linux/rust/kernel/list.rs
Alice Ryhl b204bbc53f rust: list: add ListArcField
One way to explain what `ListArc` does is that it controls exclusive
access to the prev/next pointer field in a refcounted object. The
feature of having a special reference to a refcounted object with
exclusive access to specific fields is useful for other things, so
provide a general utility for that.

This is used by Rust Binder to keep track of which processes have a
reference to a given node. This involves an object for each process/node
pair, that is referenced by both the process and the node. For some
fields in this object, only the process's reference needs to access
them (and it needs mutable access), so Binder uses a ListArc to give the
process's reference exclusive access.

Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240814-linked-list-v5-10-f5f5e8075da0@google.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-08-23 06:26:57 +02:00

687 lines
26 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2024 Google LLC.
//! A linked list implementation.
use crate::init::PinInit;
use crate::sync::ArcBorrow;
use crate::types::Opaque;
use core::iter::{DoubleEndedIterator, FusedIterator};
use core::marker::PhantomData;
use core::ptr;
mod impl_list_item_mod;
pub use self::impl_list_item_mod::{
impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
};
mod arc;
pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
mod arc_field;
pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
/// A linked list.
///
/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
/// prev/next pointers are not used for several linked lists.
///
/// # Invariants
///
/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
/// field of the first element in the list.
/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
/// * For every item in the list, the list owns the associated [`ListArc`] reference and has
/// exclusive access to the `ListLinks` field.
pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
first: *mut ListLinksFields,
_ty: PhantomData<ListArc<T, ID>>,
}
// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
// type of access to the `ListArc<T, ID>` elements.
unsafe impl<T, const ID: u64> Send for List<T, ID>
where
ListArc<T, ID>: Send,
T: ?Sized + ListItem<ID>,
{
}
// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
// type of access to the `ListArc<T, ID>` elements.
unsafe impl<T, const ID: u64> Sync for List<T, ID>
where
ListArc<T, ID>: Sync,
T: ?Sized + ListItem<ID>,
{
}
/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
///
/// # Safety
///
/// Implementers must ensure that they provide the guarantees documented on methods provided by
/// this trait.
///
/// [`ListArc<Self>`]: ListArc
pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
/// Views the [`ListLinks`] for this value.
///
/// # Guarantees
///
/// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
/// since the most recent such call, then this returns the same pointer as the one returned by
/// the most recent call to `prepare_to_insert`.
///
/// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
///
/// # Safety
///
/// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
/// View the full value given its [`ListLinks`] field.
///
/// Can only be used when the value is in a list.
///
/// # Guarantees
///
/// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
/// * The returned pointer is valid until the next call to `post_remove`.
///
/// # Safety
///
/// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
/// from a call to `view_links` that happened after the most recent call to
/// `prepare_to_insert`.
/// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
/// been called.
unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
/// This is called when an item is inserted into a [`List`].
///
/// # Guarantees
///
/// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
/// called.
///
/// # Safety
///
/// * The provided pointer must point at a valid value in an [`Arc`].
/// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
/// * The caller must own the [`ListArc`] for this value.
/// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
/// called after this call to `prepare_to_insert`.
///
/// [`Arc`]: crate::sync::Arc
unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
/// This undoes a previous call to `prepare_to_insert`.
///
/// # Guarantees
///
/// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
///
/// # Safety
///
/// The provided pointer must be the pointer returned by the most recent call to
/// `prepare_to_insert`.
unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
}
#[repr(C)]
#[derive(Copy, Clone)]
struct ListLinksFields {
next: *mut ListLinksFields,
prev: *mut ListLinksFields,
}
/// The prev/next pointers for an item in a linked list.
///
/// # Invariants
///
/// The fields are null if and only if this item is not in a list.
#[repr(transparent)]
pub struct ListLinks<const ID: u64 = 0> {
// This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
// list.
inner: Opaque<ListLinksFields>,
}
// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
// move this an instance of this type to a different thread if the pointees are `!Send`.
unsafe impl<const ID: u64> Send for ListLinks<ID> {}
// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
// okay to have immutable access to a ListLinks from several threads at once.
unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
impl<const ID: u64> ListLinks<ID> {
/// Creates a new initializer for this type.
pub fn new() -> impl PinInit<Self> {
// INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
// not be constructed in an `Arc` that already has a `ListArc`.
ListLinks {
inner: Opaque::new(ListLinksFields {
prev: ptr::null_mut(),
next: ptr::null_mut(),
}),
}
}
/// # Safety
///
/// `me` must be dereferenceable.
