mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-28 14:44:10 +08:00
030f4e9687
This patch fixes a host of reentrancy bugs in the nx driver. The following algorithms are affected: * CCM * GCM * CTR * XCBC * SHA256 * SHA512 The crypto API allows a single transform to be used by multiple threads simultaneously. For example, IPsec will use a single tfm to process packets for a given SA. As packets may arrive on multiple CPUs that tfm must be reentrant. The nx driver does try to deal with this by using a spin lock. Unfortunately only the basic AES/CBC/ECB algorithms do this in the correct way. The symptom of these bugs may range from the generation of incorrect output to memory corruption. Cc: stable@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
397 lines
10 KiB
C
397 lines
10 KiB
C
/**
|
|
* AES XCBC routines supporting the Power 7+ Nest Accelerators driver
|
|
*
|
|
* Copyright (C) 2011-2012 International Business Machines Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 only.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* Author: Kent Yoder <yoder1@us.ibm.com>
|
|
*/
|
|
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/algapi.h>
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/crypto.h>
|
|
#include <asm/vio.h>
|
|
|
|
#include "nx_csbcpb.h"
|
|
#include "nx.h"
|
|
|
|
|
|
struct xcbc_state {
|
|
u8 state[AES_BLOCK_SIZE];
|
|
unsigned int count;
|
|
u8 buffer[AES_BLOCK_SIZE];
|
|
};
|
|
|
|
static int nx_xcbc_set_key(struct crypto_shash *desc,
|
|
const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
|
|
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
|
|
|
|
switch (key_len) {
|
|
case AES_KEYSIZE_128:
|
|
nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Based on RFC 3566, for a zero-length message:
|
|
*
|
|
* n = 1
|
|
* K1 = E(K, 0x01010101010101010101010101010101)
|
|
* K3 = E(K, 0x03030303030303030303030303030303)
|
|
* E[0] = 0x00000000000000000000000000000000
|
|
* M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
|
|
* E[1] = (K1, M[1] ^ E[0] ^ K3)
|
|
* Tag = M[1]
|
|
*/
|
|
static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
|
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
|
|
struct nx_sg *in_sg, *out_sg;
|
|
u8 keys[2][AES_BLOCK_SIZE];
|
|
u8 key[32];
|
|
int rc = 0;
|
|
int len;
|
|
|
|
/* Change to ECB mode */
|
|
csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
|
|
memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
|
|
memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
|
|
NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
|
|
|
|
/* K1 and K3 base patterns */
|
|
memset(keys[0], 0x01, sizeof(keys[0]));
|
|
memset(keys[1], 0x03, sizeof(keys[1]));
|
|
|
|
len = sizeof(keys);
|
|
/* Generate K1 and K3 encrypting the patterns */
|
|
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
|
|
nx_ctx->ap->sglen);
|
|
|
|
if (len != sizeof(keys))
|
|
return -EINVAL;
|
|
|
|
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
|
|
nx_ctx->ap->sglen);
|
|
|
|
if (len != sizeof(keys))
|
|
return -EINVAL;
|
|
|
|
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
|
|
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
|
|
|
|
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
|
|
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
|
|
if (rc)
|
|
goto out;
|
|
atomic_inc(&(nx_ctx->stats->aes_ops));
|
|
|
|
/* XOr K3 with the padding for a 0 length message */
|
|
keys[1][0] ^= 0x80;
|
|
|
|
len = sizeof(keys[1]);
|
|
|
|
/* Encrypt the final result */
|
|
memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
|
|
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
|
|
nx_ctx->ap->sglen);
|
|
|
|
if (len != sizeof(keys[1]))
|
|
return -EINVAL;
|
|
|
|
len = AES_BLOCK_SIZE;
|
|
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
|
|
nx_ctx->ap->sglen);
|
|
|
|
if (len != AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
|
|
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
|
|
|
|
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
|
|
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
|
|
if (rc)
|
|
goto out;
|
|
atomic_inc(&(nx_ctx->stats->aes_ops));
|
|
|
|
out:
|
|
/* Restore XCBC mode */
|
|
csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
|
|
memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
|
|
NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm)
|
|
{
|
|
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
|
|
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
|
|
int err;
|
|
|
|
err = nx_crypto_ctx_aes_xcbc_init(tfm);
|
|
if (err)
|
|
return err;
|
|
|
|
nx_ctx_init(nx_ctx, HCOP_FC_AES);
|
|
|
|
NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
|
|
csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nx_xcbc_init(struct shash_desc *desc)
|
|
{
|
|
struct xcbc_state *sctx = shash_desc_ctx(desc);
|
|
|
|
memset(sctx, 0, sizeof *sctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nx_xcbc_update(struct shash_desc *desc,
|
|
const u8 *data,
|
|
unsigned int len)
|
|
{
|
|
struct xcbc_state *sctx = shash_desc_ctx(desc);
|
|
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
|
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
|
|
struct nx_sg *in_sg;
|
|
struct nx_sg *out_sg;
|
|
u32 to_process = 0, leftover, total;
|
|
unsigned int max_sg_len;
|
|
unsigned long irq_flags;
|
|
int rc = 0;
|
|
int data_len;
|
|
|
|
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
|
|
|
|
|
|
total = sctx->count + len;
|
|
|
|
/* 2 cases for total data len:
|
|
* 1: <= AES_BLOCK_SIZE: copy into state, return 0
|
|
* 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
|
|
*/
|
|
if (total <= AES_BLOCK_SIZE) {
|
|
memcpy(sctx->buffer + sctx->count, data, len);
|
|
sctx->count += len;
|
|
goto out;
|
|
}
|
|
|
|
in_sg = nx_ctx->in_sg;
|
|
max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
|
|
nx_ctx->ap->sglen);
|
|
max_sg_len = min_t(u64, max_sg_len,
|
|
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
|
|
|
|
data_len = AES_BLOCK_SIZE;
|
|
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
|
|
&len, nx_ctx->ap->sglen);
|
|
|
|
if (data_len != AES_BLOCK_SIZE) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
|
|
|
|
do {
|
|
to_process = total - to_process;
|
|
to_process = to_process & ~(AES_BLOCK_SIZE - 1);
|
|
|
|
leftover = total - to_process;
|
|
|
|
/* the hardware will not accept a 0 byte operation for this
|
|
* algorithm and the operation MUST be finalized to be correct.
