linux/drivers/iio/adc/ab8500-gpadc.c
Nuno Sá dec7e2c83e iio: adc: ab8500-gpadc: convert to device properties
Make the conversion to firmware agnostic device properties. As part of
the conversion the IIO inkern interface 'of_xlate()' is also converted to
'fwnode_xlate()'. The goal is to completely drop 'of_xlate' and hence OF
dependencies from IIO.

Signed-off-by: Nuno Sá <nuno.sa@analog.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Link: https://lore.kernel.org/r/20220715122903.332535-9-nuno.sa@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2022-08-15 22:29:59 +01:00

1210 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) ST-Ericsson SA 2010
*
* Author: Arun R Murthy <arun.murthy@stericsson.com>
* Author: Daniel Willerud <daniel.willerud@stericsson.com>
* Author: Johan Palsson <johan.palsson@stericsson.com>
* Author: M'boumba Cedric Madianga
* Author: Linus Walleij <linus.walleij@linaro.org>
*
* AB8500 General Purpose ADC driver. The AB8500 uses reference voltages:
* VinVADC, and VADC relative to GND to do its job. It monitors main and backup
* battery voltages, AC (mains) voltage, USB cable voltage, as well as voltages
* representing the temperature of the chip die and battery, accessory
* detection by resistance measurements using relative voltages and GSM burst
* information.
*
* Some of the voltages are measured on external pins on the IC, such as
* battery temperature or "ADC aux" 1 and 2. Other voltages are internal rails
* from other parts of the ASIC such as main charger voltage, main and battery
* backup voltage or USB VBUS voltage. For this reason drivers for other
* parts of the system are required to obtain handles to the ADC to do work
* for them and the IIO driver provides arbitration among these consumers.
*/
#include <linux/init.h>
#include <linux/bits.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/platform_device.h>
#include <linux/completion.h>
#include <linux/regulator/consumer.h>
#include <linux/random.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/mfd/abx500.h>
#include <linux/mfd/abx500/ab8500.h>
/* GPADC register offsets and bit definitions */
#define AB8500_GPADC_CTRL1_REG 0x00
/* GPADC control register 1 bits */
#define AB8500_GPADC_CTRL1_DISABLE 0x00
#define AB8500_GPADC_CTRL1_ENABLE BIT(0)
#define AB8500_GPADC_CTRL1_TRIG_ENA BIT(1)
#define AB8500_GPADC_CTRL1_START_SW_CONV BIT(2)
#define AB8500_GPADC_CTRL1_BTEMP_PULL_UP BIT(3)
/* 0 = use rising edge, 1 = use falling edge */
#define AB8500_GPADC_CTRL1_TRIG_EDGE BIT(4)
/* 0 = use VTVOUT, 1 = use VRTC as pull-up supply for battery temp NTC */
#define AB8500_GPADC_CTRL1_PUPSUPSEL BIT(5)
#define AB8500_GPADC_CTRL1_BUF_ENA BIT(6)
#define AB8500_GPADC_CTRL1_ICHAR_ENA BIT(7)
#define AB8500_GPADC_CTRL2_REG 0x01
#define AB8500_GPADC_CTRL3_REG 0x02
/*
* GPADC control register 2 and 3 bits
* the bit layout is the same for SW and HW conversion set-up
*/
#define AB8500_GPADC_CTRL2_AVG_1 0x00
#define AB8500_GPADC_CTRL2_AVG_4 BIT(5)
#define AB8500_GPADC_CTRL2_AVG_8 BIT(6)
#define AB8500_GPADC_CTRL2_AVG_16 (BIT(5) | BIT(6))
enum ab8500_gpadc_channel {
AB8500_GPADC_CHAN_UNUSED = 0x00,
AB8500_GPADC_CHAN_BAT_CTRL = 0x01,
AB8500_GPADC_CHAN_BAT_TEMP = 0x02,
/* This is not used on AB8505 */
AB8500_GPADC_CHAN_MAIN_CHARGER = 0x03,
AB8500_GPADC_CHAN_ACC_DET_1 = 0x04,
AB8500_GPADC_CHAN_ACC_DET_2 = 0x05,
AB8500_GPADC_CHAN_ADC_AUX_1 = 0x06,
AB8500_GPADC_CHAN_ADC_AUX_2 = 0x07,
AB8500_GPADC_CHAN_VBAT_A = 0x08,
AB8500_GPADC_CHAN_VBUS = 0x09,
AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT = 0x0a,
AB8500_GPADC_CHAN_USB_CHARGER_CURRENT = 0x0b,
AB8500_GPADC_CHAN_BACKUP_BAT = 0x0c,
/* Only on AB8505 */
AB8505_GPADC_CHAN_DIE_TEMP = 0x0d,
AB8500_GPADC_CHAN_ID = 0x0e,
AB8500_GPADC_CHAN_INTERNAL_TEST_1 = 0x0f,
AB8500_GPADC_CHAN_INTERNAL_TEST_2 = 0x10,
AB8500_GPADC_CHAN_INTERNAL_TEST_3 = 0x11,
/* FIXME: Applicable to all ASIC variants? */
AB8500_GPADC_CHAN_XTAL_TEMP = 0x12,
AB8500_GPADC_CHAN_VBAT_TRUE_MEAS = 0x13,
/* FIXME: Doesn't seem to work with pure AB8500 */
AB8500_GPADC_CHAN_BAT_CTRL_AND_IBAT = 0x1c,
AB8500_GPADC_CHAN_VBAT_MEAS_AND_IBAT = 0x1d,
AB8500_GPADC_CHAN_VBAT_TRUE_MEAS_AND_IBAT = 0x1e,
AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT = 0x1f,
/*
* Virtual channel used only for ibat conversion to ampere.