#[inline]
unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
// SAFETY: The caller promises that the pointer is valid.
unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
}
/// # Safety
///
/// `me` must be dereferenceable.
#[inline]
unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
me.cast()
}
}
/// Similar to [`ListLinks`], but also contains a pointer to the full value.
///
/// This type can be used instead of [`ListLinks`] to support lists with trait objects.
#[repr(C)]
pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
/// The `ListLinks` field inside this value.
///
/// This is public so that it can be used with `impl_has_list_links!`.
pub inner: ListLinks<ID>,
// UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
// `ptr::null()` doesn't work for `T: ?Sized`.
self_ptr: Opaque<*const T>,
}
// SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
// SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
// it's okay to have immutable access to a ListLinks from several threads at once.
//
// Note that `inner` being a public field does not prevent this type from being opaque, since
// `inner` is a opaque type.
unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
/// The offset from the [`ListLinks`] to the self pointer field.
pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
/// Creates a new initializer for this type.
pub fn new() -> impl PinInit<Self> {
// INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
// not be constructed in an `Arc` that already has a `ListArc`.
Self {
inner: ListLinks {
inner: Opaque::new(ListLinksFields {
prev: ptr::null_mut(),
next: ptr::null_mut(),
}),
},
self_ptr: Opaque::uninit(),
}
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
/// Creates a new empty list.
pub const fn new() -> Self {
Self {
first: ptr::null_mut(),
_ty: PhantomData,
}
}
/// Returns whether this list is empty.
pub fn is_empty(&self) -> bool {
self.first.is_null()
}
/// Add the provided item to the back of the list.
pub fn push_back(&mut self, item: ListArc<T, ID>) {
let raw_item = ListArc::into_raw(item);
// SAFETY:
// * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
// * Since we have ownership of the `ListArc`, `post_remove` must have been called after
// the most recent call to `prepare_to_insert`, if any.
// * We own the `ListArc`.
// * Removing items from this list is always done using `remove_internal_inner`, which
// calls `post_remove` before giving up ownership.
let list_links = unsafe { T::prepare_to_insert(raw_item) };
// SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
let item = unsafe { ListLinks::fields(list_links) };
if self.first.is_null() {
self.first = item;
// SAFETY: The caller just gave us ownership of these fields.
// INVARIANT: A linked list with one item should be cyclic.
unsafe {
(*item).next = item;
(*item).prev = item;
}
} else {
let next = self.first;
// SAFETY: By the type invariant, this pointer is valid or null. We just checked that
// it's not null, so it must be valid.
let prev = unsafe { (*next).prev };
// SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
// ownership of the fields on `item`.
// INVARIANT: This correctly inserts `item` between `prev` and `next`.
unsafe {
(*item).next = next;
(*item).prev = prev;
(*prev).next = item;
(*next).prev = item;
}
}
}
/// Add the provided item to the front of the list.
pub fn push_front(&mut self, item: ListArc<T, ID>) {
let raw_item = ListArc::into_raw(item);
// SAFETY:
// * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
// * If this requirement is violated, then the previous caller of `prepare_to_insert`
// violated the safety requirement that they can't give up ownership of the `ListArc`
// until they call `post_remove`.
// * We own the `ListArc`.
// * Removing items] from this list is always done using `remove_internal_inner`, which
// calls `post_remove` before giving up ownership.
let list_links = unsafe { T::prepare_to_insert(raw_item) };
// SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
let item = unsafe { ListLinks::fields(list_links) };
if self.first.is_null() {
// SAFETY: The caller just gave us ownership of these fields.
// INVARIANT: A linked list with one item should be cyclic.
unsafe {
(*item).next = item;
(*item).prev = item;
}
} else {
let next = self.first;
// SAFETY: We just checked that `next` is non-null.
let prev = unsafe { (*next).prev };
// SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
// ownership of the fields on `item`.
// INVARIANT: This correctly inserts `item` between `prev` and `next`.
unsafe {
(*item).next = next;
(*item).prev = prev;
(*prev).next = item;
(*next).prev = item;
}
}
self.first = item;
}
/// Removes the last item from this list.
pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
if self.first.is_null() {
return None;
}
// SAFETY: We just checked that the list is not empty.
let last = unsafe { (*self.first).prev };
// SAFETY: The last item of this list is in this list.
Some(unsafe { self.remove_internal(last) })
}
/// Removes the first item from this list.
pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
if self.first.is_null() {
return None;
}
// SAFETY: The first item of this list is in this list.
Some(unsafe { self.remove_internal(self.first) })
}
/// Removes the provided item from this list and returns it.
///
/// This returns `None` if the item is not in the list. (Note that by the safety requirements,
/// this means that the item is not in any list.)
