mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-30 07:34:12 +08:00
f008b1d6e1
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAmI1HOwACgkQ+7dXa6fL C2u9mA/+LUdXHqlvET/PAtFTg75bUPeOFGLnuDnYl1Ng2FCKMSodAohpbVtENxsK E/gTVS7uiVZFQgC+YmNA00z6eIQkAaDVyvKyEcUbKREBbUgONfJ/HLeaK/NvVKxx TY5gx/POdG6yHRQXL6JGBqSJUB8bZrGKwnJm8ebzeKOji9n7GSJBYiMlYBA7EAhs Aut/P7Y39ISHLw3y+y5czBeRoubljmTyznbP20xUZEzrRwhTpNwpJVzBGUZU635T 93Sqcp//0U5LIdn6Pg6DUGHBMBTNDNJChb21ZoBusF/HHswXsOOnf/mcRUBSJUTI M1WSpNLk8PRBgajMdIymQpGU1sCZZzJ3krrSA3RcXdN6GPHwZg8kKjoroHsLDL6l igPbDSMJ5wfiwA2A2gXbY1CkAl3ik5ccb7ZqhTwS0WBk0vOnHmAsE9cs/bBo7Xii GTiWXEFOgtJiXANPMS2P9DiOS3ZQNf+wxotCYdkGPOXuX9wnIo1Kmy8XfujQ1bXf pJsEZKfeyROKrzyKWgqLI64/Kg5xNueoFQZfDpOlZYzF1uDstynADPUt0eQD706q jcuKaXLN3rn5gSPun5mWOYbRtXVgOLdFL/7zptMVJwFKBFguQENhjG4UMNZcjkVA 3Mr0kGocsgoCSk1oDBkFlrw1wIsXxWbkRBL1Pww6kovivuGUwoo= =j0yx -----END PGP SIGNATURE----- Merge tag 'netfs-prep-20220318' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull netfs updates from David Howells: "Netfs prep for write helpers. Having had a go at implementing write helpers and content encryption support in netfslib, it seems that the netfs_read_{,sub}request structs and the equivalent write request structs were almost the same and so should be merged, thereby requiring only one set of alloc/get/put functions and a common set of tracepoints. Merging the structs also has the advantage that if a bounce buffer is added to the request struct, a read operation can be performed to fill the bounce buffer, the contents of the buffer can be modified and then a write operation can be performed on it to send the data wherever it needs to go using the same request structure all the way through. The I/O handlers would then transparently perform any required crypto. This should make it easier to perform RMW cycles if needed. The potentially common functions and structs, however, by their names all proclaim themselves to be associated with the read side of things. The bulk of these changes alter this in the following ways: - Rename struct netfs_read_{,sub}request to netfs_io_{,sub}request. - Rename some enums, members and flags to make them more appropriate. - Adjust some comments to match. - Drop "read"/"rreq" from the names of common functions. For instance, netfs_get_read_request() becomes netfs_get_request(). - The ->init_rreq() and ->issue_op() methods become ->init_request() and ->issue_read(). I've kept the latter as a read-specific function and in another branch added an ->issue_write() method. The driver source is then reorganised into a number of files: fs/netfs/buffered_read.c Create read reqs to the pagecache fs/netfs/io.c Dispatchers for read and write reqs fs/netfs/main.c Some general miscellaneous bits fs/netfs/objects.c Alloc, get and put functions fs/netfs/stats.c Optional procfs statistics. and future development can be fitted into this scheme, e.g.: fs/netfs/buffered_write.c Modify the pagecache fs/netfs/buffered_flush.c Writeback from the pagecache fs/netfs/direct_read.c DIO read support fs/netfs/direct_write.c DIO write support fs/netfs/unbuffered_write.c Write modifications directly back Beyond the above changes, there are also some changes that affect how things work: - Make fscache_end_operation() generally available. - In the netfs tracing header, generate enums from the symbol -> string mapping tables rather than manually coding them. - Add a struct for filesystems that uses netfslib to put into their inode wrapper structs to hold extra state that netfslib is interested in, such as the fscache cookie. This allows netfslib functions to be set in filesystem operation tables and jumped to directly without having to have a filesystem wrapper. - Add a member to the struct added above to track the remote inode length as that may differ if local modifications are buffered. We may need to supply an appropriate EOF pointer when storing data (in AFS for example). - Pass extra information to netfs_alloc_request() so that the ->init_request() hook can access it and retain information to indicate the origin of the operation. - Make the ->init_request() hook return an error, thereby allowing a filesystem that isn't allowed to cache an inode (ceph or cifs, for