* Battery current conversion (ibat) cannot be requested as a
* single conversion but it is always requested in combination
* with other input requests.
*/
AB8500_GPADC_CHAN_IBAT_VIRTUAL = 0xFF,
};
#define AB8500_GPADC_AUTO_TIMER_REG 0x03
#define AB8500_GPADC_STAT_REG 0x04
#define AB8500_GPADC_STAT_BUSY BIT(0)
#define AB8500_GPADC_MANDATAL_REG 0x05
#define AB8500_GPADC_MANDATAH_REG 0x06
#define AB8500_GPADC_AUTODATAL_REG 0x07
#define AB8500_GPADC_AUTODATAH_REG 0x08
#define AB8500_GPADC_MUX_CTRL_REG 0x09
#define AB8540_GPADC_MANDATA2L_REG 0x09
#define AB8540_GPADC_MANDATA2H_REG 0x0A
#define AB8540_GPADC_APEAAX_REG 0x10
#define AB8540_GPADC_APEAAT_REG 0x11
#define AB8540_GPADC_APEAAM_REG 0x12
#define AB8540_GPADC_APEAAH_REG 0x13
#define AB8540_GPADC_APEAAL_REG 0x14
/*
* OTP register offsets
* Bank : 0x15
*/
#define AB8500_GPADC_CAL_1 0x0F
#define AB8500_GPADC_CAL_2 0x10
#define AB8500_GPADC_CAL_3 0x11
#define AB8500_GPADC_CAL_4 0x12
#define AB8500_GPADC_CAL_5 0x13
#define AB8500_GPADC_CAL_6 0x14
#define AB8500_GPADC_CAL_7 0x15
/* New calibration for 8540 */
#define AB8540_GPADC_OTP4_REG_7 0x38
#define AB8540_GPADC_OTP4_REG_6 0x39
#define AB8540_GPADC_OTP4_REG_5 0x3A
#define AB8540_GPADC_DIS_ZERO 0x00
#define AB8540_GPADC_EN_VBIAS_XTAL_TEMP 0x02
/* GPADC constants from AB8500 spec, UM0836 */
#define AB8500_ADC_RESOLUTION 1024
#define AB8500_ADC_CH_BTEMP_MIN 0
#define AB8500_ADC_CH_BTEMP_MAX 1350
#define AB8500_ADC_CH_DIETEMP_MIN 0
#define AB8500_ADC_CH_DIETEMP_MAX 1350
#define AB8500_ADC_CH_CHG_V_MIN 0
#define AB8500_ADC_CH_CHG_V_MAX 20030
#define AB8500_ADC_CH_ACCDET2_MIN 0
#define AB8500_ADC_CH_ACCDET2_MAX 2500
#define AB8500_ADC_CH_VBAT_MIN 2300
#define AB8500_ADC_CH_VBAT_MAX 4800
#define AB8500_ADC_CH_CHG_I_MIN 0
#define AB8500_ADC_CH_CHG_I_MAX 1500
#define AB8500_ADC_CH_BKBAT_MIN 0
#define AB8500_ADC_CH_BKBAT_MAX 3200
/* GPADC constants from AB8540 spec */
#define AB8500_ADC_CH_IBAT_MIN (-6000) /* mA range measured by ADC for ibat */
#define AB8500_ADC_CH_IBAT_MAX 6000
#define AB8500_ADC_CH_IBAT_MIN_V (-60) /* mV range measured by ADC for ibat */
#define AB8500_ADC_CH_IBAT_MAX_V 60
#define AB8500_GPADC_IBAT_VDROP_L (-56) /* mV */
#define AB8500_GPADC_IBAT_VDROP_H 56
/* This is used to not lose precision when dividing to get gain and offset */
#define AB8500_GPADC_CALIB_SCALE 1000
/*
* Number of bits shift used to not lose precision
* when dividing to get ibat gain.
*/
#define AB8500_GPADC_CALIB_SHIFT_IBAT 20
/* Time in ms before disabling regulator */
#define AB8500_GPADC_AUTOSUSPEND_DELAY 1
#define AB8500_GPADC_CONVERSION_TIME 500 /* ms */
enum ab8500_cal_channels {
AB8500_CAL_VMAIN = 0,
AB8500_CAL_BTEMP,
AB8500_CAL_VBAT,
AB8500_CAL_IBAT,
AB8500_CAL_NR,
};
/**
* struct ab8500_adc_cal_data - Table for storing gain and offset for the
* calibrated ADC channels
* @gain: Gain of the ADC channel
* @offset: Offset of the ADC channel
* @otp_calib_hi: Calibration from OTP
* @otp_calib_lo: Calibration from OTP
*/
struct ab8500_adc_cal_data {
s64 gain;
s64 offset;
u16 otp_calib_hi;
u16 otp_calib_lo;
};
/**
* struct ab8500_gpadc_chan_info - per-channel GPADC info
* @name: name of the channel
* @id: the internal AB8500 ID number for the channel
* @hardware_control: indicate that we want to use hardware ADC control
* on this channel, the default is software ADC control. Hardware control
* is normally only used to test the battery voltage during GSM bursts
* and needs a hardware trigger on the GPADCTrig pin of the ASIC.
* @falling_edge: indicate that we want to trigger on falling edge
* rather than rising edge, rising edge is the default
* @avg_sample: how many samples to average: must be 1, 4, 8 or 16.
