linux/tools/testing/selftests/kvm/s390x/resets.c
Sean Christopherson fcba483e82 KVM: selftests: Sanity check input to ioctls() at build time
Add a static assert to the KVM/VM/vCPU ioctl() helpers to verify that the
size of the argument provided matches the expected size of the IOCTL.
Because ioctl() ultimately takes a "void *", it's all too easy to pass in
garbage and not detect the error until runtime.  E.g. while working on a
CPUID rework, selftests happily compiled when vcpu_set_cpuid()
unintentionally passed the cpuid() function as the parameter to ioctl()
(a local "cpuid" parameter was removed, but its use was not replaced with
"vcpu->cpuid" as intended).

Tweak a variety of benign issues that aren't compatible with the sanity
check, e.g. passing a non-pointer for ioctls().

Note, static_assert() requires a string on older versions of GCC.  Feed
it an empty string to make the compiler happy.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-11 11:48:09 -04:00

316 lines
8.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Test for s390x CPU resets
*
* Copyright (C) 2020, IBM
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include "test_util.h"
#include "kvm_util.h"
#include "kselftest.h"
#define LOCAL_IRQS 32
#define ARBITRARY_NON_ZERO_VCPU_ID 3
struct kvm_s390_irq buf[ARBITRARY_NON_ZERO_VCPU_ID + LOCAL_IRQS];
static uint8_t regs_null[512];
static void guest_code_initial(void)
{
/* set several CRs to "safe" value */
unsigned long cr2_59 = 0x10; /* enable guarded storage */
unsigned long cr8_63 = 0x1; /* monitor mask = 1 */
unsigned long cr10 = 1; /* PER START */
unsigned long cr11 = -1; /* PER END */
/* Dirty registers */
asm volatile (
" lghi 2,0x11\n" /* Round toward 0 */
" sfpc 2\n" /* set fpc to !=0 */
" lctlg 2,2,%0\n"
" lctlg 8,8,%1\n"
" lctlg 10,10,%2\n"
" lctlg 11,11,%3\n"
/* now clobber some general purpose regs */
" llihh 0,0xffff\n"
" llihl 1,0x5555\n"
" llilh 2,0xaaaa\n"
" llill 3,0x0000\n"
/* now clobber a floating point reg */
" lghi 4,0x1\n"
" cdgbr 0,4\n"
/* now clobber an access reg */
" sar 9,4\n"
/* We embed diag 501 here to control register content */
" diag 0,0,0x501\n"
:
: "m" (cr2_59), "m" (cr8_63), "m" (cr10), "m" (cr11)
/* no clobber list as this should not return */
);
}
static void test_one_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t value)
{
uint64_t eval_reg;
vcpu_get_reg(vcpu, id, &eval_reg);
TEST_ASSERT(eval_reg == value, "value == 0x%lx", value);
}
static void assert_noirq(struct kvm_vcpu *vcpu)
{
struct kvm_s390_irq_state irq_state;
int irqs;
irq_state.len = sizeof(buf);
irq_state.buf = (unsigned long)buf;
irqs = __vcpu_ioctl(vcpu, KVM_S390_GET_IRQ_STATE, &irq_state);
/*
* irqs contains the number of retrieved interrupts. Any interrupt
* (notably, the emergency call interrupt we have injected) should
* be cleared by the resets, so this should be 0.
