linux/arch/x86/mm/extable.c
Xin Li 5105e7687a x86/fred: Fixup fault on ERETU by jumping to fred_entrypoint_user
If the stack frame contains an invalid user context (e.g. due to invalid SS,
a non-canonical RIP, etc.) the ERETU instruction will trap (#SS or #GP).

From a Linux point of view, this really should be considered a user space
failure, so use the standard fault fixup mechanism to intercept the fault,
fix up the exception frame, and redirect execution to fred_entrypoint_user.
The end result is that it appears just as if the hardware had taken the
exception immediately after completing the transition to user space.

Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-30-xin3.li@intel.com
2024-01-31 22:03:04 +01:00

448 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/extable.h>
#include <linux/uaccess.h>
#include <linux/sched/debug.h>
#include <linux/bitfield.h>
#include <xen/xen.h>
#include <asm/fpu/api.h>
#include <asm/fred.h>
#include <asm/sev.h>
#include <asm/traps.h>
#include <asm/kdebug.h>
#include <asm/insn-eval.h>
#include <asm/sgx.h>
static inline unsigned long *pt_regs_nr(struct pt_regs *regs, int nr)
{
int reg_offset = pt_regs_offset(regs, nr);
static unsigned long __dummy;
if (WARN_ON_ONCE(reg_offset < 0))
return &__dummy;
return (unsigned long *)((unsigned long)regs + reg_offset);
}
static inline unsigned long
ex_fixup_addr(const struct exception_table_entry *x)
{
return (unsigned long)&x->fixup + x->fixup;
}
static bool ex_handler_default(const struct exception_table_entry *e,
struct pt_regs *regs)
{
if (e->data & EX_FLAG_CLEAR_AX)
regs->ax = 0;
if (e->data & EX_FLAG_CLEAR_DX)
regs->dx = 0;
regs->ip = ex_fixup_addr(e);
return true;
}
/*
* This is the *very* rare case where we do a "load_unaligned_zeropad()"
* and it's a page crosser into a non-existent page.
*
* This happens when we optimistically load a pathname a word-at-a-time
* and the name is less than the full word and the next page is not
* mapped. Typically that only happens for CONFIG_DEBUG_PAGEALLOC.
*
* NOTE! The faulting address is always a 'mov mem,reg' type instruction
* of size 'long', and the exception fixup must always point to right
* after the instruction.
*/
static bool ex_handler_zeropad(const struct exception_table_entry *e,
struct pt_regs *regs,
unsigned long fault_addr)
{
struct insn insn;
const unsigned long mask = sizeof(long) - 1;
unsigned long offset, addr, next_ip, len;
unsigned long *reg;
next_ip = ex_fixup_addr(e);
len = next_ip - regs->ip;
if (len > MAX_INSN_SIZE)
return false;
if (insn_decode(&insn, (void *) regs->ip, len, INSN_MODE_KERN))
return false;
if (insn.length != len)
return false;
if (insn.opcode.bytes[0] != 0x8b)
return false;
if (insn.opnd_bytes != sizeof(long))
return false;
addr = (unsigned long) insn_get_addr_ref(&insn, regs);
if (addr == ~0ul)
return false;
offset = addr & mask;
addr = addr & ~mask;
if (fault_addr != addr + sizeof(long))
return false;
reg = insn_get_modrm_reg_ptr(&insn, regs);
if (!reg)
return false;
*reg = *(unsigned long *)addr >> (offset * 8);
return ex_handler_default(e, regs);
}
static bool ex_handler_fault(const struct exception_table_entry *fixup,
struct pt_regs *regs, int trapnr)
{
regs->ax = trapnr;
return ex_handler_default(fixup, regs);
}
static bool ex_handler_sgx(const struct exception_table_entry *fixup,
struct pt_regs *regs, int trapnr)
{
regs->ax = trapnr | SGX_ENCLS_FAULT_FLAG;
return ex_handler_default(fixup, regs);
}
/*
* Handler for when we fail to restore a task's FPU state. We should never get
* here because the FPU state of a task using the FPU (task->thread.fpu.state)
* should always be valid. However, past bugs have allowed userspace to set
* reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
* These caused XRSTOR to fail when switching to the task, leaking the FPU
* registers of the task previously executing on the CPU. Mitigate this class
* of vulnerability by restoring from the initial state (essentially, zeroing
* out all the FPU registers) if we can't restore from the task's FPU state.
*/
static bool ex_handler_fprestore(const struct exception_table_entry *fixup,
struct pt_regs *regs)
{
regs->ip = ex_fixup_addr(fixup);
WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
(void *)instruction_pointer(regs));
fpu_reset_from_exception_fixup();
return true;
}
/*
* On x86-64, we end up being imprecise with 'access_ok()', and allow
* non-canonical user addresses to make the range comparisons simpler,
* and to not have to worry about LAM being enabled.
*
* In fact, we allow up to one page of "slop" at the sign boundary,
* which means that we can do access_ok() by just checking the sign
* of the pointer for the common case of having a small access size.