* @trig_timer: how long to wait for the trigger, in 32kHz periods:
* 0 .. 255 periods
*/
struct ab8500_gpadc_chan_info {
const char *name;
u8 id;
bool hardware_control;
bool falling_edge;
u8 avg_sample;
u8 trig_timer;
};
/**
* struct ab8500_gpadc - AB8500 GPADC device information
* @dev: pointer to the containing device
* @ab8500: pointer to the parent AB8500 device
* @chans: internal per-channel information container
* @nchans: number of channels
* @complete: pointer to the completion that indicates
* the completion of an gpadc conversion cycle
* @vddadc: pointer to the regulator supplying VDDADC
* @irq_sw: interrupt number that is used by gpadc for software ADC conversion
* @irq_hw: interrupt number that is used by gpadc for hardware ADC conversion
* @cal_data: array of ADC calibration data structs
*/
struct ab8500_gpadc {
struct device *dev;
struct ab8500 *ab8500;
struct ab8500_gpadc_chan_info *chans;
unsigned int nchans;
struct completion complete;
struct regulator *vddadc;
int irq_sw;
int irq_hw;
struct ab8500_adc_cal_data cal_data[AB8500_CAL_NR];
};
static struct ab8500_gpadc_chan_info *
ab8500_gpadc_get_channel(struct ab8500_gpadc *gpadc, u8 chan)
{
struct ab8500_gpadc_chan_info *ch;
int i;
for (i = 0; i < gpadc->nchans; i++) {
ch = &gpadc->chans[i];
if (ch->id == chan)
break;
}
if (i == gpadc->nchans)
return NULL;
return ch;
}
/**
* ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage
* @gpadc: GPADC instance
* @ch: the sampled channel this raw value is coming from
* @ad_value: the raw value
*/
static int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc,
enum ab8500_gpadc_channel ch,
int ad_value)
{
int res;
switch (ch) {
case AB8500_GPADC_CHAN_MAIN_CHARGER:
/* No calibration data available: just interpolate */
if (!gpadc->cal_data[AB8500_CAL_VMAIN].gain) {
res = AB8500_ADC_CH_CHG_V_MIN + (AB8500_ADC_CH_CHG_V_MAX -
AB8500_ADC_CH_CHG_V_MIN) * ad_value /
AB8500_ADC_RESOLUTION;
break;
}
/* Here we can use calibration */
res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_VMAIN].gain +
gpadc->cal_data[AB8500_CAL_VMAIN].offset) / AB8500_GPADC_CALIB_SCALE;
break;
case AB8500_GPADC_CHAN_BAT_CTRL:
case AB8500_GPADC_CHAN_BAT_TEMP:
case AB8500_GPADC_CHAN_ACC_DET_1:
case AB8500_GPADC_CHAN_ADC_AUX_1:
case AB8500_GPADC_CHAN_ADC_AUX_2:
case AB8500_GPADC_CHAN_XTAL_TEMP:
/* No calibration data available: just interpolate */
if (!gpadc->cal_data[AB8500_CAL_BTEMP].gain) {
res = AB8500_ADC_CH_BTEMP_MIN + (AB8500_ADC_CH_BTEMP_MAX -
AB8500_ADC_CH_BTEMP_MIN) * ad_value /
AB8500_ADC_RESOLUTION;
break;
}
/* Here we can use calibration */
res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_BTEMP].gain +
gpadc->cal_data[AB8500_CAL_BTEMP].offset) / AB8500_GPADC_CALIB_SCALE;
break;
case AB8500_GPADC_CHAN_VBAT_A:
case AB8500_GPADC_CHAN_VBAT_TRUE_MEAS:
/* No calibration data available: just interpolate */
if (!gpadc->cal_data[AB8500_CAL_VBAT].gain) {
res = AB8500_ADC_CH_VBAT_MIN + (AB8500_ADC_CH_VBAT_MAX -
AB8500_ADC_CH_VBAT_MIN) * ad_value /
AB8500_ADC_RESOLUTION;
break;
}
/* Here we can use calibration */
res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_VBAT].gain +
gpadc->cal_data[AB8500_CAL_VBAT].offset) / AB8500_GPADC_CALIB_SCALE;
break;
case AB8505_GPADC_CHAN_DIE_TEMP:
res = AB8500_ADC_CH_DIETEMP_MIN +
(AB8500_ADC_CH_DIETEMP_MAX - AB8500_ADC_CH_DIETEMP_MIN) * ad_value /
AB8500_ADC_RESOLUTION;
break;
case AB8500_GPADC_CHAN_ACC_DET_2:
res = AB8500_ADC_CH_ACCDET2_MIN +
(AB8500_ADC_CH_ACCDET2_MAX - AB8500_ADC_CH_ACCDET2_MIN) * ad_value /
AB8500_ADC_RESOLUTION;
break;
case AB8500_GPADC_CHAN_VBUS:
res = AB8500_ADC_CH_CHG_V_MIN +
(AB8500_ADC_CH_CHG_V_MAX - AB8500_ADC_CH_CHG_V_MIN) * ad_value /
AB8500_ADC_RESOLUTION;
break;
case AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT:
case AB8500_GPADC_CHAN_USB_CHARGER_CURRENT:
res = AB8500_ADC_CH_CHG_I_MIN +
(AB8500_ADC_CH_CHG_I_MAX - AB8500_ADC_CH_CHG_I_MIN) * ad_value /
AB8500_ADC_RESOLUTION;
break;
case AB8500_GPADC_CHAN_BACKUP_BAT:
res = AB8500_ADC_CH_BKBAT_MIN +
(AB8500_ADC_CH_BKBAT_MAX - AB8500_ADC_CH_BKBAT_MIN) * ad_value /
AB8500_ADC_RESOLUTION;
break;
case AB8500_GPADC_CHAN_IBAT_VIRTUAL:
/* No calibration data available: just interpolate */
if (!gpadc->cal_data[AB8500_CAL_IBAT].gain) {
res = AB8500_ADC_CH_IBAT_MIN + (AB8500_ADC_CH_IBAT_MAX -
AB8500_ADC_CH_IBAT_MIN) * ad_value /
AB8500_ADC_RESOLUTION;
break;
}
/* Here we can use calibration */