example) to skip readahead. - Switch to using refcount_t for subrequests and add tracepoints to log refcount changes for the request and subrequest structs. - Add a function to consolidate dispatching a read request. Similar code is used in three places and another couple are likely to be added in the future" Link: https://lore.kernel.org/all/2639515.1648483225@warthog.procyon.org.uk/ * tag 'netfs-prep-20220318' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: afs: Maintain netfs_i_context::remote_i_size netfs: Keep track of the actual remote file size netfs: Split some core bits out into their own file netfs: Split fs/netfs/read_helper.c netfs: Rename read_helper.c to io.c netfs: Prepare to split read_helper.c netfs: Add a function to consolidate beginning a read netfs: Add a netfs inode context ceph: Make ceph_init_request() check caps on readahead netfs: Change ->init_request() to return an error code netfs: Refactor arguments for netfs_alloc_read_request netfs: Adjust the netfs_failure tracepoint to indicate non-subreq lines netfs: Trace refcounting on the netfs_io_subrequest struct netfs: Trace refcounting on the netfs_io_request struct netfs: Adjust the netfs_rreq tracepoint slightly netfs: Split netfs_io_* object handling out netfs: Finish off rename of netfs_read_request to netfs_io_request netfs: Rename netfs_read_*request to netfs_io_*request netfs: Generate enums from trace symbol mapping lists fscache: export fscache_end_operation()
1040 lines
25 KiB
C
1040 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* handling of writes to regular files and writing back to the server
|
|
*
|
|
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/netfs.h>
|
|
#include "internal.h"
|
|
|
|
static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len,
|
|
loff_t i_size, bool caching);
|
|
|
|
#ifdef CONFIG_AFS_FSCACHE
|
|
/*
|
|
* Mark a page as having been made dirty and thus needing writeback. We also
|
|
* need to pin the cache object to write back to.
|
|
*/
|
|
bool afs_dirty_folio(struct address_space *mapping, struct folio *folio)
|
|
{
|
|
return fscache_dirty_folio(mapping, folio,
|
|
afs_vnode_cache(AFS_FS_I(mapping->host)));
|
|
}
|
|
static void afs_folio_start_fscache(bool caching, struct folio *folio)
|
|
{
|
|
if (caching)
|
|
folio_start_fscache(folio);
|
|
}
|
|
#else
|
|
static void afs_folio_start_fscache(bool caching, struct folio *folio)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* prepare to perform part of a write to a page
|
|
*/
|
|
int afs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **_page, void **fsdata)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
|
|
struct folio *folio;
|
|
unsigned long priv;
|
|
unsigned f, from;
|
|
unsigned t, to;
|
|
pgoff_t index;
|
|
int ret;
|
|
|
|
_enter("{%llx:%llu},%llx,%x",
|
|
vnode->fid.vid, vnode->fid.vnode, pos, len);
|
|
|
|
/* Prefetch area to be written into the cache if we're caching this
|
|
* file. We need to do this before we get a lock on the page in case
|
|
* there's more than one writer competing for the same cache block.
|
|
*/
|
|
ret = netfs_write_begin(file, mapping, pos, len, flags, &folio, fsdata);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
index = folio_index(folio);
|
|
from = pos - index * PAGE_SIZE;
|
|
to = from + len;
|
|
|
|
try_again:
|
|
/* See if this page is already partially written in a way that we can
|
|
* merge the new write with.
|
|
*/
|
|
if (folio_test_private(folio)) {
|
|
priv = (unsigned long)folio_get_private(folio);
|
|
f = afs_folio_dirty_from(folio, priv);
|
|
t = afs_folio_dirty_to(folio, priv);
|
|
ASSERTCMP(f, <=, t);
|
|
|
|
if (folio_test_writeback(folio)) {
|
|
trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio);
|
|
goto flush_conflicting_write;
|
|
}
|
|
/* If the file is being filled locally, allow inter-write
|
|
* spaces to be merged into writes. If it's not, only write
|
|
* back what the user gives us.
|
|
*/
|
|
if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
|
|
(to < f || from > t))
|
|
goto flush_conflicting_write;
|
|
}
|
|
|
|
*_page = &folio->page;
|
|
_leave(" = 0");
|
|
return 0;
|
|
|
|
/* The previous write and this write aren't adjacent or overlapping, so
|
|
* flush the page out.
