mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-08 23:04:35 +08:00
03bff5819a
[ Upstream commit3f4ca5fafc
] While one cpu is working on looking up the right socket from ehash table, another cpu is done deleting the request socket and is about to add (or is adding) the big socket from the table. It means that we could miss both of them, even though it has little chance. Let me draw a call trace map of the server side. CPU 0 CPU 1 ----- ----- tcp_v4_rcv() syn_recv_sock() inet_ehash_insert() -> sk_nulls_del_node_init_rcu(osk) __inet_lookup_established() -> __sk_nulls_add_node_rcu(sk, list) Notice that the CPU 0 is receiving the data after the final ack during 3-way shakehands and CPU 1 is still handling the final ack. Why could this be a real problem? This case is happening only when the final ack and the first data receiving by different CPUs. Then the server receiving data with ACK flag tries to search one proper established socket from ehash table, but apparently it fails as my map shows above. After that, the server fetches a listener socket and then sends a RST because it finds a ACK flag in the skb (data), which obeys RST definition in RFC 793. Besides, Eric pointed out there's one more race condition where it handles tw socket hashdance. Only by adding to the tail of the list before deleting the old one can we avoid the race if the reader has already begun the bucket traversal and it would possibly miss the head. Many thanks to Eric for great help from beginning to end. Fixes:5e0724d027
("tcp/dccp: fix hashdance race for passive sessions") Suggested-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jason Xing <kernelxing@tencent.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/lkml/20230112065336.41034-1-kerneljasonxing@gmail.com/ Link: https://lore.kernel.org/r/20230118015941.1313-1-kerneljasonxing@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
303 lines
8.9 KiB
C
303 lines
8.9 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* Generic TIME_WAIT sockets functions
|
|
*
|
|
* From code orinally in TCP
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <net/inet_hashtables.h>
|
|
#include <net/inet_timewait_sock.h>
|
|
#include <net/ip.h>
|
|
|
|
|
|
/**
|
|
* inet_twsk_bind_unhash - unhash a timewait socket from bind hash
|
|
* @tw: timewait socket
|
|
* @hashinfo: hashinfo pointer
|
|
*
|
|
* unhash a timewait socket from bind hash, if hashed.
|
|
* bind hash lock must be held by caller.
|
|
* Returns 1 if caller should call inet_twsk_put() after lock release.
|
|
*/
|
|
void inet_twsk_bind_unhash(struct inet_timewait_sock *tw,
|
|
struct inet_hashinfo *hashinfo)
|
|
{
|
|
struct inet_bind_bucket *tb = tw->tw_tb;
|
|
|
|
if (!tb)
|
|
return;
|
|
|
|
__hlist_del(&tw->tw_bind_node);
|
|
tw->tw_tb = NULL;
|
|
inet_bind_bucket_destroy(hashinfo->bind_bucket_cachep, tb);
|
|
__sock_put((struct sock *)tw);
|
|
}
|
|
|
|
/* Must be called with locally disabled BHs. */
|
|
static void inet_twsk_kill(struct inet_timewait_sock *tw)
|
|
{
|
|
struct inet_hashinfo *hashinfo = tw->tw_dr->hashinfo;
|
|
spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash);
|
|
struct inet_bind_hashbucket *bhead;
|
|
|
|
spin_lock(lock);
|
|
sk_nulls_del_node_init_rcu((struct sock *)tw);
|
|
spin_unlock(lock);
|
|
|
|
/* Disassociate with bind bucket. */
|
|
bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), tw->tw_num,
|
|
hashinfo->bhash_size)];
|
|
|
|
spin_lock(&bhead->lock);
|
|
inet_twsk_bind_unhash(tw, hashinfo);
|
|
spin_unlock(&bhead->lock);
|
|
|
|
atomic_dec(&tw->tw_dr->tw_count);
|
|
inet_twsk_put(tw);
|
|
}
|
|
|
|
void inet_twsk_free(struct inet_timewait_sock *tw)
|
|
{
|
|
struct module *owner = tw->tw_prot->owner;
|
|
twsk_destructor((struct sock *)tw);
|
|
#ifdef SOCK_REFCNT_DEBUG
|
|
pr_debug("%s timewait_sock %p released\n", tw->tw_prot->name, tw);
|
|
#endif
|
|
kmem_cache_free(tw->tw_prot->twsk_prot->twsk_slab, tw);
|
|
module_put(owner);
|
|
}
|
|
|
|
void inet_twsk_put(struct inet_timewait_sock *tw)
|
|
{
|
|
if (refcount_dec_and_test(&tw->tw_refcnt))
|
|
inet_twsk_free(tw);
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_twsk_put);
|
|
|
|
static void inet_twsk_add_node_tail_rcu(struct inet_timewait_sock *tw,
|
|
struct hlist_nulls_head *list)
|
|
{
|
|
hlist_nulls_add_tail_rcu(&tw->tw_node, list);
|
|
}
|
|
|
|
static void inet_twsk_add_bind_node(struct inet_timewait_sock *tw,
|
|
struct hlist_head *list)
|
|
{
|
|
hlist_add_head(&tw->tw_bind_node, list);
|
|
}
|
|
|
|
/*
|
|
* Enter the time wait state. This is called with locally disabled BH.
