WARN_ON(!PageUptodate(page));
if (atomic_long_dec_return(&fsc->writeback_count) <
CONGESTION_OFF_THRESH(
fsc->mount_options->congestion_kb))
fsc->write_congested = false;
ceph_put_snap_context(detach_page_private(page));
end_page_writeback(page);
dout("unlocking %p\n", page);
if (remove_page)
generic_error_remove_page(inode->i_mapping,
page);
unlock_page(page);
}
dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n",
inode, osd_data->length, rc >= 0 ? num_pages : 0);
release_pages(osd_data->pages, num_pages);
}
ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
req->r_end_latency, len, rc);
ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc);
osd_data = osd_req_op_extent_osd_data(req, 0);
if (osd_data->pages_from_pool)
mempool_free(osd_data->pages, ceph_wb_pagevec_pool);
else
kfree(osd_data->pages);
ceph_osdc_put_request(req);
}
/*
* initiate async writeback
*/
static int ceph_writepages_start(struct address_space *mapping,
struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
struct ceph_vino vino = ceph_vino(inode);
pgoff_t index, start_index, end = -1;
struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc;
struct pagevec pvec;
int rc = 0;
unsigned int wsize = i_blocksize(inode);
struct ceph_osd_request *req = NULL;
struct ceph_writeback_ctl ceph_wbc;
bool should_loop, range_whole = false;
bool done = false;
bool caching = ceph_is_cache_enabled(inode);
if (wbc->sync_mode == WB_SYNC_NONE &&
fsc->write_congested)
return 0;
dout("writepages_start %p (mode=%s)\n", inode,
wbc->sync_mode == WB_SYNC_NONE ? "NONE" :
(wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD"));
if (ceph_inode_is_shutdown(inode)) {
if (ci->i_wrbuffer_ref > 0) {
pr_warn_ratelimited(
"writepage_start %p %lld forced umount\n",
inode, ceph_ino(inode));
}
mapping_set_error(mapping, -EIO);
return -EIO; /* we're in a forced umount, don't write! */
}
if (fsc->mount_options->wsize < wsize)
wsize = fsc->mount_options->wsize;
pagevec_init(&pvec);
start_index = wbc->range_cyclic ? mapping->writeback_index : 0;
index = start_index;
retry:
/* find oldest snap context with dirty data */
snapc = get_oldest_context(inode, &ceph_wbc, NULL);
if (!snapc) {
/* hmm, why does writepages get called when there
is no dirty data? */
dout(" no snap context with dirty data?\n");
goto out;
}
dout(" oldest snapc is %p seq %lld (%d snaps)\n",
snapc, snapc->seq, snapc->num_snaps);
should_loop = false;
if (ceph_wbc.head_snapc && snapc != last_snapc) {
/* where to start/end? */
if (wbc->range_cyclic) {
index = start_index;
end = -1;
if (index > 0)
should_loop = true;
dout(" cyclic, start at %lu\n", index);
} else {
index = wbc->range_start >> PAGE_SHIFT;
end = wbc->range_end >> PAGE_SHIFT;
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
range_whole = true;
dout(" not cyclic, %lu to %lu\n", index, end);
}
} else if (!ceph_wbc.head_snapc) {
/* Do not respect wbc->range_{start,end}. Dirty pages
* in that range can be associated with newer snapc.