|
|
*/
|
|
flush_conflicting_write:
|
|
_debug("flush conflict");
|
|
ret = folio_write_one(folio);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = folio_lock_killable(folio);
|
|
if (ret < 0)
|
|
goto error;
|
|
goto try_again;
|
|
|
|
error:
|
|
folio_put(folio);
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* finalise part of a write to a page
|
|
*/
|
|
int afs_write_end(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *subpage, void *fsdata)
|
|
{
|
|
struct folio *folio = page_folio(subpage);
|
|
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
|
|
unsigned long priv;
|
|
unsigned int f, from = offset_in_folio(folio, pos);
|
|
unsigned int t, to = from + copied;
|
|
loff_t i_size, write_end_pos;
|
|
|
|
_enter("{%llx:%llu},{%lx}",
|
|
vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
|
|
|
|
if (!folio_test_uptodate(folio)) {
|
|
if (copied < len) {
|
|
copied = 0;
|
|
goto out;
|
|
}
|
|
|
|
folio_mark_uptodate(folio);
|
|
}
|
|
|
|
if (copied == 0)
|
|
goto out;
|
|
|
|
write_end_pos = pos + copied;
|
|
|
|
i_size = i_size_read(&vnode->vfs_inode);
|
|
if (write_end_pos > i_size) {
|
|
write_seqlock(&vnode->cb_lock);
|
|
i_size = i_size_read(&vnode->vfs_inode);
|
|
if (write_end_pos > i_size)
|
|
afs_set_i_size(vnode, write_end_pos);
|
|
write_sequnlock(&vnode->cb_lock);
|
|
fscache_update_cookie(afs_vnode_cache(vnode), NULL, &write_end_pos);
|
|
}
|
|
|
|
if (folio_test_private(folio)) {
|
|
priv = (unsigned long)folio_get_private(folio);
|
|
f = afs_folio_dirty_from(folio, priv);
|
|
t = afs_folio_dirty_to(folio, priv);
|
|
if (from < f)
|
|
f = from;
|
|
if (to > t)
|
|
t = to;
|
|
priv = afs_folio_dirty(folio, f, t);
|
|
folio_change_private(folio, (void *)priv);
|
|
trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio);
|
|
} else {
|
|
priv = afs_folio_dirty(folio, from, to);
|
|
folio_attach_private(folio, (void *)priv);
|
|
trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio);
|
|
}
|
|
|
|
if (folio_mark_dirty(folio))
|
|
_debug("dirtied %lx", folio_index(folio));
|
|
|
|
out:
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
return copied;
|
|
}
|
|
|
|
/*
|
|
* kill all the pages in the given range
|
|
*/
|
|
static void afs_kill_pages(struct address_space *mapping,
|
|
loff_t start, loff_t len)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
struct folio *folio;
|
|
pgoff_t index = start / PAGE_SIZE;
|
|
pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
|
|
|
|
_enter("{%llx:%llu},%llx @%llx",
|
|
vnode->fid.vid, vnode->fid.vnode, len, start);
|
|
|
|
do {
|
|
_debug("kill %lx (to %lx)", index, last);
|
|
|
|
folio = filemap_get_folio(mapping, index);
|
|
if (!folio) {
|
|
next = index + 1;
|
|
continue;
|
|
}
|
|
|
|
next = folio_next_index(folio);
|
|
|
|
folio_clear_uptodate(folio);
|
|
folio_end_writeback(folio);
|
|
folio_lock(folio);
|
|
generic_error_remove_page(mapping, &folio->page);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
|
|
} while (index = next, index <= last);
|
|
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* Redirty all the pages in a given range.
|
|
*/
|
|
static void afs_redirty_pages(struct writeback_control *wbc,
|
|
struct address_space *mapping,
|
|
loff_t start, loff_t len)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
struct folio *folio;
|
|
pgoff_t index = start / PAGE_SIZE;
|
|
pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
|
|
|
|
_enter("{%llx:%llu},%llx @%llx",
|
|
vnode->fid.vid, vnode->fid.vnode, len, start);
|
|
|
|
do {
|
|
_debug("redirty %llx @%llx", len, start);
|
|
|
|
folio = filemap_get_folio(mapping, index);
|
|
if (!folio) {
|
|
next = index + 1;
|
|
continue;
|
|
}
|
|
|
|
next = index + folio_nr_pages(folio);
|
|
folio_redirty_for_writepage(wbc, folio);
|
|
folio_end_writeback(folio);
|
|
folio_put(folio);
|
|
} while (index = next, index <= last);
|
|
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* completion of write to server
|
|
*/
|
|
static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
|
|
{
|
|
struct address_space *mapping = vnode->vfs_inode.i_mapping;
|
|
struct folio *folio;
|
|
pgoff_t end;
|
|
|
|
XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
|
|
|
|
_enter("{%llx:%llu},{%x @%llx}",
|
|
vnode->fid.vid, vnode->fid.vnode, len, start);
|
|
|
|
rcu_read_lock();
|
|
|
|
end = (start + len - 1) / PAGE_SIZE;
|
|
xas_for_each(&xas, folio, end) {
|
|
if (!folio_test_writeback(folio)) {
|
|
kdebug("bad %x @%llx page %lx %lx",
|
|
len, start, folio_index(folio), end);
|
|
ASSERT(folio_test_writeback(folio));
|
|
}
|
|
|
|
trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio);
|
|
folio_detach_private(folio);
|
|
folio_end_writeback(folio);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
afs_prune_wb_keys(vnode);
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* Find a key to use for the writeback. We cached the keys used to author the
|
|
* writes on the vnode. *_wbk will contain the last writeback key used or NULL
|
|
* and we need to start from there if it's set.