|
|
* Essentially we whip up a timewait bucket, copy the relevant info into it
|
|
* from the SK, and mess with hash chains and list linkage.
|
|
*/
|
|
void inet_twsk_hashdance(struct inet_timewait_sock *tw, struct sock *sk,
|
|
struct inet_hashinfo *hashinfo)
|
|
{
|
|
const struct inet_sock *inet = inet_sk(sk);
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct inet_ehash_bucket *ehead = inet_ehash_bucket(hashinfo, sk->sk_hash);
|
|
spinlock_t *lock = inet_ehash_lockp(hashinfo, sk->sk_hash);
|
|
struct inet_bind_hashbucket *bhead;
|
|
/* Step 1: Put TW into bind hash. Original socket stays there too.
|
|
Note, that any socket with inet->num != 0 MUST be bound in
|
|
binding cache, even if it is closed.
|
|
*/
|
|
bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), inet->inet_num,
|
|
hashinfo->bhash_size)];
|
|
spin_lock(&bhead->lock);
|
|
tw->tw_tb = icsk->icsk_bind_hash;
|
|
WARN_ON(!icsk->icsk_bind_hash);
|
|
inet_twsk_add_bind_node(tw, &tw->tw_tb->owners);
|
|
spin_unlock(&bhead->lock);
|
|
|
|
spin_lock(lock);
|
|
|
|
inet_twsk_add_node_tail_rcu(tw, &ehead->chain);
|
|
|
|
/* Step 3: Remove SK from hash chain */
|
|
if (__sk_nulls_del_node_init_rcu(sk))
|
|
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
|
|
|
|
spin_unlock(lock);
|
|
|
|
/* tw_refcnt is set to 3 because we have :
|
|
* - one reference for bhash chain.
|
|
* - one reference for ehash chain.
|
|
* - one reference for timer.
|
|
* We can use atomic_set() because prior spin_lock()/spin_unlock()
|
|
* committed into memory all tw fields.
|
|
* Also note that after this point, we lost our implicit reference
|
|
* so we are not allowed to use tw anymore.
|
|
*/
|
|
refcount_set(&tw->tw_refcnt, 3);
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_twsk_hashdance);
|
|
|
|
static void tw_timer_handler(struct timer_list *t)
|
|
{
|
|
struct inet_timewait_sock *tw = from_timer(tw, t, tw_timer);
|
|
|
|
if (tw->tw_kill)
|
|
__NET_INC_STATS(twsk_net(tw), LINUX_MIB_TIMEWAITKILLED);
|
|
else
|
|
__NET_INC_STATS(twsk_net(tw), LINUX_MIB_TIMEWAITED);
|
|
inet_twsk_kill(tw);
|
|
}
|
|
|
|
struct inet_timewait_sock *inet_twsk_alloc(const struct sock *sk,
|
|
struct inet_timewait_death_row *dr,
|
|
const int state)
|
|
{
|
|
struct inet_timewait_sock *tw;
|
|
|
|
if (atomic_read(&dr->tw_count) >= dr->sysctl_max_tw_buckets)
|
|
return NULL;
|
|
|
|
tw = kmem_cache_alloc(sk->sk_prot_creator->twsk_prot->twsk_slab,
|
|
GFP_ATOMIC);
|
|
if (tw) {
|
|
const struct inet_sock *inet = inet_sk(sk);
|
|
|
|
tw->tw_dr = dr;
|
|
/* Give us an identity. */
|
|
tw->tw_daddr = inet->inet_daddr;
|
|
tw->tw_rcv_saddr = inet->inet_rcv_saddr;
|
|
tw->tw_bound_dev_if = sk->sk_bound_dev_if;
|
|
tw->tw_tos = inet->tos;
|
|
tw->tw_num = inet->inet_num;
|
|
tw->tw_state = TCP_TIME_WAIT;
|
|
tw->tw_substate = state;
|
|
tw->tw_sport = inet->inet_sport;
|
|
tw->tw_dport = inet->inet_dport;
|
|
tw->tw_family = sk->sk_family;
|
|
tw->tw_reuse = sk->sk_reuse;
|
|
tw->tw_reuseport = sk->sk_reuseport;
|
|
tw->tw_hash = sk->sk_hash;
|
|
tw->tw_ipv6only = 0;
|
|
tw->tw_transparent = inet->transparent;
|
|
tw->tw_prot = sk->sk_prot_creator;
|
|
atomic64_set(&tw->tw_cookie, atomic64_read(&sk->sk_cookie));
|
|
twsk_net_set(tw, sock_net(sk));
|
|
timer_setup(&tw->tw_timer, tw_timer_handler, TIMER_PINNED);
|
|
/*
|
|
* Because we use RCU lookups, we should not set tw_refcnt
|
|
* to a non null value before everything is setup for this
|
|
* timewait socket.