* They are not writeable until we write all dirty pages
* associated with 'snapc' get written */
if (index > 0)
should_loop = true;
dout(" non-head snapc, range whole\n");
}
ceph_put_snap_context(last_snapc);
last_snapc = snapc;
while (!done && index <= end) {
int num_ops = 0, op_idx;
unsigned i, pvec_pages, max_pages, locked_pages = 0;
struct page **pages = NULL, **data_pages;
struct page *page;
pgoff_t strip_unit_end = 0;
u64 offset = 0, len = 0;
bool from_pool = false;
max_pages = wsize >> PAGE_SHIFT;
get_more_pages:
pvec_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
end, PAGECACHE_TAG_DIRTY);
dout("pagevec_lookup_range_tag got %d\n", pvec_pages);
if (!pvec_pages && !locked_pages)
break;
for (i = 0; i < pvec_pages && locked_pages < max_pages; i++) {
page = pvec.pages[i];
dout("? %p idx %lu\n", page, page->index);
if (locked_pages == 0)
lock_page(page); /* first page */
else if (!trylock_page(page))
break;
/* only dirty pages, or our accounting breaks */
if (unlikely(!PageDirty(page)) ||
unlikely(page->mapping != mapping)) {
dout("!dirty or !mapping %p\n", page);
unlock_page(page);
continue;
}
/* only if matching snap context */
pgsnapc = page_snap_context(page);
if (pgsnapc != snapc) {
dout("page snapc %p %lld != oldest %p %lld\n",
pgsnapc, pgsnapc->seq, snapc, snapc->seq);
if (!should_loop &&
!ceph_wbc.head_snapc &&
wbc->sync_mode != WB_SYNC_NONE)
should_loop = true;
unlock_page(page);
continue;
}
if (page_offset(page) >= ceph_wbc.i_size) {
struct folio *folio = page_folio(page);
dout("folio at %lu beyond eof %llu\n",
folio->index, ceph_wbc.i_size);
if ((ceph_wbc.size_stable ||
folio_pos(folio) >= i_size_read(inode)) &&
folio_clear_dirty_for_io(folio))
folio_invalidate(folio, 0,
folio_size(folio));
folio_unlock(folio);
continue;
}
if (strip_unit_end && (page->index > strip_unit_end)) {
dout("end of strip unit %p\n", page);
unlock_page(page);
break;
}
if (PageWriteback(page) || PageFsCache(page)) {
if (wbc->sync_mode == WB_SYNC_NONE) {
dout("%p under writeback\n", page);
unlock_page(page);
continue;
}
dout("waiting on writeback %p\n", page);
wait_on_page_writeback(page);
wait_on_page_fscache(page);
}
if (!clear_page_dirty_for_io(page)) {
dout("%p !clear_page_dirty_for_io\n", page);
unlock_page(page);
continue;
}
/*
* We have something to write. If this is
* the first locked page this time through,
* calculate max possinle write size and
* allocate a page array
*/
if (locked_pages == 0) {
u64 objnum;
u64 objoff;
u32 xlen;
/* prepare async write request */
offset = (u64)page_offset(page);
ceph_calc_file_object_mapping(&ci->i_layout,
offset, wsize,
&objnum, &objoff,
&xlen);
len = xlen;
num_ops = 1;
strip_unit_end = page->index +
((len - 1) >> PAGE_SHIFT);
BUG_ON(pages);
max_pages = calc_pages_for(0, (u64)len);
pages = kmalloc_array(max_pages,
sizeof(*pages),
GFP_NOFS);
if (!pages) {
from_pool = true;
pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
BUG_ON(!pages);
}
len = 0;
} else if (page->index !=
(offset + len) >> PAGE_SHIFT) {
if (num_ops >= (from_pool ? CEPH_OSD_SLAB_OPS :
CEPH_OSD_MAX_OPS)) {
redirty_page_for_writepage(wbc, page);
unlock_page(page);
break;
}
num_ops++;
offset = (u64)page_offset(page);
len = 0;
}
/* note position of first page in pvec */
dout("%p will write page %p idx %lu\n",
inode, page, page->index);
if (atomic_long_inc_return(&fsc->writeback_count) >
CONGESTION_ON_THRESH(
fsc->mount_options->congestion_kb))
fsc->write_congested = true;
pages[locked_pages++] = page;
pvec.pages[i] = NULL;
len += thp_size(page);
}
/* did we get anything? */
if (!locked_pages)
goto release_pvec_pages;
if (i) {
unsigned j, n = 0;
/* shift unused page to beginning of pvec */
for (j = 0; j < pvec_pages; j++) {
if (!pvec.pages[j])
continue;
if (n < j)
pvec.pages[n] = pvec.pages[j];
n++;
}
pvec.nr = n;
if (pvec_pages && i == pvec_pages &&
locked_pages < max_pages) {
dout("reached end pvec, trying for more\n");
pagevec_release(&pvec);
goto get_more_pages;
}
}
new_request:
offset = page_offset(pages[0]);
len = wsize;
req = ceph_osdc_new_request(&fsc->client->osdc,
&ci->i_layout, vino,
offset, &len, 0, num_ops,
CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
snapc, ceph_wbc.truncate_seq,
ceph_wbc.truncate_size, false);
if (IS_ERR(req)) {
req = ceph_osdc_new_request(&fsc->client->osdc,
&ci->i_layout, vino,
offset, &len, 0,
min(num_ops,
CEPH_OSD_SLAB_OPS),
CEPH_OSD_OP_WRITE,
CEPH_OSD_FLAG_WRITE,
snapc, ceph_wbc.truncate_seq,
ceph_wbc.truncate_size, true);
BUG_ON(IS_ERR(req));
}
BUG_ON(len < page_offset(pages[locked_pages - 1]) +
thp_size(page) - offset);
req->r_callback = writepages_finish;
req->r_inode = inode;
/* Format the osd request message and submit the write */
len = 0;
data_pages = pages;
op_idx = 0;
for (i = 0; i < locked_pages; i++) {
u64 cur_offset = page_offset(pages[i]);
/*
* Discontinuity in page range? Ceph can handle that by just passing
* multiple extents in the write op.