|
|
*/
|
|
static int afs_get_writeback_key(struct afs_vnode *vnode,
|
|
struct afs_wb_key **_wbk)
|
|
{
|
|
struct afs_wb_key *wbk = NULL;
|
|
struct list_head *p;
|
|
int ret = -ENOKEY, ret2;
|
|
|
|
spin_lock(&vnode->wb_lock);
|
|
if (*_wbk)
|
|
p = (*_wbk)->vnode_link.next;
|
|
else
|
|
p = vnode->wb_keys.next;
|
|
|
|
while (p != &vnode->wb_keys) {
|
|
wbk = list_entry(p, struct afs_wb_key, vnode_link);
|
|
_debug("wbk %u", key_serial(wbk->key));
|
|
ret2 = key_validate(wbk->key);
|
|
if (ret2 == 0) {
|
|
refcount_inc(&wbk->usage);
|
|
_debug("USE WB KEY %u", key_serial(wbk->key));
|
|
break;
|
|
}
|
|
|
|
wbk = NULL;
|
|
if (ret == -ENOKEY)
|
|
ret = ret2;
|
|
p = p->next;
|
|
}
|
|
|
|
spin_unlock(&vnode->wb_lock);
|
|
if (*_wbk)
|
|
afs_put_wb_key(*_wbk);
|
|
*_wbk = wbk;
|
|
return 0;
|
|
}
|
|
|
|
static void afs_store_data_success(struct afs_operation *op)
|
|
{
|
|
struct afs_vnode *vnode = op->file[0].vnode;
|
|
|
|
op->ctime = op->file[0].scb.status.mtime_client;
|
|
afs_vnode_commit_status(op, &op->file[0]);
|
|
if (op->error == 0) {
|
|
if (!op->store.laundering)
|
|
afs_pages_written_back(vnode, op->store.pos, op->store.size);
|
|
afs_stat_v(vnode, n_stores);
|
|
atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
|
|
}
|
|
}
|
|
|
|
static const struct afs_operation_ops afs_store_data_operation = {
|
|
.issue_afs_rpc = afs_fs_store_data,
|
|
.issue_yfs_rpc = yfs_fs_store_data,
|
|
.success = afs_store_data_success,
|
|
};
|
|
|
|
/*
|
|
* write to a file
|
|
*/
|
|
static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
|
|
bool laundering)
|
|
{
|
|
struct netfs_i_context *ictx = &vnode->netfs_ctx;
|
|
struct afs_operation *op;
|
|
struct afs_wb_key *wbk = NULL;
|
|
loff_t size = iov_iter_count(iter);
|
|
int ret = -ENOKEY;
|
|
|
|
_enter("%s{%llx:%llu.%u},%llx,%llx",
|
|
vnode->volume->name,
|
|
vnode->fid.vid,
|
|
vnode->fid.vnode,
|
|
vnode->fid.unique,
|
|
size, pos);
|
|
|
|
ret = afs_get_writeback_key(vnode, &wbk);
|
|
if (ret) {
|
|
_leave(" = %d [no keys]", ret);
|
|
return ret;
|
|
}
|
|
|
|
op = afs_alloc_operation(wbk->key, vnode->volume);
|
|
if (IS_ERR(op)) {
|
|
afs_put_wb_key(wbk);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
afs_op_set_vnode(op, 0, vnode);
|
|
op->file[0].dv_delta = 1;
|
|
op->file[0].modification = true;
|
|
op->store.write_iter = iter;
|
|
op->store.pos = pos;
|
|
op->store.size = size;
|
|
op->store.i_size = max(pos + size, ictx->remote_i_size);
|
|
op->store.laundering = laundering;
|
|
op->mtime = vnode->vfs_inode.i_mtime;
|
|
op->flags |= AFS_OPERATION_UNINTR;
|
|
op->ops = &afs_store_data_operation;
|
|
|
|
try_next_key:
|
|
afs_begin_vnode_operation(op);
|
|
afs_wait_for_operation(op);
|
|
|
|
switch (op->error) {
|
|
case -EACCES:
|
|
case -EPERM:
|
|
case -ENOKEY:
|
|
case -EKEYEXPIRED:
|
|
case -EKEYREJECTED:
|
|
case -EKEYREVOKED:
|
|
_debug("next");
|
|
|
|
ret = afs_get_writeback_key(vnode, &wbk);
|
|
if (ret == 0) {
|
|
key_put(op->key);
|
|
op->key = key_get(wbk->key);
|
|
goto try_next_key;
|
|
}
|
|
break;
|
|
}
|
|
|
|
afs_put_wb_key(wbk);
|
|
_leave(" = %d", op->error);
|
|
return afs_put_operation(op);
|
|
}
|
|
|
|
/*
|
|
* Extend the region to be written back to include subsequent contiguously
|
|
* dirty pages if possible, but don't sleep while doing so.
