linux/arch/microblaze/kernel/timer.c
Viresh Kumar 9797529d89 microblaze/timer: Migrate to new 'set-state' interface
Migrate microblaze driver to the new 'set-state' interface provided by
clockevents core, the earlier 'set-mode' interface is marked obsolete
now.

This also enables us to implement callbacks for new states of clockevent
devices, for example: ONESHOT_STOPPED.

We weren't doing anything in ->set_mode(RESUME or ONESHOT) and so
tick_resume() set_state_oneshot() aren't implemented.

Cc: Michal Simek <monstr@monstr.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2015-08-10 11:41:00 +02:00

312 lines
7.3 KiB
C

/*
* Copyright (C) 2007-2013 Michal Simek <monstr@monstr.eu>
* Copyright (C) 2012-2013 Xilinx, Inc.
* Copyright (C) 2007-2009 PetaLogix
* Copyright (C) 2006 Atmark Techno, Inc.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/sched_clock.h>
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/timecounter.h>
#include <asm/cpuinfo.h>
static void __iomem *timer_baseaddr;
static unsigned int freq_div_hz;
static unsigned int timer_clock_freq;
#define TCSR0 (0x00)
#define TLR0 (0x04)
#define TCR0 (0x08)
#define TCSR1 (0x10)
#define TLR1 (0x14)
#define TCR1 (0x18)
#define TCSR_MDT (1<<0)
#define TCSR_UDT (1<<1)
#define TCSR_GENT (1<<2)
#define TCSR_CAPT (1<<3)
#define TCSR_ARHT (1<<4)
#define TCSR_LOAD (1<<5)
#define TCSR_ENIT (1<<6)
#define TCSR_ENT (1<<7)
#define TCSR_TINT (1<<8)
#define TCSR_PWMA (1<<9)
#define TCSR_ENALL (1<<10)
static unsigned int (*read_fn)(void __iomem *);
static void (*write_fn)(u32, void __iomem *);
static void timer_write32(u32 val, void __iomem *addr)
{
iowrite32(val, addr);
}
static unsigned int timer_read32(void __iomem *addr)
{
return ioread32(addr);
}
static void timer_write32_be(u32 val, void __iomem *addr)
{
iowrite32be(val, addr);
}
static unsigned int timer_read32_be(void __iomem *addr)
{
return ioread32be(addr);
}
static inline void xilinx_timer0_stop(void)
{
write_fn(read_fn(timer_baseaddr + TCSR0) & ~TCSR_ENT,
timer_baseaddr + TCSR0);
}
static inline void xilinx_timer0_start_periodic(unsigned long load_val)
{
if (!load_val)
load_val = 1;
/* loading value to timer reg */
write_fn(load_val, timer_baseaddr + TLR0);
/* load the initial value */
write_fn(TCSR_LOAD, timer_baseaddr + TCSR0);
/* see timer data sheet for detail
* !ENALL - don't enable 'em all
* !PWMA - disable pwm
* TINT - clear interrupt status
* ENT- enable timer itself
* ENIT - enable interrupt
* !LOAD - clear the bit to let go
* ARHT - auto reload
* !CAPT - no external trigger
* !GENT - no external signal
* UDT - set the timer as down counter
* !MDT0 - generate mode
*/
write_fn(TCSR_TINT|TCSR_ENIT|TCSR_ENT|TCSR_ARHT|TCSR_UDT,
timer_baseaddr + TCSR0);
}
static inline void xilinx_timer0_start_oneshot(unsigned long load_val)
{
if (!load_val)
load_val = 1;
/* loading value to timer reg */
write_fn(load_val, timer_baseaddr + TLR0);
/* load the initial value */
write_fn(TCSR_LOAD, timer_baseaddr + TCSR0);
write_fn(TCSR_TINT|TCSR_ENIT|TCSR_ENT|TCSR_ARHT|TCSR_UDT,
timer_baseaddr + TCSR0);
}
static int xilinx_timer_set_next_event(unsigned long delta,
struct clock_event_device *dev)
{
pr_debug("%s: next event, delta %x\n", __func__, (u32)delta);
xilinx_timer0_start_oneshot(delta);
return 0;
}
static int xilinx_timer_shutdown(struct clock_event_device *evt)
{
pr_info("%s\n", __func__);
xilinx_timer0_stop();
return 0;
}
static int xilinx_timer_set_periodic(struct clock_event_device *evt)
{
pr_info("%s\n", __func__);
xilinx_timer0_start_periodic(freq_div_hz);
return 0;
}
static struct clock_event_device clockevent_xilinx_timer = {
.name = "xilinx_clockevent",
.features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_PERIODIC,
.shift = 8,
.rating = 300,
.set_next_event = xilinx_timer_set_next_event,