*/
if (offset + len != cur_offset) {
/* If it's full, stop here */
if (op_idx + 1 == req->r_num_ops)
break;
/* Kick off an fscache write with what we have so far. */
ceph_fscache_write_to_cache(inode, offset, len, caching);
/* Start a new extent */
osd_req_op_extent_dup_last(req, op_idx,
cur_offset - offset);
dout("writepages got pages at %llu~%llu\n",
offset, len);
osd_req_op_extent_osd_data_pages(req, op_idx,
data_pages, len, 0,
from_pool, false);
osd_req_op_extent_update(req, op_idx, len);
len = 0;
offset = cur_offset;
data_pages = pages + i;
op_idx++;
}
set_page_writeback(pages[i]);
if (caching)
ceph_set_page_fscache(pages[i]);
len += thp_size(page);
}
ceph_fscache_write_to_cache(inode, offset, len, caching);
if (ceph_wbc.size_stable) {
len = min(len, ceph_wbc.i_size - offset);
} else if (i == locked_pages) {
/* writepages_finish() clears writeback pages
* according to the data length, so make sure
* data length covers all locked pages */
u64 min_len = len + 1 - thp_size(page);
len = get_writepages_data_length(inode, pages[i - 1],
offset);
len = max(len, min_len);
}
dout("writepages got pages at %llu~%llu\n", offset, len);
osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len,
0, from_pool, false);
osd_req_op_extent_update(req, op_idx, len);
BUG_ON(op_idx + 1 != req->r_num_ops);
from_pool = false;
if (i < locked_pages) {
BUG_ON(num_ops <= req->r_num_ops);
num_ops -= req->r_num_ops;
locked_pages -= i;
/* allocate new pages array for next request */
data_pages = pages;
pages = kmalloc_array(locked_pages, sizeof(*pages),
GFP_NOFS);
if (!pages) {
from_pool = true;
pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
BUG_ON(!pages);
}
memcpy(pages, data_pages + i,
locked_pages * sizeof(*pages));
memset(data_pages + i, 0,
locked_pages * sizeof(*pages));
} else {
BUG_ON(num_ops != req->r_num_ops);
index = pages[i - 1]->index + 1;
/* request message now owns the pages array */
pages = NULL;
}
req->r_mtime = inode->i_mtime;
rc = ceph_osdc_start_request(&fsc->client->osdc, req, true);
BUG_ON(rc);
req = NULL;
wbc->nr_to_write -= i;
if (pages)
goto new_request;
/*
* We stop writing back only if we are not doing
* integrity sync. In case of integrity sync we have to
* keep going until we have written all the pages
* we tagged for writeback prior to entering this loop.
*/
if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE)
done = true;
release_pvec_pages:
dout("pagevec_release on %d pages (%p)\n", (int)pvec.nr,
pvec.nr ? pvec.pages[0] : NULL);
pagevec_release(&pvec);
}
if (should_loop && !done) {
/* more to do; loop back to beginning of file */
dout("writepages looping back to beginning of file\n");
end = start_index - 1; /* OK even when start_index == 0 */
/* to write dirty pages associated with next snapc,
* we need to wait until current writes complete */
if (wbc->sync_mode != WB_SYNC_NONE &&
start_index == 0 && /* all dirty pages were checked */
!ceph_wbc.head_snapc) {
struct page *page;
unsigned i, nr;
index = 0;
while ((index <= end) &&
(nr = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_WRITEBACK))) {
for (i = 0; i < nr; i++) {
page = pvec.pages[i];
if (page_snap_context(page) != snapc)
continue;
wait_on_page_writeback(page);
}
pagevec_release(&pvec);
cond_resched();
}
}
start_index = 0;
index = 0;
goto retry;
}
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
mapping->writeback_index = index;
out:
ceph_osdc_put_request(req);
ceph_put_snap_context(last_snapc);
dout("writepages dend - startone, rc = %d\n", rc);
return rc;
}
/*
* See if a given @snapc is either writeable, or already written.