res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_IBAT].gain +
gpadc->cal_data[AB8500_CAL_IBAT].offset)
>> AB8500_GPADC_CALIB_SHIFT_IBAT;
break;
default:
dev_err(gpadc->dev,
"unknown channel ID: %d, not possible to convert\n",
ch);
res = -EINVAL;
break;
}
return res;
}
static int ab8500_gpadc_read(struct ab8500_gpadc *gpadc,
const struct ab8500_gpadc_chan_info *ch,
int *ibat)
{
int ret;
int looplimit = 0;
unsigned long completion_timeout;
u8 val;
u8 low_data, high_data, low_data2, high_data2;
u8 ctrl1;
u8 ctrl23;
unsigned int delay_min = 0;
unsigned int delay_max = 0;
u8 data_low_addr, data_high_addr;
if (!gpadc)
return -ENODEV;
/* check if conversion is supported */
if ((gpadc->irq_sw <= 0) && !ch->hardware_control)
return -ENOTSUPP;
if ((gpadc->irq_hw <= 0) && ch->hardware_control)
return -ENOTSUPP;
/* Enable vddadc by grabbing PM runtime */
pm_runtime_get_sync(gpadc->dev);
/* Check if ADC is not busy, lock and proceed */
do {
ret = abx500_get_register_interruptible(gpadc->dev,
AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
if (ret < 0)
goto out;
if (!(val & AB8500_GPADC_STAT_BUSY))
break;
msleep(20);
} while (++looplimit < 10);
if (looplimit >= 10 && (val & AB8500_GPADC_STAT_BUSY)) {
dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
ret = -EINVAL;
goto out;
}
/* Enable GPADC */
ctrl1 = AB8500_GPADC_CTRL1_ENABLE;
/* Select the channel source and set average samples */
switch (ch->avg_sample) {
case 1:
ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_1;
break;
case 4:
ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_4;
break;
case 8:
ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_8;
break;
default:
ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_16;
break;
}
if (ch->hardware_control) {
ret = abx500_set_register_interruptible(gpadc->dev,
AB8500_GPADC, AB8500_GPADC_CTRL3_REG, ctrl23);
ctrl1 |= AB8500_GPADC_CTRL1_TRIG_ENA;
if (ch->falling_edge)
ctrl1 |= AB8500_GPADC_CTRL1_TRIG_EDGE;
} else {
ret = abx500_set_register_interruptible(gpadc->dev,
AB8500_GPADC, AB8500_GPADC_CTRL2_REG, ctrl23);
}
if (ret < 0) {
dev_err(gpadc->dev,
"gpadc_conversion: set avg samples failed\n");
goto out;
}
/*
* Enable ADC, buffering, select rising edge and enable ADC path
* charging current sense if it needed, ABB 3.0 needs some special
* treatment too.
*/
switch (ch->id) {
case AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT:
case AB8500_GPADC_CHAN_USB_CHARGER_CURRENT:
ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA |
AB8500_GPADC_CTRL1_ICHAR_ENA;
break;
case AB8500_GPADC_CHAN_BAT_TEMP:
if (!is_ab8500_2p0_or_earlier(gpadc->ab8500)) {
ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA |
AB8500_GPADC_CTRL1_BTEMP_PULL_UP;
/*
* Delay might be needed for ABB8500 cut 3.0, if not,
* remove when hardware will be available
*/
delay_min = 1000; /* Delay in micro seconds */
delay_max = 10000; /* large range optimises sleepmode */
break;
}
fallthrough;
default:
ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA;
break;
}
/* Write configuration to control register 1 */
ret = abx500_set_register_interruptible(gpadc->dev,
AB8500_GPADC, AB8500_GPADC_CTRL1_REG, ctrl1);
if (ret < 0) {
dev_err(gpadc->dev,
"gpadc_conversion: set Control register failed\n");
goto out;
}
if (delay_min != 0)
usleep_range(delay_min, delay_max);
if (ch->hardware_control) {
/* Set trigger delay timer */
ret = abx500_set_register_interruptible(gpadc->dev,
AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG,
ch->trig_timer);
if (ret < 0) {
dev_err(gpadc->dev,
"gpadc_conversion: trig timer failed\n");
goto out;
}
completion_timeout = 2 * HZ;
data_low_addr = AB8500_GPADC_AUTODATAL_REG;
data_high_addr = AB8500_GPADC_AUTODATAH_REG;
} else {
/* Start SW conversion */
ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
AB8500_GPADC_CTRL1_START_SW_CONV,
AB8500_GPADC_CTRL1_START_SW_CONV);
if (ret < 0) {
dev_err(gpadc->dev,
"gpadc_conversion: start s/w conv failed\n");
goto out;
}
completion_timeout = msecs_to_jiffies(AB8500_GPADC_CONVERSION_TIME);
data_low_addr = AB8500_GPADC_MANDATAL_REG;
data_high_addr = AB8500_GPADC_MANDATAH_REG;
}
/* Wait for completion of conversion */
if (!wait_for_completion_timeout(&gpadc->complete,
completion_timeout)) {
dev_err(gpadc->dev,
"timeout didn't receive GPADC conv interrupt\n");
ret = -EINVAL;
goto out;
}
/* Read the converted RAW data */