*/
TEST_ASSERT(irqs >= 0, "Could not fetch IRQs: errno %d\n", errno);
TEST_ASSERT(!irqs, "IRQ pending");
}
static void assert_clear(struct kvm_vcpu *vcpu)
{
struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;
struct kvm_sregs sregs;
struct kvm_regs regs;
struct kvm_fpu fpu;
vcpu_regs_get(vcpu, &regs);
TEST_ASSERT(!memcmp(&regs.gprs, regs_null, sizeof(regs.gprs)), "grs == 0");
vcpu_sregs_get(vcpu, &sregs);
TEST_ASSERT(!memcmp(&sregs.acrs, regs_null, sizeof(sregs.acrs)), "acrs == 0");
vcpu_fpu_get(vcpu, &fpu);
TEST_ASSERT(!memcmp(&fpu.fprs, regs_null, sizeof(fpu.fprs)), "fprs == 0");
/* sync regs */
TEST_ASSERT(!memcmp(sync_regs->gprs, regs_null, sizeof(sync_regs->gprs)),
"gprs0-15 == 0 (sync_regs)");
TEST_ASSERT(!memcmp(sync_regs->acrs, regs_null, sizeof(sync_regs->acrs)),
"acrs0-15 == 0 (sync_regs)");
TEST_ASSERT(!memcmp(sync_regs->vrs, regs_null, sizeof(sync_regs->vrs)),
"vrs0-15 == 0 (sync_regs)");
}
static void assert_initial_noclear(struct kvm_vcpu *vcpu)
{
struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;
TEST_ASSERT(sync_regs->gprs[0] == 0xffff000000000000UL,
"gpr0 == 0xffff000000000000 (sync_regs)");
TEST_ASSERT(sync_regs->gprs[1] == 0x0000555500000000UL,
"gpr1 == 0x0000555500000000 (sync_regs)");
TEST_ASSERT(sync_regs->gprs[2] == 0x00000000aaaa0000UL,
"gpr2 == 0x00000000aaaa0000 (sync_regs)");
TEST_ASSERT(sync_regs->gprs[3] == 0x0000000000000000UL,
"gpr3 == 0x0000000000000000 (sync_regs)");
TEST_ASSERT(sync_regs->fprs[0] == 0x3ff0000000000000UL,
"fpr0 == 0f1 (sync_regs)");
TEST_ASSERT(sync_regs->acrs[9] == 1, "ar9 == 1 (sync_regs)");
}
static void assert_initial(struct kvm_vcpu *vcpu)
{
struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;
struct kvm_sregs sregs;
struct kvm_fpu fpu;
/* KVM_GET_SREGS */
vcpu_sregs_get(vcpu, &sregs);
TEST_ASSERT(sregs.crs[0] == 0xE0UL, "cr0 == 0xE0 (KVM_GET_SREGS)");
TEST_ASSERT(sregs.crs[14] == 0xC2000000UL,
"cr14 == 0xC2000000 (KVM_GET_SREGS)");
TEST_ASSERT(!memcmp(&sregs.crs[1], regs_null, sizeof(sregs.crs[1]) * 12),
"cr1-13 == 0 (KVM_GET_SREGS)");
TEST_ASSERT(sregs.crs[15] == 0, "cr15 == 0 (KVM_GET_SREGS)");
/* sync regs */
TEST_ASSERT(sync_regs->crs[0] == 0xE0UL, "cr0 == 0xE0 (sync_regs)");
TEST_ASSERT(sync_regs->crs[14] == 0xC2000000UL,
"cr14 == 0xC2000000 (sync_regs)");
TEST_ASSERT(!memcmp(&sync_regs->crs[1], regs_null, 8 * 12),
"cr1-13 == 0 (sync_regs)");
TEST_ASSERT(sync_regs->crs[15] == 0, "cr15 == 0 (sync_regs)");
TEST_ASSERT(sync_regs->fpc == 0, "fpc == 0 (sync_regs)");
TEST_ASSERT(sync_regs->todpr == 0, "todpr == 0 (sync_regs)");
TEST_ASSERT(sync_regs->cputm == 0, "cputm == 0 (sync_regs)");
TEST_ASSERT(sync_regs->ckc == 0, "ckc == 0 (sync_regs)");
TEST_ASSERT(sync_regs->pp == 0, "pp == 0 (sync_regs)");
TEST_ASSERT(sync_regs->gbea == 1, "gbea == 1 (sync_regs)");
/* kvm_run */
TEST_ASSERT(vcpu->run->psw_addr == 0, "psw_addr == 0 (kvm_run)");
TEST_ASSERT(vcpu->run->psw_mask == 0, "psw_mask == 0 (kvm_run)");
vcpu_fpu_get(vcpu, &fpu);
TEST_ASSERT(!fpu.fpc, "fpc == 0");
test_one_reg(vcpu, KVM_REG_S390_GBEA, 1);
test_one_reg(vcpu, KVM_REG_S390_PP, 0);
test_one_reg(vcpu, KVM_REG_S390_TODPR, 0);
test_one_reg(vcpu, KVM_REG_S390_CPU_TIMER, 0);