*/
static int context_is_writeable_or_written(struct inode *inode,
struct ceph_snap_context *snapc)
{
struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL);
int ret = !oldest || snapc->seq <= oldest->seq;
ceph_put_snap_context(oldest);
return ret;
}
/**
* ceph_find_incompatible - find an incompatible context and return it
* @page: page being dirtied
*
* We are only allowed to write into/dirty a page if the page is
* clean, or already dirty within the same snap context. Returns a
* conflicting context if there is one, NULL if there isn't, or a
* negative error code on other errors.
*
* Must be called with page lock held.
*/
static struct ceph_snap_context *
ceph_find_incompatible(struct page *page)
{
struct inode *inode = page->mapping->host;
struct ceph_inode_info *ci = ceph_inode(inode);
if (ceph_inode_is_shutdown(inode)) {
dout(" page %p %llx:%llx is shutdown\n", page,
ceph_vinop(inode));
return ERR_PTR(-ESTALE);
}
for (;;) {
struct ceph_snap_context *snapc, *oldest;
wait_on_page_writeback(page);
snapc = page_snap_context(page);
if (!snapc || snapc == ci->i_head_snapc)
break;
/*
* this page is already dirty in another (older) snap
* context! is it writeable now?
*/
oldest = get_oldest_context(inode, NULL, NULL);
if (snapc->seq > oldest->seq) {
/* not writeable -- return it for the caller to deal with */
ceph_put_snap_context(oldest);
dout(" page %p snapc %p not current or oldest\n", page, snapc);
return ceph_get_snap_context(snapc);
}
ceph_put_snap_context(oldest);
/* yay, writeable, do it now (without dropping page lock) */
dout(" page %p snapc %p not current, but oldest\n", page, snapc);
if (clear_page_dirty_for_io(page)) {
int r = writepage_nounlock(page, NULL);
if (r < 0)
return ERR_PTR(r);
}
}
return NULL;
}
static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
struct folio *folio, void **_fsdata)
{
struct inode *inode = file_inode(file);
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_snap_context *snapc;
snapc = ceph_find_incompatible(folio_page(folio, 0));
if (snapc) {
int r;
folio_unlock(folio);
folio_put(folio);
if (IS_ERR(snapc))
return PTR_ERR(snapc);
ceph_queue_writeback(inode);
r = wait_event_killable(ci->i_cap_wq,
context_is_writeable_or_written(inode, snapc));
ceph_put_snap_context(snapc);
return r == 0 ? -EAGAIN : r;
}
return 0;
}
/*
* We are only allowed to write into/dirty the page if the page is
* clean, or already dirty within the same snap context.
*/
static int ceph_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned aop_flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = file_inode(file);
struct folio *folio = NULL;
int r;
r = netfs_write_begin(file, inode->i_mapping, pos, len, 0, &folio, NULL);
if (r == 0)
folio_wait_fscache(folio);
if (r < 0) {
if (folio)
folio_put(folio);
} else {
WARN_ON_ONCE(!folio_test_locked(folio));
*pagep = &folio->page;
}
return r;
}
/*
* we don't do anything in here that simple_write_end doesn't do
* except adjust dirty page accounting
*/
static int ceph_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *subpage, void *fsdata)
{
struct folio *folio = page_folio(subpage);
struct inode *inode = file_inode(file);
bool check_cap = false;
dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file,
inode, folio, (int)pos, (int)copied, (int)len);
if (!folio_test_uptodate(folio)) {
/* just return that nothing was copied on a short copy */
if (copied < len) {
copied = 0;
goto out;
}
folio_mark_uptodate(folio);
}
/* did file size increase? */
if (pos+copied > i_size_read(inode))
check_cap = ceph_inode_set_size(inode, pos+copied);
folio_mark_dirty(folio);
out:
folio_unlock(folio);
folio_put(folio);
if (check_cap)
ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY, NULL);
return copied;
}
const struct address_space_operations ceph_aops = {
