mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-18 00:24:58 +08:00
5383cc6efe
In order to support 52-bit kernel addresses detectable at boot time, one needs to know the actual VA_BITS detected. A new variable vabits_actual is introduced in this commit and employed for the KVM hypervisor layout, KASAN, fault handling and phys-to/from-virt translation where there would normally be compile time constants. In order to maintain performance in phys_to_virt, another variable physvirt_offset is introduced. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steve Capper <steve.capper@arm.com> Signed-off-by: Will Deacon <will@kernel.org>
348 lines
10 KiB
C
348 lines
10 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* Based on arch/arm/include/asm/memory.h
|
|
*
|
|
* Copyright (C) 2000-2002 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*
|
|
* Note: this file should not be included by non-asm/.h files
|
|
*/
|
|
#ifndef __ASM_MEMORY_H
|
|
#define __ASM_MEMORY_H
|
|
|
|
#include <linux/compiler.h>
|
|
#include <linux/const.h>
|
|
#include <linux/types.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/page-def.h>
|
|
#include <linux/sizes.h>
|
|
|
|
/*
|
|
* Size of the PCI I/O space. This must remain a power of two so that
|
|
* IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
|
|
*/
|
|
#define PCI_IO_SIZE SZ_16M
|
|
|
|
/*
|
|
* VMEMMAP_SIZE - allows the whole linear region to be covered by
|
|
* a struct page array
|
|
*/
|
|
#define VMEMMAP_SIZE (UL(1) << (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT))
|
|
|
|
/*
|
|
* PAGE_OFFSET - the virtual address of the start of the linear map (top
|
|
* (VA_BITS - 1))
|
|
* KIMAGE_VADDR - the virtual address of the start of the kernel image
|
|
* VA_BITS - the maximum number of bits for virtual addresses.
|
|
* VA_START - the first kernel virtual address.
|
|
*/
|
|
#define VA_BITS (CONFIG_ARM64_VA_BITS)
|
|
#define PAGE_OFFSET (UL(0xffffffffffffffff) - \
|
|
(UL(1) << VA_BITS) + 1)
|
|
#define KIMAGE_VADDR (MODULES_END)
|
|
#define BPF_JIT_REGION_START (KASAN_SHADOW_END)
|
|
#define BPF_JIT_REGION_SIZE (SZ_128M)
|
|
#define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
|
|
#define MODULES_END (MODULES_VADDR + MODULES_VSIZE)
|
|
#define MODULES_VADDR (BPF_JIT_REGION_END)
|
|
#define MODULES_VSIZE (SZ_128M)
|
|
#define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M)
|
|
#define PCI_IO_END (VMEMMAP_START - SZ_2M)
|
|
#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
|
|
#define FIXADDR_TOP (PCI_IO_START - SZ_2M)
|
|
#if VA_BITS > 48
|
|
#define VA_BITS_MIN (48)
|
|
#else
|
|
#define VA_BITS_MIN (VA_BITS)
|
|
#endif
|
|
#define _VA_START(va) (UL(0xffffffffffffffff) - \
|
|
(UL(1) << ((va) - 1)) + 1)
|
|
|
|
#define KERNEL_START _text
|
|
#define KERNEL_END _end
|
|
|
|
#ifdef CONFIG_ARM64_USER_VA_BITS_52
|
|
#define MAX_USER_VA_BITS 52
|
|
#else
|
|
#define MAX_USER_VA_BITS VA_BITS
|
|
#endif
|
|
|
|
/*
|
|
* Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
|
|
* address space for the shadow region respectively. They can bloat the stack
|
|
* significantly, so double the (minimum) stack size when they are in use.
|
|
*/
|
|
#ifdef CONFIG_KASAN
|
|
#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
|
|
#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \
|
|
+ KASAN_SHADOW_OFFSET)
|
|
#define KASAN_THREAD_SHIFT 1
|
|
#else
|
|
#define KASAN_THREAD_SHIFT 0
|
|
#define KASAN_SHADOW_END (_VA_START(VA_BITS_MIN))
|
|
#endif
|
|
|
|
#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT)
|
|
|
|
/*
|
|
* VMAP'd stacks are allocated at page granularity, so we must ensure that such
|
|
* stacks are a multiple of page size.
|
|
*/
|
|
#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
|
|
#define THREAD_SHIFT PAGE_SHIFT
|
|
#else
|
|
#define THREAD_SHIFT MIN_THREAD_SHIFT
|
|
#endif
|
|
|
|
#if THREAD_SHIFT >= PAGE_SHIFT
|
|
#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT)
|
|
#endif
|
|
|
|
#define THREAD_SIZE (UL(1) << THREAD_SHIFT)
|
|
|
|
/*
|
|
* By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
|
|
* checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
|
|
* assembly.