///
/// # Safety
///
/// `item` must not be in a different linked list (with the same id).
pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
// SAFETY: The user provided a reference, and reference are never dangling.
//
// As for why this is not a data race, there are two cases:
//
// * If `item` is not in any list, then these fields are read-only and null.
// * If `item` is in this list, then we have exclusive access to these fields since we
// have a mutable reference to the list.
//
// In either case, there's no race.
let ListLinksFields { next, prev } = unsafe { *item };
debug_assert_eq!(next.is_null(), prev.is_null());
if !next.is_null() {
// This is really a no-op, but this ensures that `item` is a raw pointer that was
// obtained without going through a pointer->reference->pointer conversion roundtrip.
// This ensures that the list is valid under the more restrictive strict provenance
// ruleset.
//
// SAFETY: We just checked that `next` is not null, and it's not dangling by the
// list invariants.
unsafe {
debug_assert_eq!(item, (*next).prev);
item = (*next).prev;
}
// SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
// is in this list. The pointers are in the right order.
Some(unsafe { self.remove_internal_inner(item, next, prev) })
} else {
None
}
}
/// Removes the provided item from the list.
///
/// # Safety
///
/// `item` must point at an item in this list.
unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
// SAFETY: The caller promises that this pointer is not dangling, and there's no data race
// since we have a mutable reference to the list containing `item`.
let ListLinksFields { next, prev } = unsafe { *item };
// SAFETY: The pointers are ok and in the right order.
unsafe { self.remove_internal_inner(item, next, prev) }
}
/// Removes the provided item from the list.
///
/// # Safety
///
/// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
/// next` and `(*item).prev == prev`.
unsafe fn remove_internal_inner(
&mut self,
item: *mut ListLinksFields,
next: *mut ListLinksFields,
prev: *mut ListLinksFields,
) -> ListArc<T, ID> {
// SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
// pointers are always valid for items in a list.
//
// INVARIANT: There are three cases:
// * If the list has at least three items, then after removing the item, `prev` and `next`
// will be next to each other.
// * If the list has two items, then the remaining item will point at itself.
// * If the list has one item, then `next == prev == item`, so these writes have no
// effect. The list remains unchanged and `item` is still in the list for now.
unsafe {
(*next).prev = prev;
(*prev).next = next;
}
// SAFETY: We have exclusive access to items in the list.
// INVARIANT: `item` is being removed, so the pointers should be null.
unsafe {
(*item).prev = ptr::null_mut();
(*item).next = ptr::null_mut();
}
// INVARIANT: There are three cases:
// * If `item` was not the first item, then `self.first` should remain unchanged.
// * If `item` was the first item and there is another item, then we just updated
// `prev->next` to `next`, which is the new first item, and setting `item->next` to null
// did not modify `prev->next`.
// * If `item` was the only item in the list, then `prev == item`, and we just set
// `item->next` to null, so this correctly sets `first` to null now that the list is
// empty.
if self.first == item {
// SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
// list, so it must be valid. There is no race since `prev` is still in the list and we
// still have exclusive access to the list.
self.first = unsafe { (*prev).next };
}
// SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
// of `List`.
let list_links = unsafe { ListLinks::from_fields(item) };
// SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
let raw_item = unsafe { T::post_remove(list_links) };
// SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
unsafe { ListArc::from_raw(raw_item) }
}
/// Moves all items from `other` into `self`.
///
/// The items of `other` are added to the back of `self`, so the last item of `other` becomes
/// the last item of `self`.
pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
// First, we insert the elements into `self`. At the end, we make `other` empty.
if self.is_empty() {
// INVARIANT: All of the elements in `other` become elements of `self`.
self.first = other.first;
} else if !other.is_empty() {
let other_first = other.first;
// SAFETY: The other list is not empty, so this pointer is valid.
let other_last = unsafe { (*other_first).prev };
let self_first = self.first;
// SAFETY: The self list is not empty, so this pointer is valid.
let self_last = unsafe { (*self_first).prev };
// SAFETY: We have exclusive access to both lists, so we can update the pointers.
// INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
// update `self.first` because the first element of `self` does not change.
unsafe {
(*self_first).prev = other_last;
(*other_last).next = self_first;
(*self_last).next = other_first;
(*other_first).prev = self_last;
}
}
// INVARIANT: The other list is now empty, so update its pointer.
other.first = ptr::null_mut();
}
/// Returns a cursor to the first element of the list.