.readpage = netfs_readpage,
.readahead = netfs_readahead,
.writepage = ceph_writepage,
.writepages = ceph_writepages_start,
.write_begin = ceph_write_begin,
.write_end = ceph_write_end,
.dirty_folio = ceph_dirty_folio,
.invalidate_folio = ceph_invalidate_folio,
.releasepage = ceph_releasepage,
.direct_IO = noop_direct_IO,
};
static void ceph_block_sigs(sigset_t *oldset)
{
sigset_t mask;
siginitsetinv(&mask, sigmask(SIGKILL));
sigprocmask(SIG_BLOCK, &mask, oldset);
}
static void ceph_restore_sigs(sigset_t *oldset)
{
sigprocmask(SIG_SETMASK, oldset, NULL);
}
/*
* vm ops
*/
static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct inode *inode = file_inode(vma->vm_file);
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_file_info *fi = vma->vm_file->private_data;
loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT;
int want, got, err;
sigset_t oldset;
vm_fault_t ret = VM_FAULT_SIGBUS;
if (ceph_inode_is_shutdown(inode))
return ret;
ceph_block_sigs(&oldset);
dout("filemap_fault %p %llx.%llx %llu trying to get caps\n",
inode, ceph_vinop(inode), off);
if (fi->fmode & CEPH_FILE_MODE_LAZY)
want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO;
else
want = CEPH_CAP_FILE_CACHE;
got = 0;
err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got);
if (err < 0)
goto out_restore;
dout("filemap_fault %p %llu got cap refs on %s\n",
inode, off, ceph_cap_string(got));
if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) ||
ci->i_inline_version == CEPH_INLINE_NONE) {
CEPH_DEFINE_RW_CONTEXT(rw_ctx, got);
ceph_add_rw_context(fi, &rw_ctx);
ret = filemap_fault(vmf);
ceph_del_rw_context(fi, &rw_ctx);
dout("filemap_fault %p %llu drop cap refs %s ret %x\n",
inode, off, ceph_cap_string(got), ret);
} else
err = -EAGAIN;
ceph_put_cap_refs(ci, got);
if (err != -EAGAIN)
goto out_restore;
/* read inline data */
if (off >= PAGE_SIZE) {
/* does not support inline data > PAGE_SIZE */
ret = VM_FAULT_SIGBUS;
} else {
struct address_space *mapping = inode->i_mapping;
struct page *page;
filemap_invalidate_lock_shared(mapping);
page = find_or_create_page(mapping, 0,
mapping_gfp_constraint(mapping, ~__GFP_FS));
if (!page) {
ret = VM_FAULT_OOM;
goto out_inline;
}
err = __ceph_do_getattr(inode, page,
CEPH_STAT_CAP_INLINE_DATA, true);
if (err < 0 || off >= i_size_read(inode)) {
unlock_page(page);
put_page(page);
ret = vmf_error(err);
goto out_inline;
}
if (err < PAGE_SIZE)
zero_user_segment(page, err, PAGE_SIZE);
else
flush_dcache_page(page);
SetPageUptodate(page);
vmf->page = page;
ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED;
out_inline:
filemap_invalidate_unlock_shared(mapping);
dout("filemap_fault %p %llu read inline data ret %x\n",
inode, off, ret);
}
out_restore:
ceph_restore_sigs(&oldset);
if (err < 0)
ret = vmf_error(err);
return ret;
}
static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct inode *inode = file_inode(vma->vm_file);
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_file_info *fi = vma->vm_file->private_data;
struct ceph_cap_flush *prealloc_cf;
struct page *page = vmf->page;
loff_t off = page_offset(page);
loff_t size = i_size_read(inode);
size_t len;
int want, got, err;
sigset_t oldset;
vm_fault_t ret = VM_FAULT_SIGBUS;
if (ceph_inode_is_shutdown(inode))
return ret;
prealloc_cf = ceph_alloc_cap_flush();
if (!prealloc_cf)
return VM_FAULT_OOM;
sb_start_pagefault(inode->i_sb);
ceph_block_sigs(&oldset);
if (off + thp_size(page) <= size)
len = thp_size(page);
else
len = offset_in_thp(page, size);
dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n",
inode, ceph_vinop(inode), off, len, size);
if (fi->fmode & CEPH_FILE_MODE_LAZY)
want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO;
else
want = CEPH_CAP_FILE_BUFFER;
got = 0;
err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got);
if (err < 0)