test_one_reg(vcpu, KVM_REG_S390_CLOCK_COMP, 0);
}
static void assert_normal_noclear(struct kvm_vcpu *vcpu)
{
struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;
TEST_ASSERT(sync_regs->crs[2] == 0x10, "cr2 == 10 (sync_regs)");
TEST_ASSERT(sync_regs->crs[8] == 1, "cr10 == 1 (sync_regs)");
TEST_ASSERT(sync_regs->crs[10] == 1, "cr10 == 1 (sync_regs)");
TEST_ASSERT(sync_regs->crs[11] == -1, "cr11 == -1 (sync_regs)");
}
static void assert_normal(struct kvm_vcpu *vcpu)
{
test_one_reg(vcpu, KVM_REG_S390_PFTOKEN, KVM_S390_PFAULT_TOKEN_INVALID);
TEST_ASSERT(vcpu->run->s.regs.pft == KVM_S390_PFAULT_TOKEN_INVALID,
"pft == 0xff..... (sync_regs)");
assert_noirq(vcpu);
}
static void inject_irq(struct kvm_vcpu *vcpu)
{
struct kvm_s390_irq_state irq_state;
struct kvm_s390_irq *irq = &buf[0];
int irqs;
/* Inject IRQ */
irq_state.len = sizeof(struct kvm_s390_irq);
irq_state.buf = (unsigned long)buf;
irq->type = KVM_S390_INT_EMERGENCY;
irq->u.emerg.code = vcpu->id;
irqs = __vcpu_ioctl(vcpu, KVM_S390_SET_IRQ_STATE, &irq_state);
TEST_ASSERT(irqs >= 0, "Error injecting EMERGENCY IRQ errno %d\n", errno);
}
static struct kvm_vm *create_vm(struct kvm_vcpu **vcpu)
{
struct kvm_vm *vm;
vm = vm_create(1);
*vcpu = vm_vcpu_add(vm, ARBITRARY_NON_ZERO_VCPU_ID, guest_code_initial);
return vm;
}
static void test_normal(void)
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
ksft_print_msg("Testing normal reset\n");
vm = create_vm(&vcpu);
vcpu_run(vcpu);
inject_irq(vcpu);
vcpu_ioctl(vcpu, KVM_S390_NORMAL_RESET, NULL);
/* must clears */
assert_normal(vcpu);
/* must not clears */
assert_normal_noclear(vcpu);
assert_initial_noclear(vcpu);
kvm_vm_free(vm);
}
static void test_initial(void)
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
ksft_print_msg("Testing initial reset\n");
vm = create_vm(&vcpu);
vcpu_run(vcpu);
inject_irq(vcpu);
vcpu_ioctl(vcpu, KVM_S390_INITIAL_RESET, NULL);
/* must clears */
assert_normal(vcpu);
assert_initial(vcpu);
/* must not clears */
assert_initial_noclear(vcpu);
kvm_vm_free(vm);
}
static void test_clear(void)
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
ksft_print_msg("Testing clear reset\n");
vm = create_vm(&vcpu);
vcpu_run(vcpu);
inject_irq(vcpu);
vcpu_ioctl(vcpu, KVM_S390_CLEAR_RESET, NULL);
/* must clears */
assert_normal(vcpu);
assert_initial(vcpu);
assert_clear(vcpu);
kvm_vm_free(vm);
}
struct testdef {
const char *name;
void (*test)(void);
bool needs_cap;
} testlist[] = {
{ "initial", test_initial, false },
{ "normal", test_normal, true },
{ "clear", test_clear, true },
};
int main(int argc, char *argv[])
{
bool has_s390_vcpu_resets = kvm_check_cap(KVM_CAP_S390_VCPU_RESETS);
int idx;
setbuf(stdout, NULL); /* Tell stdout not to buffer its content */
ksft_print_header();
ksft_set_plan(ARRAY_SIZE(testlist));
for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
if (!testlist[idx].needs_cap || has_s390_vcpu_resets) {
testlist[idx].test();
ksft_test_result_pass("%s\n", testlist[idx].name);
} else {
ksft_test_result_skip("%s - no VCPU_RESETS capability\n",
testlist[idx].name);
}
}
ksft_finished(); /* Print results and exit() accordingly */
}