|
|
*/
|
|
refcount_set(&tw->tw_refcnt, 0);
|
|
|
|
__module_get(tw->tw_prot->owner);
|
|
}
|
|
|
|
return tw;
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_twsk_alloc);
|
|
|
|
/* These are always called from BH context. See callers in
|
|
* tcp_input.c to verify this.
|
|
*/
|
|
|
|
/* This is for handling early-kills of TIME_WAIT sockets.
|
|
* Warning : consume reference.
|
|
* Caller should not access tw anymore.
|
|
*/
|
|
void inet_twsk_deschedule_put(struct inet_timewait_sock *tw)
|
|
{
|
|
if (del_timer_sync(&tw->tw_timer))
|
|
inet_twsk_kill(tw);
|
|
inet_twsk_put(tw);
|
|
}
|
|
EXPORT_SYMBOL(inet_twsk_deschedule_put);
|
|
|
|
void __inet_twsk_schedule(struct inet_timewait_sock *tw, int timeo, bool rearm)
|
|
{
|
|
/* timeout := RTO * 3.5
|
|
*
|
|
* 3.5 = 1+2+0.5 to wait for two retransmits.
|
|
*
|
|
* RATIONALE: if FIN arrived and we entered TIME-WAIT state,
|
|
* our ACK acking that FIN can be lost. If N subsequent retransmitted
|
|
* FINs (or previous seqments) are lost (probability of such event
|
|
* is p^(N+1), where p is probability to lose single packet and
|
|
* time to detect the loss is about RTO*(2^N - 1) with exponential
|
|
* backoff). Normal timewait length is calculated so, that we
|
|
* waited at least for one retransmitted FIN (maximal RTO is 120sec).
|
|
* [ BTW Linux. following BSD, violates this requirement waiting
|
|
* only for 60sec, we should wait at least for 240 secs.
|
|
* Well, 240 consumes too much of resources 8)
|
|
* ]
|
|
* This interval is not reduced to catch old duplicate and
|
|
* responces to our wandering segments living for two MSLs.
|
|
* However, if we use PAWS to detect
|
|
* old duplicates, we can reduce the interval to bounds required
|
|
* by RTO, rather than MSL. So, if peer understands PAWS, we
|
|
* kill tw bucket after 3.5*RTO (it is important that this number
|
|
* is greater than TS tick!) and detect old duplicates with help
|
|
* of PAWS.
|
|
*/
|
|
|
|
tw->tw_kill = timeo <= 4*HZ;
|
|
if (!rearm) {
|
|
BUG_ON(mod_timer(&tw->tw_timer, jiffies + timeo));
|
|
atomic_inc(&tw->tw_dr->tw_count);
|
|
} else {
|
|
mod_timer_pending(&tw->tw_timer, jiffies + timeo);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(__inet_twsk_schedule);
|
|
|
|
void inet_twsk_purge(struct inet_hashinfo *hashinfo, int family)
|
|
{
|
|
struct inet_timewait_sock *tw;
|
|
struct sock *sk;
|
|
struct hlist_nulls_node *node;
|
|
unsigned int slot;
|
|
|
|
for (slot = 0; slot <= hashinfo->ehash_mask; slot++) {
|
|
struct inet_ehash_bucket *head = &hashinfo->ehash[slot];
|
|
restart_rcu:
|
|
cond_resched();
|
|
rcu_read_lock();
|
|
restart:
|
|
sk_nulls_for_each_rcu(sk, node, &head->chain) {
|
|
if (sk->sk_state != TCP_TIME_WAIT)
|
|
continue;
|
|
tw = inet_twsk(sk);
|
|
if ((tw->tw_family != family) ||
|
|
refcount_read(&twsk_net(tw)->ns.count))
|
|
continue;
|
|
|
|
if (unlikely(!refcount_inc_not_zero(&tw->tw_refcnt)))
|
|
continue;
|
|
|
|
if (unlikely((tw->tw_family != family) ||
|
|
refcount_read(&twsk_net(tw)->ns.count))) {
|
|
inet_twsk_put(tw);
|
|
goto restart;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
local_bh_disable();
|
|
inet_twsk_deschedule_put(tw);
|
|
local_bh_enable();
|
|
goto restart_rcu;
|
|
}
|
|
/* If the nulls value we got at the end of this lookup is
|
|
* not the expected one, we must restart lookup.
|
|
* We probably met an item that was moved to another chain.
|
|
*/
|
|
if (get_nulls_value(node) != slot)
|
|
goto restart;
|
|
rcu_read_unlock();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_twsk_purge);
|