ret = abx500_get_register_interruptible(gpadc->dev,
AB8500_GPADC, data_low_addr, &low_data);
if (ret < 0) {
dev_err(gpadc->dev,
"gpadc_conversion: read low data failed\n");
goto out;
}
ret = abx500_get_register_interruptible(gpadc->dev,
AB8500_GPADC, data_high_addr, &high_data);
if (ret < 0) {
dev_err(gpadc->dev,
"gpadc_conversion: read high data failed\n");
goto out;
}
/* Check if double conversion is required */
if ((ch->id == AB8500_GPADC_CHAN_BAT_CTRL_AND_IBAT) ||
(ch->id == AB8500_GPADC_CHAN_VBAT_MEAS_AND_IBAT) ||
(ch->id == AB8500_GPADC_CHAN_VBAT_TRUE_MEAS_AND_IBAT) ||
(ch->id == AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT)) {
if (ch->hardware_control) {
/* not supported */
ret = -ENOTSUPP;
dev_err(gpadc->dev,
"gpadc_conversion: only SW double conversion supported\n");
goto out;
} else {
/* Read the converted RAW data 2 */
ret = abx500_get_register_interruptible(gpadc->dev,
AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG,
&low_data2);
if (ret < 0) {
dev_err(gpadc->dev,
"gpadc_conversion: read sw low data 2 failed\n");
goto out;
}
ret = abx500_get_register_interruptible(gpadc->dev,
AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG,
&high_data2);
if (ret < 0) {
dev_err(gpadc->dev,
"gpadc_conversion: read sw high data 2 failed\n");
goto out;
}
if (ibat != NULL) {
*ibat = (high_data2 << 8) | low_data2;
} else {
dev_warn(gpadc->dev,
"gpadc_conversion: ibat not stored\n");
}
}
}
/* Disable GPADC */
ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
AB8500_GPADC_CTRL1_REG, AB8500_GPADC_CTRL1_DISABLE);
if (ret < 0) {
dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
goto out;
}
/* This eventually drops the regulator */
pm_runtime_mark_last_busy(gpadc->dev);
pm_runtime_put_autosuspend(gpadc->dev);
return (high_data << 8) | low_data;
out:
/*
* It has shown to be needed to turn off the GPADC if an error occurs,
* otherwise we might have problem when waiting for the busy bit in the
* GPADC status register to go low. In V1.1 there wait_for_completion
* seems to timeout when waiting for an interrupt.. Not seen in V2.0
*/
(void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
AB8500_GPADC_CTRL1_REG, AB8500_GPADC_CTRL1_DISABLE);
pm_runtime_put(gpadc->dev);
dev_err(gpadc->dev,
"gpadc_conversion: Failed to AD convert channel %d\n", ch->id);
return ret;
}
/**
* ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion
* @irq: irq number
* @data: pointer to the data passed during request irq
*
* This is a interrupt service routine for gpadc conversion completion.
* Notifies the gpadc completion is completed and the converted raw value
* can be read from the registers.
* Returns IRQ status(IRQ_HANDLED)
*/
static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *data)
{
struct ab8500_gpadc *gpadc = data;
complete(&gpadc->complete);
return IRQ_HANDLED;
}
static int otp_cal_regs[] = {
AB8500_GPADC_CAL_1,
AB8500_GPADC_CAL_2,
AB8500_GPADC_CAL_3,
AB8500_GPADC_CAL_4,
AB8500_GPADC_CAL_5,
AB8500_GPADC_CAL_6,
AB8500_GPADC_CAL_7,
};
static int otp4_cal_regs[] = {
AB8540_GPADC_OTP4_REG_7,
AB8540_GPADC_OTP4_REG_6,
AB8540_GPADC_OTP4_REG_5,
};
static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
{
int i;
int ret[ARRAY_SIZE(otp_cal_regs)];
u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
int ret_otp4[ARRAY_SIZE(otp4_cal_regs)];
u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)];
int vmain_high, vmain_low;
int btemp_high, btemp_low;
int vbat_high, vbat_low;
int ibat_high, ibat_low;
s64 V_gain, V_offset, V2A_gain, V2A_offset;
/* First we read all OTP registers and store the error code */
for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
ret[i] = abx500_get_register_interruptible(gpadc->dev,
AB8500_OTP_EMUL, otp_cal_regs[i], &gpadc_cal[i]);
if (ret[i] < 0) {
/* Continue anyway: maybe the other registers are OK */
dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
__func__, otp_cal_regs[i]);
} else {
/* Put this in the entropy pool as device-unique */
add_device_randomness(&ret[i], sizeof(ret[i]));
}
}
/*
* The ADC calibration data is stored in OTP registers.
* The layout of the calibration data is outlined below and a more
* detailed description can be found in UM0836
*
* vm_h/l = vmain_high/low
* bt_h/l = btemp_high/low
* vb_h/l = vbat_high/low
*
* Data bits 8500/9540:
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
* |.......|.......|.......|.......|.......|.......|.......|.......