goto out_free;
dout("page_mkwrite %p %llu~%zd got cap refs on %s\n",
inode, off, len, ceph_cap_string(got));
/* Update time before taking page lock */
file_update_time(vma->vm_file);
inode_inc_iversion_raw(inode);
do {
struct ceph_snap_context *snapc;
lock_page(page);
if (page_mkwrite_check_truncate(page, inode) < 0) {
unlock_page(page);
ret = VM_FAULT_NOPAGE;
break;
}
snapc = ceph_find_incompatible(page);
if (!snapc) {
/* success. we'll keep the page locked. */
set_page_dirty(page);
ret = VM_FAULT_LOCKED;
break;
}
unlock_page(page);
if (IS_ERR(snapc)) {
ret = VM_FAULT_SIGBUS;
break;
}
ceph_queue_writeback(inode);
err = wait_event_killable(ci->i_cap_wq,
context_is_writeable_or_written(inode, snapc));
ceph_put_snap_context(snapc);
} while (err == 0);
if (ret == VM_FAULT_LOCKED) {
int dirty;
spin_lock(&ci->i_ceph_lock);
dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR,
&prealloc_cf);
spin_unlock(&ci->i_ceph_lock);
if (dirty)
__mark_inode_dirty(inode, dirty);
}
dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n",
inode, off, len, ceph_cap_string(got), ret);
ceph_put_cap_refs_async(ci, got);
out_free:
ceph_restore_sigs(&oldset);
sb_end_pagefault(inode->i_sb);
ceph_free_cap_flush(prealloc_cf);
if (err < 0)
ret = vmf_error(err);
return ret;
}
void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
char *data, size_t len)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
if (locked_page) {
page = locked_page;
} else {
if (i_size_read(inode) == 0)
return;
page = find_or_create_page(mapping, 0,
mapping_gfp_constraint(mapping,
~__GFP_FS));
if (!page)
return;
if (PageUptodate(page)) {
unlock_page(page);
put_page(page);
return;
}
}
dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n",
inode, ceph_vinop(inode), len, locked_page);
if (len > 0) {
void *kaddr = kmap_atomic(page);
memcpy(kaddr, data, len);
kunmap_atomic(kaddr);
}
if (page != locked_page) {
if (len < PAGE_SIZE)
zero_user_segment(page, len, PAGE_SIZE);
else
flush_dcache_page(page);
SetPageUptodate(page);
unlock_page(page);
put_page(page);
}
}
int ceph_uninline_data(struct file *file)
{
struct inode *inode = file_inode(file);
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
struct ceph_osd_request *req;
struct ceph_cap_flush *prealloc_cf;
struct folio *folio = NULL;
u64 inline_version = CEPH_INLINE_NONE;
struct page *pages[1];
int err = 0;
u64 len;
prealloc_cf = ceph_alloc_cap_flush();
if (!prealloc_cf)
return -ENOMEM;
folio = read_mapping_folio(inode->i_mapping, 0, file);
if (IS_ERR(folio)) {
err = PTR_ERR(folio);
goto out;
}
folio_lock(folio);
spin_lock(&ci->i_ceph_lock);
inline_version = ci->i_inline_version;
spin_unlock(&ci->i_ceph_lock);
dout("uninline_data %p %llx.%llx inline_version %llu\n",
inode, ceph_vinop(inode), inline_version);
if (inline_version == 1 || /* initial version, no data */
inline_version == CEPH_INLINE_NONE)
goto out_unlock;
len = i_size_read(inode);
if (len > folio_size(folio))
len = folio_size(folio);
req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
ceph_vino(inode), 0, &len, 0, 1,
CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE,
NULL, 0, 0, false);
if (IS_ERR(req)) {
err = PTR_ERR(req);
goto out_unlock;
}
req->r_mtime = inode->i_mtime;
err = ceph_osdc_start_request(&fsc->client->osdc, req, false);
if (!err)
err = ceph_osdc_wait_request(&fsc->client->osdc, req);
ceph_osdc_put_request(req);
if (err < 0)
goto out_unlock;
req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
ceph_vino(inode), 0, &len, 1, 3,
CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
NULL, ci->i_truncate_seq,
ci->i_truncate_size, false);
if (IS_ERR(req)) {
err = PTR_ERR(req);
goto out_unlock;
}
pages[0] = folio_page(folio, 0);
osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false);
{