|
|
*
|
|
* If this page holds new content, then we can include filler zeros in the
|
|
* writeback.
|
|
*/
|
|
static void afs_extend_writeback(struct address_space *mapping,
|
|
struct afs_vnode *vnode,
|
|
long *_count,
|
|
loff_t start,
|
|
loff_t max_len,
|
|
bool new_content,
|
|
bool caching,
|
|
unsigned int *_len)
|
|
{
|
|
struct pagevec pvec;
|
|
struct folio *folio;
|
|
unsigned long priv;
|
|
unsigned int psize, filler = 0;
|
|
unsigned int f, t;
|
|
loff_t len = *_len;
|
|
pgoff_t index = (start + len) / PAGE_SIZE;
|
|
bool stop = true;
|
|
unsigned int i;
|
|
|
|
XA_STATE(xas, &mapping->i_pages, index);
|
|
pagevec_init(&pvec);
|
|
|
|
do {
|
|
/* Firstly, we gather up a batch of contiguous dirty pages
|
|
* under the RCU read lock - but we can't clear the dirty flags
|
|
* there if any of those pages are mapped.
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
xas_for_each(&xas, folio, ULONG_MAX) {
|
|
stop = true;
|
|
if (xas_retry(&xas, folio))
|
|
continue;
|
|
if (xa_is_value(folio))
|
|
break;
|
|
if (folio_index(folio) != index)
|
|
break;
|
|
|
|
if (!folio_try_get_rcu(folio)) {
|
|
xas_reset(&xas);
|
|
continue;
|
|
}
|
|
|
|
/* Has the page moved or been split? */
|
|
if (unlikely(folio != xas_reload(&xas))) {
|
|
folio_put(folio);
|
|
break;
|
|
}
|
|
|
|
if (!folio_trylock(folio)) {
|
|
folio_put(folio);
|
|
break;
|
|
}
|
|
if (!folio_test_dirty(folio) ||
|
|
folio_test_writeback(folio) ||
|
|
folio_test_fscache(folio)) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
break;
|
|
}
|
|
|
|
psize = folio_size(folio);
|
|
priv = (unsigned long)folio_get_private(folio);
|
|
f = afs_folio_dirty_from(folio, priv);
|
|
t = afs_folio_dirty_to(folio, priv);
|
|
if (f != 0 && !new_content) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
break;
|
|
}
|
|
|
|
len += filler + t;
|
|
filler = psize - t;
|
|
if (len >= max_len || *_count <= 0)
|
|
stop = true;
|
|
else if (t == psize || new_content)
|
|
stop = false;
|
|
|
|
index += folio_nr_pages(folio);
|
|
if (!pagevec_add(&pvec, &folio->page))
|
|
break;
|
|
if (stop)
|
|
break;
|
|
}
|
|
|
|
if (!stop)
|
|
xas_pause(&xas);
|
|
rcu_read_unlock();
|
|
|
|
/* Now, if we obtained any pages, we can shift them to being
|
|
* writable and mark them for caching.
|
|
*/
|
|
if (!pagevec_count(&pvec))
|
|
break;
|
|
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
folio = page_folio(pvec.pages[i]);
|
|
trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio);
|
|
|
|
if (!folio_clear_dirty_for_io(folio))
|
|
BUG();
|
|
if (folio_start_writeback(folio))
|
|
BUG();
|
|
afs_folio_start_fscache(caching, folio);
|
|
|
|
*_count -= folio_nr_pages(folio);
|
|
folio_unlock(folio);
|
|
}
|
|
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
} while (!stop);
|
|
|
|
*_len = len;
|
|
}
|
|
|
|
/*
|
|
* Synchronously write back the locked page and any subsequent non-locked dirty
|
|
* pages.
|
|
*/
|
|
static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
struct folio *folio,
|
|
loff_t start, loff_t end)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
struct iov_iter iter;
|
|
unsigned long priv;
|
|
unsigned int offset, to, len, max_len;
|
|
loff_t i_size = i_size_read(&vnode->vfs_inode);
|
|
bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
|
|
bool caching = fscache_cookie_enabled(afs_vnode_cache(vnode));
|
|
long count = wbc->nr_to_write;
|
|
int ret;
|
|
|
|
_enter(",%lx,%llx-%llx", folio_index(folio), start, end);
|
|
|
|
if (folio_start_writeback(folio))
|
|
BUG();
|
|
afs_folio_start_fscache(caching, folio);
|
|
|
|
count -= folio_nr_pages(folio);
|
|
|
|
/* Find all consecutive lockable dirty pages that have contiguous
|
|
* written regions, stopping when we find a page that is not
|
|
* immediately lockable, is not dirty or is missing, or we reach the
|
|
* end of the range.