///
/// If the list is empty, this returns `None`.
pub fn cursor_front(&mut self) -> Option<Cursor<'_, T, ID>> {
if self.first.is_null() {
None
} else {
Some(Cursor {
current: self.first,
list: self,
})
}
}
/// Creates an iterator over the list.
pub fn iter(&self) -> Iter<'_, T, ID> {
// INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
// at the first element of the same list.
Iter {
current: self.first,
stop: self.first,
_ty: PhantomData,
}
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
fn default() -> Self {
List::new()
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
fn drop(&mut self) {
while let Some(item) = self.pop_front() {
drop(item);
}
}
}
/// An iterator over a [`List`].
///
/// # Invariants
///
/// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
/// * The `current` pointer is null or points at a value in that [`List`].
/// * The `stop` pointer is equal to the `first` field of that [`List`].
#[derive(Clone)]
pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
current: *mut ListLinksFields,
stop: *mut ListLinksFields,
_ty: PhantomData<&'a ListArc<T, ID>>,
}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
type Item = ArcBorrow<'a, T>;
fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
if self.current.is_null() {
return None;
}
let current = self.current;
// SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
// dangling. There's no race because the iterator holds an immutable borrow to the list.
let next = unsafe { (*current).next };
// INVARIANT: If `current` was the last element of the list, then this updates it to null.
// Otherwise, we update it to the next element.
self.current = if next != self.stop {
next
} else {
ptr::null_mut()
};
// SAFETY: The `current` pointer points at a value in the list.
let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
// SAFETY:
// * All values in a list are stored in an `Arc`.
// * The value cannot be removed from the list for the duration of the lifetime annotated
// on the returned `ArcBorrow`, because removing it from the list would require mutable
// access to the list. However, the `ArcBorrow` is annotated with the iterator's
// lifetime, and the list is immutably borrowed for that lifetime.
// * Values in a list never have a `UniqueArc` reference.
Some(unsafe { ArcBorrow::from_raw(item) })
}
}
/// A cursor into a [`List`].
///
/// # Invariants
///
/// The `current` pointer points a value in `list`.
pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
current: *mut ListLinksFields,
list: &'a mut List<T, ID>,
}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
/// Access the current element of this cursor.
pub fn current(&self) -> ArcBorrow<'_, T> {
// SAFETY: The `current` pointer points a value in the list.
let me = unsafe { T::view_value(ListLinks::from_fields(self.current)) };
// SAFETY:
// * All values in a list are stored in an `Arc`.
// * The value cannot be removed from the list for the duration of the lifetime annotated
// on the returned `ArcBorrow`, because removing it from the list would require mutable
// access to the cursor or the list. However, the `ArcBorrow` holds an immutable borrow
// on the cursor, which in turn holds a mutable borrow on the list, so any such
// mutable access requires first releasing the immutable borrow on the cursor.
// * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
// reference, and `UniqueArc` references must be unique.
unsafe { ArcBorrow::from_raw(me) }
}
/// Move the cursor to the next element.
pub fn next(self) -> Option<Cursor<'a, T, ID>> {
// SAFETY: The `current` field is always in a list.
let next = unsafe { (*self.current).next };
if next == self.list.first {
None
} else {
// INVARIANT: Since `self.current` is in the `list`, its `next` pointer is also in the
// `list`.
Some(Cursor {
current: next,
list: self.list,
})
}
}
/// Move the cursor to the previous element.
pub fn prev(self) -> Option<Cursor<'a, T, ID>> {
// SAFETY: The `current` field is always in a list.
let prev = unsafe { (*self.current).prev };
if self.current == self.list.first {
None
} else {
// INVARIANT: Since `self.current` is in the `list`, its `prev` pointer is also in the
// `list`.
Some(Cursor {
current: prev,
list: self.list,
})
}
}
/// Remove the current element from the list.
pub fn remove(self) -> ListArc<T, ID> {
// SAFETY: The `current` pointer always points at a member of the list.
unsafe { self.list.remove_internal(self.current) }
}
}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
type IntoIter = Iter<'a, T, ID>;
type Item = ArcBorrow<'a, T>;
fn into_iter(self) -> Iter<'a, T, ID> {
self.iter()
}
}
/// An owning iterator into a [`List`].
pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
list: List<T, ID>,
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
type Item = ListArc<T, ID>;
fn next(&mut self) -> Option<ListArc<T, ID>> {
self.list.pop_front()
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
fn next_back(&mut self) -> Option<ListArc<T, ID>> {
self.list.pop_back()
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
type IntoIter = IntoIter<T, ID>;
type Item = ListArc<T, ID>;
fn into_iter(self) -> IntoIter<T, ID> {
IntoIter { list: self }
}
}