* | | vm_h9 | vm_h8
* |.......|.......|.......|.......|.......|.......|.......|.......
* | | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
* |.......|.......|.......|.......|.......|.......|.......|.......
* | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
* |.......|.......|.......|.......|.......|.......|.......|.......
* | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
* |.......|.......|.......|.......|.......|.......|.......|.......
*
* Data bits 8540:
* OTP2
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
* |.......|.......|.......|.......|.......|.......|.......|.......
* |
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
* |.......|.......|.......|.......|.......|.......|.......|.......
* | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
* |.......|.......|.......|.......|.......|.......|.......|.......
* | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
* |.......|.......|.......|.......|.......|.......|.......|.......
*
* Data bits 8540:
* OTP4
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
* |.......|.......|.......|.......|.......|.......|.......|.......
* | | ib_h9 | ib_h8 | ib_h7
* |.......|.......|.......|.......|.......|.......|.......|.......
* | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5
* |.......|.......|.......|.......|.......|.......|.......|.......
* | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 |
*
*
* Ideal output ADC codes corresponding to injected input voltages
* during manufacturing is:
*
* vmain_high: Vin = 19500mV / ADC ideal code = 997
* vmain_low: Vin = 315mV / ADC ideal code = 16
* btemp_high: Vin = 1300mV / ADC ideal code = 985
* btemp_low: Vin = 21mV / ADC ideal code = 16
* vbat_high: Vin = 4700mV / ADC ideal code = 982
* vbat_low: Vin = 2380mV / ADC ideal code = 33
*/
if (is_ab8540(gpadc->ab8500)) {
/* Calculate gain and offset for VMAIN if all reads succeeded*/
if (!(ret[1] < 0 || ret[2] < 0)) {
vmain_high = (((gpadc_cal[1] & 0xFF) << 2) |
((gpadc_cal[2] & 0xC0) >> 6));
vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_hi =
(u16)vmain_high;
gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_lo =
(u16)vmain_low;
gpadc->cal_data[AB8500_CAL_VMAIN].gain = AB8500_GPADC_CALIB_SCALE *
(19500 - 315) / (vmain_high - vmain_low);
gpadc->cal_data[AB8500_CAL_VMAIN].offset = AB8500_GPADC_CALIB_SCALE *
19500 - (AB8500_GPADC_CALIB_SCALE * (19500 - 315) /
(vmain_high - vmain_low)) * vmain_high;
} else {
gpadc->cal_data[AB8500_CAL_VMAIN].gain = 0;
}
/* Read IBAT calibration Data */
for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) {
ret_otp4[i] = abx500_get_register_interruptible(
gpadc->dev, AB8500_OTP_EMUL,
otp4_cal_regs[i], &gpadc_otp4[i]);
if (ret_otp4[i] < 0)
dev_err(gpadc->dev,
"%s: read otp4 reg 0x%02x failed\n",
__func__, otp4_cal_regs[i]);
}
/* Calculate gain and offset for IBAT if all reads succeeded */
if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) {
ibat_high = (((gpadc_otp4[0] & 0x07) << 7) |
((gpadc_otp4[1] & 0xFE) >> 1));
ibat_low = (((gpadc_otp4[1] & 0x01) << 5) |
((gpadc_otp4[2] & 0xF8) >> 3));
gpadc->cal_data[AB8500_CAL_IBAT].otp_calib_hi =
(u16)ibat_high;
gpadc->cal_data[AB8500_CAL_IBAT].otp_calib_lo =
(u16)ibat_low;
V_gain = ((AB8500_GPADC_IBAT_VDROP_H - AB8500_GPADC_IBAT_VDROP_L)
<< AB8500_GPADC_CALIB_SHIFT_IBAT) / (ibat_high - ibat_low);
V_offset = (AB8500_GPADC_IBAT_VDROP_H << AB8500_GPADC_CALIB_SHIFT_IBAT) -
(((AB8500_GPADC_IBAT_VDROP_H - AB8500_GPADC_IBAT_VDROP_L) <<
AB8500_GPADC_CALIB_SHIFT_IBAT) / (ibat_high - ibat_low))
* ibat_high;
/*
* Result obtained is in mV (at a scale factor),
* we need to calculate gain and offset to get mA
*/
V2A_gain = (AB8500_ADC_CH_IBAT_MAX - AB8500_ADC_CH_IBAT_MIN)/
(AB8500_ADC_CH_IBAT_MAX_V - AB8500_ADC_CH_IBAT_MIN_V);
V2A_offset = ((AB8500_ADC_CH_IBAT_MAX_V * AB8500_ADC_CH_IBAT_MIN -
AB8500_ADC_CH_IBAT_MAX * AB8500_ADC_CH_IBAT_MIN_V)
<< AB8500_GPADC_CALIB_SHIFT_IBAT)
/ (AB8500_ADC_CH_IBAT_MAX_V - AB8500_ADC_CH_IBAT_MIN_V);