|
|
*/
|
|
priv = (unsigned long)folio_get_private(folio);
|
|
offset = afs_folio_dirty_from(folio, priv);
|
|
to = afs_folio_dirty_to(folio, priv);
|
|
trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio);
|
|
|
|
len = to - offset;
|
|
start += offset;
|
|
if (start < i_size) {
|
|
/* Trim the write to the EOF; the extra data is ignored. Also
|
|
* put an upper limit on the size of a single storedata op.
|
|
*/
|
|
max_len = 65536 * 4096;
|
|
max_len = min_t(unsigned long long, max_len, end - start + 1);
|
|
max_len = min_t(unsigned long long, max_len, i_size - start);
|
|
|
|
if (len < max_len &&
|
|
(to == folio_size(folio) || new_content))
|
|
afs_extend_writeback(mapping, vnode, &count,
|
|
start, max_len, new_content,
|
|
caching, &len);
|
|
len = min_t(loff_t, len, max_len);
|
|
}
|
|
|
|
/* We now have a contiguous set of dirty pages, each with writeback
|
|
* set; the first page is still locked at this point, but all the rest
|
|
* have been unlocked.
|
|
*/
|
|
folio_unlock(folio);
|
|
|
|
if (start < i_size) {
|
|
_debug("write back %x @%llx [%llx]", len, start, i_size);
|
|
|
|
/* Speculatively write to the cache. We have to fix this up
|
|
* later if the store fails.
|
|
*/
|
|
afs_write_to_cache(vnode, start, len, i_size, caching);
|
|
|
|
iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
|
|
ret = afs_store_data(vnode, &iter, start, false);
|
|
} else {
|
|
_debug("write discard %x @%llx [%llx]", len, start, i_size);
|
|
|
|
/* The dirty region was entirely beyond the EOF. */
|
|
fscache_clear_page_bits(afs_vnode_cache(vnode),
|
|
mapping, start, len, caching);
|
|
afs_pages_written_back(vnode, start, len);
|
|
ret = 0;
|
|
}
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
wbc->nr_to_write = count;
|
|
ret = len;
|
|
break;
|
|
|
|
default:
|
|
pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
|
|
fallthrough;
|
|
case -EACCES:
|
|
case -EPERM:
|
|
case -ENOKEY:
|
|
case -EKEYEXPIRED:
|
|
case -EKEYREJECTED:
|
|
case -EKEYREVOKED:
|
|
afs_redirty_pages(wbc, mapping, start, len);
|
|
mapping_set_error(mapping, ret);
|
|
break;
|
|
|
|
case -EDQUOT:
|
|
case -ENOSPC:
|
|
afs_redirty_pages(wbc, mapping, start, len);
|
|
mapping_set_error(mapping, -ENOSPC);
|
|
break;
|
|
|
|
case -EROFS:
|
|
case -EIO:
|
|
case -EREMOTEIO:
|
|
case -EFBIG:
|
|
case -ENOENT:
|
|
case -ENOMEDIUM:
|
|
case -ENXIO:
|
|
trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
|
|
afs_kill_pages(mapping, start, len);
|
|
mapping_set_error(mapping, ret);
|
|
break;
|
|
}
|
|
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* write a page back to the server
|
|
* - the caller locked the page for us
|
|
*/
|
|
int afs_writepage(struct page *subpage, struct writeback_control *wbc)
|
|
{
|
|
struct folio *folio = page_folio(subpage);
|
|
ssize_t ret;
|
|
loff_t start;
|
|
|
|
_enter("{%lx},", folio_index(folio));
|
|
|
|
#ifdef CONFIG_AFS_FSCACHE
|
|
folio_wait_fscache(folio);
|
|
#endif
|
|
|
|
start = folio_index(folio) * PAGE_SIZE;
|
|
ret = afs_write_back_from_locked_folio(folio_mapping(folio), wbc,
|
|
folio, start, LLONG_MAX - start);
|
|
if (ret < 0) {
|
|
_leave(" = %zd", ret);
|
|
return ret;
|
|
}
|
|
|
|
_leave(" = 0");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* write a region of pages back to the server
|
|
*/
|
|
static int afs_writepages_region(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
loff_t start, loff_t end, loff_t *_next)
|
|
{
|
|
struct folio *folio;
|
|
struct page *head_page;
|
|
ssize_t ret;
|
|
int n, skips = 0;
|
|
|
|
_enter("%llx,%llx,", start, end);
|
|
|
|
do {
|
|
pgoff_t index = start / PAGE_SIZE;
|
|
|
|
n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
|
|
PAGECACHE_TAG_DIRTY, 1, &head_page);
|
|
if (!n)
|
|
break;
|
|
|
|
folio = page_folio(head_page);
|
|
start = folio_pos(folio); /* May regress with THPs */