__le64 xattr_buf = cpu_to_le64(inline_version);
err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR,
"inline_version", &xattr_buf,
sizeof(xattr_buf),
CEPH_OSD_CMPXATTR_OP_GT,
CEPH_OSD_CMPXATTR_MODE_U64);
if (err)
goto out_put_req;
}
{
char xattr_buf[32];
int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf),
"%llu", inline_version);
err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR,
"inline_version",
xattr_buf, xattr_len, 0, 0);
if (err)
goto out_put_req;
}
req->r_mtime = inode->i_mtime;
err = ceph_osdc_start_request(&fsc->client->osdc, req, false);
if (!err)
err = ceph_osdc_wait_request(&fsc->client->osdc, req);
ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
req->r_end_latency, len, err);
if (!err) {
int dirty;
/* Set to CAP_INLINE_NONE and dirty the caps */
down_read(&fsc->mdsc->snap_rwsem);
spin_lock(&ci->i_ceph_lock);
ci->i_inline_version = CEPH_INLINE_NONE;
dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf);
spin_unlock(&ci->i_ceph_lock);
up_read(&fsc->mdsc->snap_rwsem);
if (dirty)
__mark_inode_dirty(inode, dirty);
}
out_put_req:
ceph_osdc_put_request(req);
if (err == -ECANCELED)
err = 0;
out_unlock:
folio_unlock(folio);
folio_put(folio);
out:
ceph_free_cap_flush(prealloc_cf);
dout("uninline_data %p %llx.%llx inline_version %llu = %d\n",
inode, ceph_vinop(inode), inline_version, err);
return err;
}
static const struct vm_operations_struct ceph_vmops = {
.fault = ceph_filemap_fault,
.page_mkwrite = ceph_page_mkwrite,
};
int ceph_mmap(struct file *file, struct vm_area_struct *vma)
{
struct address_space *mapping = file->f_mapping;
if (!mapping->a_ops->readpage)
return -ENOEXEC;
file_accessed(file);
vma->vm_ops = &ceph_vmops;
return 0;
}
enum {
POOL_READ = 1,
POOL_WRITE = 2,
};
static int __ceph_pool_perm_get(struct ceph_inode_info *ci,
s64 pool, struct ceph_string *pool_ns)
{
struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
struct ceph_mds_client *mdsc = fsc->mdsc;
struct ceph_osd_request *rd_req = NULL, *wr_req = NULL;
struct rb_node **p, *parent;
struct ceph_pool_perm *perm;
struct page **pages;
size_t pool_ns_len;
int err = 0, err2 = 0, have = 0;
down_read(&mdsc->pool_perm_rwsem);
p = &mdsc->pool_perm_tree.rb_node;
while (*p) {
perm = rb_entry(*p, struct ceph_pool_perm, node);
if (pool < perm->pool)
p = &(*p)->rb_left;
else if (pool > perm->pool)
p = &(*p)->rb_right;
else {
int ret = ceph_compare_string(pool_ns,
perm->pool_ns,
perm->pool_ns_len);
if (ret < 0)
p = &(*p)->rb_left;
else if (ret > 0)
p = &(*p)->rb_right;
else {
have = perm->perm;
break;
}
}
}
up_read(&mdsc->pool_perm_rwsem);
if (*p)
goto out;
if (pool_ns)
dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n",
pool, (int)pool_ns->len, pool_ns->str);
else
dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool);
down_write(&mdsc->pool_perm_rwsem);
p = &mdsc->pool_perm_tree.rb_node;
parent = NULL;
while (*p) {
parent = *p;
perm = rb_entry(parent, struct ceph_pool_perm, node);
if (pool < perm->pool)
p = &(*p)->rb_left;
else if (pool > perm->pool)
p = &(*p)->rb_right;
else {
int ret = ceph_compare_string(pool_ns,
perm->pool_ns,
perm->pool_ns_len);
if (ret < 0)
p = &(*p)->rb_left;
else if (ret > 0)
p = &(*p)->rb_right;
else {
have = perm->perm;
break;
}
}
}
if (*p) {
up_write(&mdsc->pool_perm_rwsem);
goto out;
}
rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
1, false, GFP_NOFS);
if (!rd_req) {
err = -ENOMEM;
goto out_unlock;
}
rd_req->r_flags = CEPH_OSD_FLAG_READ;
osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0);
rd_req->r_base_oloc.pool = pool;
if (pool_ns)
rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns);
ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino);
err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS);
if (err)
goto out_unlock;
wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
1, false, GFP_NOFS);