|
|
* So if we happen to get an update that falls on a block sized
|
|
* boundary, we must save off the last block to finalize with
|
|
* later. */
|
|
if (!leftover) {
|
|
to_process -= AES_BLOCK_SIZE;
|
|
leftover = AES_BLOCK_SIZE;
|
|
}
|
|
|
|
if (sctx->count) {
|
|
data_len = sctx->count;
|
|
in_sg = nx_build_sg_list(nx_ctx->in_sg,
|
|
(u8 *) sctx->buffer,
|
|
&data_len,
|
|
max_sg_len);
|
|
if (data_len != sctx->count) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
data_len = to_process - sctx->count;
|
|
in_sg = nx_build_sg_list(in_sg,
|
|
(u8 *) data,
|
|
&data_len,
|
|
max_sg_len);
|
|
|
|
if (data_len != to_process - sctx->count) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
|
|
sizeof(struct nx_sg);
|
|
|
|
/* we've hit the nx chip previously and we're updating again,
|
|
* so copy over the partial digest */
|
|
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
|
|
memcpy(csbcpb->cpb.aes_xcbc.cv,
|
|
csbcpb->cpb.aes_xcbc.out_cv_mac,
|
|
AES_BLOCK_SIZE);
|
|
}
|
|
|
|
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
|
|
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
|
|
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
|
|
if (rc)
|
|
goto out;
|
|
|
|
atomic_inc(&(nx_ctx->stats->aes_ops));
|
|
|
|
/* everything after the first update is continuation */
|
|
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
|
|
|
total -= to_process;
|
|
data += to_process - sctx->count;
|
|
sctx->count = 0;
|
|
in_sg = nx_ctx->in_sg;
|
|
} while (leftover > AES_BLOCK_SIZE);
|
|
|
|
/* copy the leftover back into the state struct */
|
|
memcpy(sctx->buffer, data, leftover);
|
|
sctx->count = leftover;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
|
|
return rc;
|
|
}
|
|
|
|
static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct xcbc_state *sctx = shash_desc_ctx(desc);
|
|
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
|
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
|
|
struct nx_sg *in_sg, *out_sg;
|
|
unsigned long irq_flags;
|
|
int rc = 0;
|
|
int len;
|
|
|
|
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
|
|
|
|
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
|
|
/* we've hit the nx chip previously, now we're finalizing,
|
|
* so copy over the partial digest */
|
|
memcpy(csbcpb->cpb.aes_xcbc.cv,
|
|
csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
|
|
} else if (sctx->count == 0) {
|
|
/*
|
|
* we've never seen an update, so this is a 0 byte op. The
|
|
* hardware cannot handle a 0 byte op, so just ECB to
|
|
* generate the hash.
|
|
*/
|
|
rc = nx_xcbc_empty(desc, out);
|
|
goto out;
|
|
}
|
|
|
|
/* final is represented by continuing the operation and indicating that
|
|
* this is not an intermediate operation */
|
|
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
|
|
|
|
len = sctx->count;
|
|
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
|
|
&len, nx_ctx->ap->sglen);
|
|
|
|
if (len != sctx->count) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
len = AES_BLOCK_SIZE;
|
|
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
|
|
nx_ctx->ap->sglen);
|
|
|
|
if (len != AES_BLOCK_SIZE) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
|
|
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
|
|
|
|
if (!nx_ctx->op.outlen) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
|
|
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
|
|
if (rc)
|
|
goto out;
|
|
|
|
atomic_inc(&(nx_ctx->stats->aes_ops));
|
|
|
|
memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
|
|
out:
|
|
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
|
|
return rc;
|
|
}
|
|
|
|
struct shash_alg nx_shash_aes_xcbc_alg = {
|
|
.digestsize = AES_BLOCK_SIZE,
|
|
.init = nx_xcbc_init,
|
|
.update = nx_xcbc_update,
|
|
.final = nx_xcbc_final,
|
|
.setkey = nx_xcbc_set_key,
|
|
.descsize = sizeof(struct xcbc_state),
|
|
.statesize = sizeof(struct xcbc_state),
|
|
.base = {
|
|
.cra_name = "xcbc(aes)",
|
|
.cra_driver_name = "xcbc-aes-nx",
|
|
.cra_priority = 300,
|
|
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
|
|
.cra_init = nx_crypto_ctx_aes_xcbc_init2,
|
|
.cra_exit = nx_crypto_ctx_exit,
|
|
}
|
|
};
|