|
|
|
|
_debug("wback %lx", folio_index(folio));
|
|
|
|
/* At this point we hold neither the i_pages lock nor the
|
|
* page lock: the page may be truncated or invalidated
|
|
* (changing page->mapping to NULL), or even swizzled
|
|
* back from swapper_space to tmpfs file mapping
|
|
*/
|
|
if (wbc->sync_mode != WB_SYNC_NONE) {
|
|
ret = folio_lock_killable(folio);
|
|
if (ret < 0) {
|
|
folio_put(folio);
|
|
return ret;
|
|
}
|
|
} else {
|
|
if (!folio_trylock(folio)) {
|
|
folio_put(folio);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (folio_mapping(folio) != mapping ||
|
|
!folio_test_dirty(folio)) {
|
|
start += folio_size(folio);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
continue;
|
|
}
|
|
|
|
if (folio_test_writeback(folio) ||
|
|
folio_test_fscache(folio)) {
|
|
folio_unlock(folio);
|
|
if (wbc->sync_mode != WB_SYNC_NONE) {
|
|
folio_wait_writeback(folio);
|
|
#ifdef CONFIG_AFS_FSCACHE
|
|
folio_wait_fscache(folio);
|
|
#endif
|
|
} else {
|
|
start += folio_size(folio);
|
|
}
|
|
folio_put(folio);
|
|
if (wbc->sync_mode == WB_SYNC_NONE) {
|
|
if (skips >= 5 || need_resched())
|
|
break;
|
|
skips++;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (!folio_clear_dirty_for_io(folio))
|
|
BUG();
|
|
ret = afs_write_back_from_locked_folio(mapping, wbc, folio, start, end);
|
|
folio_put(folio);
|
|
if (ret < 0) {
|
|
_leave(" = %zd", ret);
|
|
return ret;
|
|
}
|
|
|
|
start += ret;
|
|
|
|
cond_resched();
|
|
} while (wbc->nr_to_write > 0);
|
|
|
|
*_next = start;
|
|
_leave(" = 0 [%llx]", *_next);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* write some of the pending data back to the server
|
|
*/
|
|
int afs_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
loff_t start, next;
|
|
int ret;
|
|
|
|
_enter("");
|
|
|
|
/* We have to be careful as we can end up racing with setattr()
|
|
* truncating the pagecache since the caller doesn't take a lock here
|
|
* to prevent it.
|
|
*/
|
|
if (wbc->sync_mode == WB_SYNC_ALL)
|
|
down_read(&vnode->validate_lock);
|
|
else if (!down_read_trylock(&vnode->validate_lock))
|
|
return 0;
|
|
|
|
if (wbc->range_cyclic) {
|
|
start = mapping->writeback_index * PAGE_SIZE;
|
|
ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
|
|
if (ret == 0) {
|
|
mapping->writeback_index = next / PAGE_SIZE;
|
|
if (start > 0 && wbc->nr_to_write > 0) {
|
|
ret = afs_writepages_region(mapping, wbc, 0,
|
|
start, &next);
|
|
if (ret == 0)
|
|
mapping->writeback_index =
|
|
next / PAGE_SIZE;
|
|
}
|
|
}
|
|
} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
|
|
ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
|
|
if (wbc->nr_to_write > 0 && ret == 0)
|
|
mapping->writeback_index = next / PAGE_SIZE;
|
|
} else {
|
|
ret = afs_writepages_region(mapping, wbc,
|
|
wbc->range_start, wbc->range_end, &next);
|
|
}
|
|
|
|
up_read(&vnode->validate_lock);
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* write to an AFS file
|
|
*/
|
|
ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
|
|
struct afs_file *af = iocb->ki_filp->private_data;
|
|
ssize_t result;
|
|
size_t count = iov_iter_count(from);
|
|
|
|
_enter("{%llx:%llu},{%zu},",
|
|
vnode->fid.vid, vnode->fid.vnode, count);
|
|
|
|
if (IS_SWAPFILE(&vnode->vfs_inode)) {
|
|
printk(KERN_INFO
|
|
"AFS: Attempt to write to active swap file!\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
result = afs_validate(vnode, af->key);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
result = generic_file_write_iter(iocb, from);
|
|
|
|
_leave(" = %zd", result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* flush any dirty pages for this process, and check for write errors.
|
|
* - the return status from this call provides a reliable indication of
|
|
* whether any write errors occurred for this process.