.set_state_shutdown = xilinx_timer_shutdown,
.set_state_periodic = xilinx_timer_set_periodic,
};
static inline void timer_ack(void)
{
write_fn(read_fn(timer_baseaddr + TCSR0), timer_baseaddr + TCSR0);
}
static irqreturn_t timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = &clockevent_xilinx_timer;
#ifdef CONFIG_HEART_BEAT
microblaze_heartbeat();
#endif
timer_ack();
evt->event_handler(evt);
return IRQ_HANDLED;
}
static struct irqaction timer_irqaction = {
.handler = timer_interrupt,
.flags = IRQF_TIMER,
.name = "timer",
.dev_id = &clockevent_xilinx_timer,
};
static __init void xilinx_clockevent_init(void)
{
clockevent_xilinx_timer.mult =
div_sc(timer_clock_freq, NSEC_PER_SEC,
clockevent_xilinx_timer.shift);
clockevent_xilinx_timer.max_delta_ns =
clockevent_delta2ns((u32)~0, &clockevent_xilinx_timer);
clockevent_xilinx_timer.min_delta_ns =
clockevent_delta2ns(1, &clockevent_xilinx_timer);
clockevent_xilinx_timer.cpumask = cpumask_of(0);
clockevents_register_device(&clockevent_xilinx_timer);
}
static u64 xilinx_clock_read(void)
{
return read_fn(timer_baseaddr + TCR1);
}
static cycle_t xilinx_read(struct clocksource *cs)
{
/* reading actual value of timer 1 */
return (cycle_t)xilinx_clock_read();
}
static struct timecounter xilinx_tc = {
.cc = NULL,
};
static cycle_t xilinx_cc_read(const struct cyclecounter *cc)
{
return xilinx_read(NULL);
}
static struct cyclecounter xilinx_cc = {
.read = xilinx_cc_read,
.mask = CLOCKSOURCE_MASK(32),
.shift = 8,
};
static int __init init_xilinx_timecounter(void)
{
xilinx_cc.mult = div_sc(timer_clock_freq, NSEC_PER_SEC,
xilinx_cc.shift);
timecounter_init(&xilinx_tc, &xilinx_cc, sched_clock());
return 0;
}
static struct clocksource clocksource_microblaze = {
.name = "xilinx_clocksource",
.rating = 300,
.read = xilinx_read,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static int __init xilinx_clocksource_init(void)
{
if (clocksource_register_hz(&clocksource_microblaze, timer_clock_freq))
panic("failed to register clocksource");
/* stop timer1 */
write_fn(read_fn(timer_baseaddr + TCSR1) & ~TCSR_ENT,
timer_baseaddr + TCSR1);
/* start timer1 - up counting without interrupt */
write_fn(TCSR_TINT|TCSR_ENT|TCSR_ARHT, timer_baseaddr + TCSR1);
/* register timecounter - for ftrace support */
init_xilinx_timecounter();
return 0;
}
static void __init xilinx_timer_init(struct device_node *timer)
{
struct clk *clk;
static int initialized;
u32 irq;
u32 timer_num = 1;
if (initialized)
return;
initialized = 1;
timer_baseaddr = of_iomap(timer, 0);
if (!timer_baseaddr) {
pr_err("ERROR: invalid timer base address\n");
BUG();
}
write_fn = timer_write32;
read_fn = timer_read32;
write_fn(TCSR_MDT, timer_baseaddr + TCSR0);
if (!(read_fn(timer_baseaddr + TCSR0) & TCSR_MDT)) {
write_fn = timer_write32_be;
read_fn = timer_read32_be;
}
irq = irq_of_parse_and_map(timer, 0);
of_property_read_u32(timer, "xlnx,one-timer-only", &timer_num);
if (timer_num) {
pr_emerg("Please enable two timers in HW\n");
BUG();
}
pr_info("%s: irq=%d\n", timer->full_name, irq);
clk = of_clk_get(timer, 0);
if (IS_ERR(clk)) {
pr_err("ERROR: timer CCF input clock not found\n");
/* If there is clock-frequency property than use it */
of_property_read_u32(timer, "clock-frequency",
&timer_clock_freq);
} else {
timer_clock_freq = clk_get_rate(clk);
}
if (!timer_clock_freq) {
pr_err("ERROR: Using CPU clock frequency\n");
timer_clock_freq = cpuinfo.cpu_clock_freq;
}
freq_div_hz = timer_clock_freq / HZ;
setup_irq(irq, &timer_irqaction);
#ifdef CONFIG_HEART_BEAT
microblaze_setup_heartbeat();
#endif
xilinx_clocksource_init();
xilinx_clockevent_init();
sched_clock_register(xilinx_clock_read, 32, timer_clock_freq);
}
CLOCKSOURCE_OF_DECLARE(xilinx_timer, "xlnx,xps-timer-1.00.a",
xilinx_timer_init);