|
|
*/
|
|
#ifdef CONFIG_VMAP_STACK
|
|
#define THREAD_ALIGN (2 * THREAD_SIZE)
|
|
#else
|
|
#define THREAD_ALIGN THREAD_SIZE
|
|
#endif
|
|
|
|
#define IRQ_STACK_SIZE THREAD_SIZE
|
|
|
|
#define OVERFLOW_STACK_SIZE SZ_4K
|
|
|
|
/*
|
|
* Alignment of kernel segments (e.g. .text, .data).
|
|
*/
|
|
#if defined(CONFIG_DEBUG_ALIGN_RODATA)
|
|
/*
|
|
* 4 KB granule: 1 level 2 entry
|
|
* 16 KB granule: 128 level 3 entries, with contiguous bit
|
|
* 64 KB granule: 32 level 3 entries, with contiguous bit
|
|
*/
|
|
#define SEGMENT_ALIGN SZ_2M
|
|
#else
|
|
/*
|
|
* 4 KB granule: 16 level 3 entries, with contiguous bit
|
|
* 16 KB granule: 4 level 3 entries, without contiguous bit
|
|
* 64 KB granule: 1 level 3 entry
|
|
*/
|
|
#define SEGMENT_ALIGN SZ_64K
|
|
#endif
|
|
|
|
/*
|
|
* Memory types available.
|
|
*/
|
|
#define MT_DEVICE_nGnRnE 0
|
|
#define MT_DEVICE_nGnRE 1
|
|
#define MT_DEVICE_GRE 2
|
|
#define MT_NORMAL_NC 3
|
|
#define MT_NORMAL 4
|
|
#define MT_NORMAL_WT 5
|
|
|
|
/*
|
|
* Memory types for Stage-2 translation
|
|
*/
|
|
#define MT_S2_NORMAL 0xf
|
|
#define MT_S2_DEVICE_nGnRE 0x1
|
|
|
|
/*
|
|
* Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
|
|
* Stage-2 enforces Normal-WB and Device-nGnRE
|
|
*/
|
|
#define MT_S2_FWB_NORMAL 6
|
|
#define MT_S2_FWB_DEVICE_nGnRE 1
|
|
|
|
#ifdef CONFIG_ARM64_4K_PAGES
|
|
#define IOREMAP_MAX_ORDER (PUD_SHIFT)
|
|
#else
|
|
#define IOREMAP_MAX_ORDER (PMD_SHIFT)
|
|
#endif
|
|
|
|
#ifndef __ASSEMBLY__
|
|
extern u64 vabits_actual;
|
|
#define VA_START (_VA_START(vabits_actual))
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/mmdebug.h>
|
|
|
|
extern s64 physvirt_offset;
|
|
extern s64 memstart_addr;
|
|
/* PHYS_OFFSET - the physical address of the start of memory. */
|
|
#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
|
|
|
|
/* the virtual base of the kernel image (minus TEXT_OFFSET) */
|
|
extern u64 kimage_vaddr;
|
|
|
|
/* the offset between the kernel virtual and physical mappings */
|
|
extern u64 kimage_voffset;
|
|
|
|
static inline unsigned long kaslr_offset(void)
|
|
{
|
|
return kimage_vaddr - KIMAGE_VADDR;
|
|
}
|
|
|
|
/* the actual size of a user virtual address */
|
|
extern u64 vabits_user;
|
|
|
|
/*
|
|
* Allow all memory at the discovery stage. We will clip it later.
|
|
*/
|
|
#define MIN_MEMBLOCK_ADDR 0
|
|
#define MAX_MEMBLOCK_ADDR U64_MAX
|
|
|
|
/*
|
|
* PFNs are used to describe any physical page; this means
|
|
* PFN 0 == physical address 0.
|
|
*
|
|
* This is the PFN of the first RAM page in the kernel
|
|
* direct-mapped view. We assume this is the first page
|
|
* of RAM in the mem_map as well.
|
|
*/
|
|
#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT)
|
|
|
|
/*
|
|
* When dealing with data aborts, watchpoints, or instruction traps we may end
|
|
* up with a tagged userland pointer. Clear the tag to get a sane pointer to
|
|
* pass on to access_ok(), for instance.
|
|
*/
|
|
#define untagged_addr(addr) \
|
|
((__typeof__(addr))sign_extend64((u64)(addr), 55))
|
|
|
|
#ifdef CONFIG_KASAN_SW_TAGS
|
|
#define __tag_shifted(tag) ((u64)(tag) << 56)
|
|
#define __tag_set(addr, tag) (__typeof__(addr))( \
|
|
((u64)(addr) & ~__tag_shifted(0xff)) | __tag_shifted(tag))
|
|
#define __tag_reset(addr) untagged_addr(addr)
|
|
#define __tag_get(addr) (__u8)((u64)(addr) >> 56)
|
|
#else
|
|
static inline const void *__tag_set(const void *addr, u8 tag)
|
|
{
|
|
return addr;
|
|
}
|
|
|
|
#define __tag_reset(addr) (addr)
|
|
#define __tag_get(addr) 0
|
|
#endif
|
|
|
|
/*
|
|
* Physical vs virtual RAM address space conversion. These are
|
|
* private definitions which should NOT be used outside memory.h
|
|
* files. Use virt_to_phys/phys_to_virt/__pa/__va instead.