|
|
*/
|
|
int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
|
|
struct afs_file *af = file->private_data;
|
|
int ret;
|
|
|
|
_enter("{%llx:%llu},{n=%pD},%d",
|
|
vnode->fid.vid, vnode->fid.vnode, file,
|
|
datasync);
|
|
|
|
ret = afs_validate(vnode, af->key);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return file_write_and_wait_range(file, start, end);
|
|
}
|
|
|
|
/*
|
|
* notification that a previously read-only page is about to become writable
|
|
* - if it returns an error, the caller will deliver a bus error signal
|
|
*/
|
|
vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
|
|
{
|
|
struct folio *folio = page_folio(vmf->page);
|
|
struct file *file = vmf->vma->vm_file;
|
|
struct inode *inode = file_inode(file);
|
|
struct afs_vnode *vnode = AFS_FS_I(inode);
|
|
struct afs_file *af = file->private_data;
|
|
unsigned long priv;
|
|
vm_fault_t ret = VM_FAULT_RETRY;
|
|
|
|
_enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
|
|
|
|
afs_validate(vnode, af->key);
|
|
|
|
sb_start_pagefault(inode->i_sb);
|
|
|
|
/* Wait for the page to be written to the cache before we allow it to
|
|
* be modified. We then assume the entire page will need writing back.
|
|
*/
|
|
#ifdef CONFIG_AFS_FSCACHE
|
|
if (folio_test_fscache(folio) &&
|
|
folio_wait_fscache_killable(folio) < 0)
|
|
goto out;
|
|
#endif
|
|
|
|
if (folio_wait_writeback_killable(folio))
|
|
goto out;
|
|
|
|
if (folio_lock_killable(folio) < 0)
|
|
goto out;
|
|
|
|
/* We mustn't change folio->private until writeback is complete as that
|
|
* details the portion of the page we need to write back and we might
|
|
* need to redirty the page if there's a problem.
|
|
*/
|
|
if (folio_wait_writeback_killable(folio) < 0) {
|
|
folio_unlock(folio);
|
|
goto out;
|
|
}
|
|
|
|
priv = afs_folio_dirty(folio, 0, folio_size(folio));
|
|
priv = afs_folio_dirty_mmapped(priv);
|
|
if (folio_test_private(folio)) {
|
|
folio_change_private(folio, (void *)priv);
|
|
trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio);
|
|
} else {
|
|
folio_attach_private(folio, (void *)priv);
|
|
trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio);
|
|
}
|
|
file_update_time(file);
|
|
|
|
ret = VM_FAULT_LOCKED;
|
|
out:
|
|
sb_end_pagefault(inode->i_sb);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
|
|
*/
|
|
void afs_prune_wb_keys(struct afs_vnode *vnode)
|
|
{
|
|
LIST_HEAD(graveyard);
|
|
struct afs_wb_key *wbk, *tmp;
|
|
|
|
/* Discard unused keys */
|
|
spin_lock(&vnode->wb_lock);
|
|
|
|
if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
|
|
!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
|
|
list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
|
|
if (refcount_read(&wbk->usage) == 1)
|
|
list_move(&wbk->vnode_link, &graveyard);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&vnode->wb_lock);
|
|
|
|
while (!list_empty(&graveyard)) {
|
|
wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
|
|
list_del(&wbk->vnode_link);
|
|
afs_put_wb_key(wbk);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clean up a page during invalidation.
|
|
*/
|
|
int afs_launder_folio(struct folio *folio)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio));
|
|
struct iov_iter iter;
|
|
struct bio_vec bv[1];
|
|
unsigned long priv;
|
|
unsigned int f, t;
|
|
int ret = 0;
|
|
|
|
_enter("{%lx}", folio->index);
|
|
|
|
priv = (unsigned long)folio_get_private(folio);
|
|
if (folio_clear_dirty_for_io(folio)) {
|
|
f = 0;
|
|
t = folio_size(folio);
|
|
if (folio_test_private(folio)) {
|
|
f = afs_folio_dirty_from(folio, priv);
|
|
t = afs_folio_dirty_to(folio, priv);
|
|
}
|
|
|
|
bv[0].bv_page = &folio->page;
|
|
bv[0].bv_offset = f;
|
|
bv[0].bv_len = t - f;
|
|
iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
|
|
|
|
trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio);
|
|
ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true);
|
|
}
|
|
|
|
trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio);
|
|
folio_detach_private(folio);
|
|
folio_wait_fscache(folio);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Deal with the completion of writing the data to the cache.
|
|
*/
|
|
static void afs_write_to_cache_done(void *priv, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct afs_vnode *vnode = priv;
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error) &&
|
|
transferred_or_error != -ENOBUFS)
|
|
afs_invalidate_cache(vnode, 0);
|
|
}
|
|
|
|
/*
|
|
* Save the write to the cache also.
|
|
*/
|
|
static void afs_write_to_cache(struct afs_vnode *vnode,
|
|
loff_t start, size_t len, loff_t i_size,
|
|
bool caching)
|
|
{
|
|
fscache_write_to_cache(afs_vnode_cache(vnode),
|
|
vnode->vfs_inode.i_mapping, start, len, i_size,
|
|
afs_write_to_cache_done, vnode, caching);
|
|
}
|