*/
static bool gp_fault_address_ok(unsigned long fault_address)
{
#ifdef CONFIG_X86_64
/* Is it in the "user space" part of the non-canonical space? */
if (valid_user_address(fault_address))
return true;
/* .. or just above it? */
fault_address -= PAGE_SIZE;
if (valid_user_address(fault_address))
return true;
#endif
return false;
}
static bool ex_handler_uaccess(const struct exception_table_entry *fixup,
struct pt_regs *regs, int trapnr,
unsigned long fault_address)
{
WARN_ONCE(trapnr == X86_TRAP_GP && !gp_fault_address_ok(fault_address),
"General protection fault in user access. Non-canonical address?");
return ex_handler_default(fixup, regs);
}
static bool ex_handler_copy(const struct exception_table_entry *fixup,
struct pt_regs *regs, int trapnr)
{
WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?");
return ex_handler_fault(fixup, regs, trapnr);
}
static bool ex_handler_msr(const struct exception_table_entry *fixup,
struct pt_regs *regs, bool wrmsr, bool safe, int reg)
{
if (__ONCE_LITE_IF(!safe && wrmsr)) {
pr_warn("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
(unsigned int)regs->cx, (unsigned int)regs->dx,
(unsigned int)regs->ax, regs->ip, (void *)regs->ip);
show_stack_regs(regs);
}
if (__ONCE_LITE_IF(!safe && !wrmsr)) {
pr_warn("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
(unsigned int)regs->cx, regs->ip, (void *)regs->ip);
show_stack_regs(regs);
}
if (!wrmsr) {
/* Pretend that the read succeeded and returned 0. */
regs->ax = 0;
regs->dx = 0;
}
if (safe)
*pt_regs_nr(regs, reg) = -EIO;
return ex_handler_default(fixup, regs);
}
static bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
struct pt_regs *regs)
{
if (static_cpu_has(X86_BUG_NULL_SEG))
asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
asm volatile ("mov %0, %%fs" : : "rm" (0));
return ex_handler_default(fixup, regs);
}
static bool ex_handler_imm_reg(const struct exception_table_entry *fixup,
struct pt_regs *regs, int reg, int imm)
{
*pt_regs_nr(regs, reg) = (long)imm;
return ex_handler_default(fixup, regs);
}
static bool ex_handler_ucopy_len(const struct exception_table_entry *fixup,
struct pt_regs *regs, int trapnr,
unsigned long fault_address,
int reg, int imm)
{
regs->cx = imm * regs->cx + *pt_regs_nr(regs, reg);
return ex_handler_uaccess(fixup, regs, trapnr, fault_address);
}
#ifdef CONFIG_X86_FRED
static bool ex_handler_eretu(const struct exception_table_entry *fixup,
struct pt_regs *regs, unsigned long error_code)
{
struct pt_regs *uregs = (struct pt_regs *)(regs->sp - offsetof(struct pt_regs, orig_ax));
unsigned short ss = uregs->ss;
unsigned short cs = uregs->cs;
/*
* Move the NMI bit from the invalid stack frame, which caused ERETU
* to fault, to the fault handler's stack frame, thus to unblock NMI
* with the fault handler's ERETS instruction ASAP if NMI is blocked.
*/
regs->fred_ss.nmi = uregs->fred_ss.nmi;
/*
* Sync event information to uregs, i.e., the ERETU return frame, but
* is it safe to write to the ERETU return frame which is just above
* current event stack frame?
*
* The RSP used by FRED to push a stack frame is not the value in %rsp,
* it is calculated from %rsp with the following 2 steps:
* 1) RSP = %rsp - (IA32_FRED_CONFIG & 0x1c0) // Reserve N*64 bytes
* 2) RSP = RSP & ~0x3f // Align to a 64-byte cache line
* when an event delivery doesn't trigger a stack level change.
*
* Here is an example with N*64 (N=1) bytes reserved:
*
* 64-byte cache line ==> ______________
* |___Reserved___|
* |__Event_data__|
* |_____SS_______|
* |_____RSP______|
* |_____FLAGS____|
* |_____CS_______|
* |_____IP_______|
* 64-byte cache line ==> |__Error_code__| <== ERETU return frame
* |______________|
* |______________|
* |______________|
* |______________|
* |______________|
* |______________|
* |______________|
* 64-byte cache line ==> |______________| <== RSP after step 1) and 2)
* |___Reserved___|
* |__Event_data__|
* |_____SS_______|
* |_____RSP______|
* |_____FLAGS____|
* |_____CS_______|
* |_____IP_______|
* 64-byte cache line ==> |__Error_code__| <== ERETS return frame
*
* Thus a new FRED stack frame will always be pushed below a previous
* FRED stack frame ((N*64) bytes may be reserved between), and it is
* safe to write to a previous FRED stack frame as they never overlap.