gpadc->cal_data[AB8500_CAL_IBAT].gain =
V_gain * V2A_gain;
gpadc->cal_data[AB8500_CAL_IBAT].offset =
V_offset * V2A_gain + V2A_offset;
} else {
gpadc->cal_data[AB8500_CAL_IBAT].gain = 0;
}
} else {
/* Calculate gain and offset for VMAIN if all reads succeeded */
if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
((gpadc_cal[1] & 0x3F) << 2) |
((gpadc_cal[2] & 0xC0) >> 6));
vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_hi =
(u16)vmain_high;
gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_lo =
(u16)vmain_low;
gpadc->cal_data[AB8500_CAL_VMAIN].gain = AB8500_GPADC_CALIB_SCALE *
(19500 - 315) / (vmain_high - vmain_low);
gpadc->cal_data[AB8500_CAL_VMAIN].offset = AB8500_GPADC_CALIB_SCALE *
19500 - (AB8500_GPADC_CALIB_SCALE * (19500 - 315) /
(vmain_high - vmain_low)) * vmain_high;
} else {
gpadc->cal_data[AB8500_CAL_VMAIN].gain = 0;
}
}
/* Calculate gain and offset for BTEMP if all reads succeeded */
if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
(gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7));
btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
gpadc->cal_data[AB8500_CAL_BTEMP].otp_calib_hi = (u16)btemp_high;
gpadc->cal_data[AB8500_CAL_BTEMP].otp_calib_lo = (u16)btemp_low;
gpadc->cal_data[AB8500_CAL_BTEMP].gain =
AB8500_GPADC_CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
gpadc->cal_data[AB8500_CAL_BTEMP].offset = AB8500_GPADC_CALIB_SCALE * 1300 -
(AB8500_GPADC_CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low))
* btemp_high;
} else {
gpadc->cal_data[AB8500_CAL_BTEMP].gain = 0;
}
/* Calculate gain and offset for VBAT if all reads succeeded */
if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
gpadc->cal_data[AB8500_CAL_VBAT].otp_calib_hi = (u16)vbat_high;
gpadc->cal_data[AB8500_CAL_VBAT].otp_calib_lo = (u16)vbat_low;
gpadc->cal_data[AB8500_CAL_VBAT].gain = AB8500_GPADC_CALIB_SCALE *
(4700 - 2380) / (vbat_high - vbat_low);
gpadc->cal_data[AB8500_CAL_VBAT].offset = AB8500_GPADC_CALIB_SCALE * 4700 -
(AB8500_GPADC_CALIB_SCALE * (4700 - 2380) /
(vbat_high - vbat_low)) * vbat_high;
} else {
gpadc->cal_data[AB8500_CAL_VBAT].gain = 0;
}
}
static int ab8500_gpadc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
const struct ab8500_gpadc_chan_info *ch;
int raw_val;
int processed;
ch = ab8500_gpadc_get_channel(gpadc, chan->address);
if (!ch) {
dev_err(gpadc->dev, "no such channel %lu\n",
chan->address);
return -EINVAL;
}
raw_val = ab8500_gpadc_read(gpadc, ch, NULL);
if (raw_val < 0)
return raw_val;
if (mask == IIO_CHAN_INFO_RAW) {
*val = raw_val;
return IIO_VAL_INT;
}
if (mask == IIO_CHAN_INFO_PROCESSED) {
processed = ab8500_gpadc_ad_to_voltage(gpadc, ch->id, raw_val);
if (processed < 0)
return processed;
/* Return millivolt or milliamps or millicentigrades */
*val = processed;
return IIO_VAL_INT;
}
return -EINVAL;
}
static int ab8500_gpadc_fwnode_xlate(struct iio_dev *indio_dev,
const struct fwnode_reference_args *iiospec)
{
int i;
for (i = 0; i < indio_dev->num_channels; i++)
if (indio_dev->channels[i].channel == iiospec->args[0])
return i;
return -EINVAL;
}
static const struct iio_info ab8500_gpadc_info = {
.fwnode_xlate = ab8500_gpadc_fwnode_xlate,
.read_raw = ab8500_gpadc_read_raw,
};
static int ab8500_gpadc_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
regulator_disable(gpadc->vddadc);
return 0;
}
static int ab8500_gpadc_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
int ret;
ret = regulator_enable(gpadc->vddadc);
if (ret)
dev_err(dev, "Failed to enable vddadc: %d\n", ret);
return ret;
}
/**
* ab8500_gpadc_parse_channel() - process devicetree channel configuration
* @dev: pointer to containing device
* @fwnode: fw node for the channel to configure
* @ch: channel info to fill in
* @iio_chan: IIO channel specification to fill in
*
* The devicetree will set up the channel for use with the specific device,
* and define usage for things like AUX GPADC inputs more precisely.