if (!wr_req) {
err = -ENOMEM;
goto out_unlock;
}
wr_req->r_flags = CEPH_OSD_FLAG_WRITE;
osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL);
ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc);
ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid);
err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS);
if (err)
goto out_unlock;
/* one page should be large enough for STAT data */
pages = ceph_alloc_page_vector(1, GFP_KERNEL);
if (IS_ERR(pages)) {
err = PTR_ERR(pages);
goto out_unlock;
}
osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE,
0, false, true);
err = ceph_osdc_start_request(&fsc->client->osdc, rd_req, false);
wr_req->r_mtime = ci->vfs_inode.i_mtime;
err2 = ceph_osdc_start_request(&fsc->client->osdc, wr_req, false);
if (!err)
err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req);
if (!err2)
err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req);
if (err >= 0 || err == -ENOENT)
have |= POOL_READ;
else if (err != -EPERM) {
if (err == -EBLOCKLISTED)
fsc->blocklisted = true;
goto out_unlock;
}
if (err2 == 0 || err2 == -EEXIST)
have |= POOL_WRITE;
else if (err2 != -EPERM) {
if (err2 == -EBLOCKLISTED)
fsc->blocklisted = true;
err = err2;
goto out_unlock;
}
pool_ns_len = pool_ns ? pool_ns->len : 0;
perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS);
if (!perm) {
err = -ENOMEM;
goto out_unlock;
}
perm->pool = pool;
perm->perm = have;
perm->pool_ns_len = pool_ns_len;
if (pool_ns_len > 0)
memcpy(perm->pool_ns, pool_ns->str, pool_ns_len);
perm->pool_ns[pool_ns_len] = 0;
rb_link_node(&perm->node, parent, p);
rb_insert_color(&perm->node, &mdsc->pool_perm_tree);
err = 0;
out_unlock:
up_write(&mdsc->pool_perm_rwsem);
ceph_osdc_put_request(rd_req);
ceph_osdc_put_request(wr_req);
out:
if (!err)
err = have;
if (pool_ns)
dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n",
pool, (int)pool_ns->len, pool_ns->str, err);
else
dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err);
return err;
}
int ceph_pool_perm_check(struct inode *inode, int need)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_string *pool_ns;
s64 pool;
int ret, flags;
/* Only need to do this for regular files */
if (!S_ISREG(inode->i_mode))
return 0;
if (ci->i_vino.snap != CEPH_NOSNAP) {
/*
* Pool permission check needs to write to the first object.
* But for snapshot, head of the first object may have alread
* been deleted. Skip check to avoid creating orphan object.
*/
return 0;
}
if (ceph_test_mount_opt(ceph_inode_to_client(inode),
NOPOOLPERM))
return 0;
spin_lock(&ci->i_ceph_lock);
flags = ci->i_ceph_flags;
pool = ci->i_layout.pool_id;
spin_unlock(&ci->i_ceph_lock);
check:
if (flags & CEPH_I_POOL_PERM) {
if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) {
dout("ceph_pool_perm_check pool %lld no read perm\n",
pool);
return -EPERM;
}
if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) {
dout("ceph_pool_perm_check pool %lld no write perm\n",
pool);
return -EPERM;
}
return 0;
}
pool_ns = ceph_try_get_string(ci->i_layout.pool_ns);
ret = __ceph_pool_perm_get(ci, pool, pool_ns);
ceph_put_string(pool_ns);
if (ret < 0)
return ret;
flags = CEPH_I_POOL_PERM;
if (ret & POOL_READ)
flags |= CEPH_I_POOL_RD;
if (ret & POOL_WRITE)
flags |= CEPH_I_POOL_WR;
spin_lock(&ci->i_ceph_lock);
if (pool == ci->i_layout.pool_id &&
pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) {
ci->i_ceph_flags |= flags;
} else {
pool = ci->i_layout.pool_id;
flags = ci->i_ceph_flags;
}
spin_unlock(&ci->i_ceph_lock);
goto check;
}
void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc)
{
struct ceph_pool_perm *perm;
struct rb_node *n;
while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) {
n = rb_first(&mdsc->pool_perm_tree);
perm = rb_entry(n, struct ceph_pool_perm, node);
rb_erase(n, &mdsc->pool_perm_tree);
kfree(perm);
}
}