*/
fred_info(uregs)->edata = fred_event_data(regs);
uregs->ssx = regs->ssx;
uregs->fred_ss.ss = ss;
/* The NMI bit was moved away above */
uregs->fred_ss.nmi = 0;
uregs->csx = regs->csx;
uregs->fred_cs.sl = 0;
uregs->fred_cs.wfe = 0;
uregs->cs = cs;
uregs->orig_ax = error_code;
return ex_handler_default(fixup, regs);
}
#endif
int ex_get_fixup_type(unsigned long ip)
{
const struct exception_table_entry *e = search_exception_tables(ip);
return e ? FIELD_GET(EX_DATA_TYPE_MASK, e->data) : EX_TYPE_NONE;
}
int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code,
unsigned long fault_addr)
{
const struct exception_table_entry *e;
int type, reg, imm;
#ifdef CONFIG_PNPBIOS
if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
extern u32 pnp_bios_is_utter_crap;
pnp_bios_is_utter_crap = 1;
printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
__asm__ volatile(
"movl %0, %%esp\n\t"
"jmp *%1\n\t"
: : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
panic("do_trap: can't hit this");
}
#endif
e = search_exception_tables(regs->ip);
if (!e)
return 0;
type = FIELD_GET(EX_DATA_TYPE_MASK, e->data);
reg = FIELD_GET(EX_DATA_REG_MASK, e->data);
imm = FIELD_GET(EX_DATA_IMM_MASK, e->data);
switch (type) {
case EX_TYPE_DEFAULT:
case EX_TYPE_DEFAULT_MCE_SAFE:
return ex_handler_default(e, regs);
case EX_TYPE_FAULT:
case EX_TYPE_FAULT_MCE_SAFE:
return ex_handler_fault(e, regs, trapnr);
case EX_TYPE_UACCESS:
return ex_handler_uaccess(e, regs, trapnr, fault_addr);
case EX_TYPE_COPY:
return ex_handler_copy(e, regs, trapnr);
case EX_TYPE_CLEAR_FS:
return ex_handler_clear_fs(e, regs);
case EX_TYPE_FPU_RESTORE:
return ex_handler_fprestore(e, regs);
case EX_TYPE_BPF:
return ex_handler_bpf(e, regs);
case EX_TYPE_WRMSR:
return ex_handler_msr(e, regs, true, false, reg);
case EX_TYPE_RDMSR:
return ex_handler_msr(e, regs, false, false, reg);
case EX_TYPE_WRMSR_SAFE:
return ex_handler_msr(e, regs, true, true, reg);
case EX_TYPE_RDMSR_SAFE:
return ex_handler_msr(e, regs, false, true, reg);
case EX_TYPE_WRMSR_IN_MCE:
ex_handler_msr_mce(regs, true);
break;
case EX_TYPE_RDMSR_IN_MCE:
ex_handler_msr_mce(regs, false);
break;
case EX_TYPE_POP_REG:
regs->sp += sizeof(long);
fallthrough;
case EX_TYPE_IMM_REG:
return ex_handler_imm_reg(e, regs, reg, imm);
case EX_TYPE_FAULT_SGX:
return ex_handler_sgx(e, regs, trapnr);
case EX_TYPE_UCOPY_LEN:
return ex_handler_ucopy_len(e, regs, trapnr, fault_addr, reg, imm);
case EX_TYPE_ZEROPAD:
return ex_handler_zeropad(e, regs, fault_addr);
#ifdef CONFIG_X86_FRED
case EX_TYPE_ERETU:
return ex_handler_eretu(e, regs, error_code);
#endif
}
BUG();
}
extern unsigned int early_recursion_flag;
/* Restricted version used during very early boot */
void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
{
/* Ignore early NMIs. */
if (trapnr == X86_TRAP_NMI)
return;
if (early_recursion_flag > 2)
goto halt_loop;
/*
* Old CPUs leave the high bits of CS on the stack
* undefined. I'm not sure which CPUs do this, but at least
* the 486 DX works this way.
* Xen pv domains are not using the default __KERNEL_CS.
*/
if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
goto fail;
/*
* The full exception fixup machinery is available as soon as
* the early IDT is loaded. This means that it is the
* responsibility of extable users to either function correctly
* when handlers are invoked early or to simply avoid causing
* exceptions before they're ready to handle them.
*
* This is better than filtering which handlers can be used,
* because refusing to call a handler here is guaranteed to
* result in a hard-to-debug panic.
*
* Keep in mind that not all vectors actually get here. Early
* page faults, for example, are special.
*/
if (fixup_exception(regs, trapnr, regs->orig_ax, 0))
return;
if (trapnr == X86_TRAP_UD) {
if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
/* Skip the ud2. */
regs->ip += LEN_UD2;
return;
}
/*
* If this was a BUG and report_bug returns or if this
* was just a normal #UD, we want to continue onward and
* crash.
*/
}
fail:
early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
(unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
regs->orig_ax, read_cr2());
show_regs(regs);
halt_loop:
while (true)
halt();
}