*/
static int ab8500_gpadc_parse_channel(struct device *dev,
struct fwnode_handle *fwnode,
struct ab8500_gpadc_chan_info *ch,
struct iio_chan_spec *iio_chan)
{
const char *name = fwnode_get_name(fwnode);
u32 chan;
int ret;
ret = fwnode_property_read_u32(fwnode, "reg", &chan);
if (ret) {
dev_err(dev, "invalid channel number %s\n", name);
return ret;
}
if (chan > AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT) {
dev_err(dev, "%s channel number out of range %d\n", name, chan);
return -EINVAL;
}
iio_chan->channel = chan;
iio_chan->datasheet_name = name;
iio_chan->indexed = 1;
iio_chan->address = chan;
iio_chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_PROCESSED);
/* Most are voltages (also temperatures), some are currents */
if ((chan == AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT) ||
(chan == AB8500_GPADC_CHAN_USB_CHARGER_CURRENT))
iio_chan->type = IIO_CURRENT;
else
iio_chan->type = IIO_VOLTAGE;
ch->id = chan;
/* Sensible defaults */
ch->avg_sample = 16;
ch->hardware_control = false;
ch->falling_edge = false;
ch->trig_timer = 0;
return 0;
}
/**
* ab8500_gpadc_parse_channels() - Parse the GPADC channels from DT
* @gpadc: the GPADC to configure the channels for
* @chans: the IIO channels we parsed
* @nchans: the number of IIO channels we parsed
*/
static int ab8500_gpadc_parse_channels(struct ab8500_gpadc *gpadc,
struct iio_chan_spec **chans_parsed,
unsigned int *nchans_parsed)
{
struct fwnode_handle *child;
struct ab8500_gpadc_chan_info *ch;
struct iio_chan_spec *iio_chans;
unsigned int nchans;
int i;
nchans = device_get_child_node_count(gpadc->dev);
if (!nchans) {
dev_err(gpadc->dev, "no channel children\n");
return -ENODEV;
}
dev_info(gpadc->dev, "found %d ADC channels\n", nchans);
iio_chans = devm_kcalloc(gpadc->dev, nchans,
sizeof(*iio_chans), GFP_KERNEL);
if (!iio_chans)
return -ENOMEM;
gpadc->chans = devm_kcalloc(gpadc->dev, nchans,
sizeof(*gpadc->chans), GFP_KERNEL);
if (!gpadc->chans)
return -ENOMEM;
i = 0;
device_for_each_child_node(gpadc->dev, child) {
struct iio_chan_spec *iio_chan;
int ret;
ch = &gpadc->chans[i];
iio_chan = &iio_chans[i];
ret = ab8500_gpadc_parse_channel(gpadc->dev, child, ch,
iio_chan);
if (ret) {
fwnode_handle_put(child);
return ret;
}
i++;
}
gpadc->nchans = nchans;
*chans_parsed = iio_chans;
*nchans_parsed = nchans;
return 0;
}
static int ab8500_gpadc_probe(struct platform_device *pdev)
{
struct ab8500_gpadc *gpadc;
struct iio_dev *indio_dev;
struct device *dev = &pdev->dev;
struct iio_chan_spec *iio_chans;
unsigned int n_iio_chans;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*gpadc));
if (!indio_dev)
return -ENOMEM;
platform_set_drvdata(pdev, indio_dev);
gpadc = iio_priv(indio_dev);
gpadc->dev = dev;
gpadc->ab8500 = dev_get_drvdata(dev->parent);
ret = ab8500_gpadc_parse_channels(gpadc, &iio_chans, &n_iio_chans);
if (ret)
return ret;
gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END");
if (gpadc->irq_sw < 0)
return dev_err_probe(dev, gpadc->irq_sw,
"failed to get platform sw_conv_end irq\n");
if (is_ab8500(gpadc->ab8500)) {
gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END");
if (gpadc->irq_hw < 0)
return dev_err_probe(dev, gpadc->irq_hw,
"failed to get platform hw_conv_end irq\n");
} else {
gpadc->irq_hw = 0;
}
/* Initialize completion used to notify completion of conversion */
init_completion(&gpadc->complete);
/* Request interrupts */
ret = devm_request_threaded_irq(dev, gpadc->irq_sw, NULL,
ab8500_bm_gpadcconvend_handler, IRQF_NO_SUSPEND | IRQF_ONESHOT,
"ab8500-gpadc-sw", gpadc);
if (ret < 0) {
dev_err(dev,
"failed to request sw conversion irq %d\n",
gpadc->irq_sw);
return ret;
}
if (gpadc->irq_hw) {
ret = devm_request_threaded_irq(dev, gpadc->irq_hw, NULL,
ab8500_bm_gpadcconvend_handler, IRQF_NO_SUSPEND | IRQF_ONESHOT,
"ab8500-gpadc-hw", gpadc);
if (ret < 0) {
dev_err(dev,
"Failed to request hw conversion irq: %d\n",
gpadc->irq_hw);
return ret;
}
}
/* The VTVout LDO used to power the AB8500 GPADC */
gpadc->vddadc = devm_regulator_get(dev, "vddadc");
if (IS_ERR(gpadc->vddadc))
return dev_err_probe(dev, PTR_ERR(gpadc->vddadc),
"failed to get vddadc\n");
ret = regulator_enable(gpadc->vddadc);
if (ret) {
dev_err(dev, "failed to enable vddadc: %d\n", ret);
return ret;
}
/* Enable runtime PM */
pm_runtime_get_noresume(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev, AB8500_GPADC_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(dev);
ab8500_gpadc_read_calibration_data(gpadc);
pm_runtime_put(dev);
indio_dev->name = "ab8500-gpadc";
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &ab8500_gpadc_info;
indio_dev->channels = iio_chans;
indio_dev->num_channels = n_iio_chans;
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
goto out_dis_pm;
return 0;
out_dis_pm:
pm_runtime_get_sync(dev);
pm_runtime_put_noidle(dev);
pm_runtime_disable(dev);
regulator_disable(gpadc->vddadc);
return ret;
}
static int ab8500_gpadc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
pm_runtime_get_sync(gpadc->dev);
pm_runtime_put_noidle(gpadc->dev);
pm_runtime_disable(gpadc->dev);
regulator_disable(gpadc->vddadc);
return 0;
}
static DEFINE_RUNTIME_DEV_PM_OPS(ab8500_gpadc_pm_ops,
ab8500_gpadc_runtime_suspend,
ab8500_gpadc_runtime_resume, NULL);
static struct platform_driver ab8500_gpadc_driver = {
.probe = ab8500_gpadc_probe,
.remove = ab8500_gpadc_remove,
.driver = {
.name = "ab8500-gpadc",
.pm = pm_ptr(&ab8500_gpadc_pm_ops),
},
};
builtin_platform_driver(ab8500_gpadc_driver);