|
|
*/
|
|
|
|
|
|
/*
|
|
* The linear kernel range starts in the middle of the virtual adddress
|
|
* space. Testing the top bit for the start of the region is a
|
|
* sufficient check.
|
|
*/
|
|
#define __is_lm_address(addr) (!((addr) & BIT(vabits_actual - 1)))
|
|
|
|
#define __lm_to_phys(addr) (((addr) + physvirt_offset))
|
|
#define __kimg_to_phys(addr) ((addr) - kimage_voffset)
|
|
|
|
#define __virt_to_phys_nodebug(x) ({ \
|
|
phys_addr_t __x = (phys_addr_t)(x); \
|
|
__is_lm_address(__x) ? __lm_to_phys(__x) : \
|
|
__kimg_to_phys(__x); \
|
|
})
|
|
|
|
#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x))
|
|
|
|
#ifdef CONFIG_DEBUG_VIRTUAL
|
|
extern phys_addr_t __virt_to_phys(unsigned long x);
|
|
extern phys_addr_t __phys_addr_symbol(unsigned long x);
|
|
#else
|
|
#define __virt_to_phys(x) __virt_to_phys_nodebug(x)
|
|
#define __phys_addr_symbol(x) __pa_symbol_nodebug(x)
|
|
#endif
|
|
|
|
#define __phys_to_virt(x) ((unsigned long)((x) - physvirt_offset))
|
|
#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset))
|
|
|
|
/*
|
|
* Convert a page to/from a physical address
|
|
*/
|
|
#define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page)))
|
|
#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys)))
|
|
|
|
/*
|
|
* Note: Drivers should NOT use these. They are the wrong
|
|
* translation for translating DMA addresses. Use the driver
|
|
* DMA support - see dma-mapping.h.
|
|
*/
|
|
#define virt_to_phys virt_to_phys
|
|
static inline phys_addr_t virt_to_phys(const volatile void *x)
|
|
{
|
|
return __virt_to_phys((unsigned long)(x));
|
|
}
|
|
|
|
#define phys_to_virt phys_to_virt
|
|
static inline void *phys_to_virt(phys_addr_t x)
|
|
{
|
|
return (void *)(__phys_to_virt(x));
|
|
}
|
|
|
|
/*
|
|
* Drivers should NOT use these either.
|
|
*/
|
|
#define __pa(x) __virt_to_phys((unsigned long)(x))
|
|
#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
|
|
#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x))
|
|
#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x)))
|
|
#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
|
|
#define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x)))
|
|
#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x))
|
|
|
|
/*
|
|
* virt_to_page(k) convert a _valid_ virtual address to struct page *
|
|
* virt_addr_valid(k) indicates whether a virtual address is valid
|
|
*/
|
|
#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET)
|
|
|
|
#if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL)
|
|
#define virt_to_page(kaddr) pfn_to_page(__pa(kaddr) >> PAGE_SHIFT)
|
|
#define _virt_addr_valid(kaddr) pfn_valid(__pa(kaddr) >> PAGE_SHIFT)
|
|
#else
|
|
#define __virt_to_pgoff(kaddr) (((u64)(kaddr) - PAGE_OFFSET) / PAGE_SIZE * sizeof(struct page))
|
|
#define __page_to_voff(kaddr) (((u64)(kaddr) - VMEMMAP_START) * PAGE_SIZE / sizeof(struct page))
|
|
|
|
#define page_to_virt(page) ({ \
|
|
unsigned long __addr = \
|
|
((__page_to_voff(page)) + PAGE_OFFSET); \
|
|
const void *__addr_tag = \
|
|
__tag_set((void *)__addr, page_kasan_tag(page)); \
|
|
((void *)__addr_tag); \
|
|
})
|
|
|
|
#define virt_to_page(vaddr) ((struct page *)((__virt_to_pgoff(vaddr)) + VMEMMAP_START))
|
|
|
|
#define _virt_addr_valid(kaddr) pfn_valid(__virt_to_phys((u64)(kaddr)) >> PAGE_SHIFT)
|
|
#endif
|
|
#endif
|
|
|
|
#define _virt_addr_is_linear(kaddr) \
|
|
(__tag_reset((u64)(kaddr)) >= PAGE_OFFSET)
|
|
#define virt_addr_valid(kaddr) \
|
|
(_virt_addr_is_linear(kaddr) && _virt_addr_valid(kaddr))
|
|
|
|
/*
|
|
* Given that the GIC architecture permits ITS implementations that can only be
|
|
* configured with a LPI table address once, GICv3 systems with many CPUs may
|
|
* end up reserving a lot of different regions after a kexec for their LPI
|
|
* tables (one per CPU), as we are forced to reuse the same memory after kexec
|
|
* (and thus reserve it persistently with EFI beforehand)
|
|
*/
|
|
#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
|
|
# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
|
|
#endif
|
|
|
|
#include <asm-generic/memory_model.h>
|
|
|
|
#endif
|