linux/arch/arm/mm/fault.c
Russell King c88d6aa71b ARM: Provide definitions and helpers for decoding the FSR register
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-09-20 12:55:49 +01:00

526 lines
12 KiB
C

/*
* linux/arch/arm/mm/fault.c
*
* Copyright (C) 1995 Linus Torvalds
* Modifications for ARM processor (c) 1995-2004 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <asm/system.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include "fault.h"
/*
* Fault status register encodings
*/
#define FSR_WRITE (1 << 11)
#define FSR_FS4 (1 << 10)
#define FSR_FS3_0 (15)
static inline int fsr_fs(unsigned int fsr)
{
return (fsr & FSR_FS3_0) | (fsr & FSR_FS4) >> 6;
}
#ifdef CONFIG_MMU
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
{
int ret = 0;
if (!user_mode(regs)) {
/* kprobe_running() needs smp_processor_id() */
preempt_disable();
if (kprobe_running() && kprobe_fault_handler(regs, fsr))
ret = 1;
preempt_enable();
}
return ret;
}
#else
static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
{
return 0;
}
#endif
/*
* This is useful to dump out the page tables associated with
* 'addr' in mm 'mm'.
*/
void show_pte(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
if (!mm)
mm = &init_mm;
printk(KERN_ALERT "pgd = %p\n", mm->pgd);
pgd = pgd_offset(mm, addr);
printk(KERN_ALERT "[%08lx] *pgd=%08lx", addr, pgd_val(*pgd));
do {
pmd_t *pmd;
pte_t *pte;
if (pgd_none(*pgd))
break;
if (pgd_bad(*pgd)) {
printk("(bad)");
break;
}
pmd = pmd_offset(pgd, addr);
if (PTRS_PER_PMD != 1)
printk(", *pmd=%08lx", pmd_val(*pmd));
if (pmd_none(*pmd))
break;
if (pmd_bad(*pmd)) {
printk("(bad)");
break;
}
/* We must not map this if we have highmem enabled */
if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
break;
pte = pte_offset_map(pmd, addr);
printk(", *pte=%08lx", pte_val(*pte));
printk(", *ppte=%08lx", pte_val(pte[-PTRS_PER_PTE]));
pte_unmap(pte);
} while(0);
printk("\n");
}
#else /* CONFIG_MMU */
void show_pte(struct mm_struct *mm, unsigned long addr)
{ }
#endif /* CONFIG_MMU */
/*
* Oops. The kernel tried to access some page that wasn't present.
*/
static void
__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
struct pt_regs *regs)
{
/*
* Are we prepared to handle this kernel fault?
*/
if (fixup_exception(regs))
return;
/*
* No handler, we'll have to terminate things with extreme prejudice.
*/
bust_spinlocks(1);
printk(KERN_ALERT
"Unable to handle kernel %s at virtual address %08lx\n",
(addr < PAGE_SIZE) ? "NULL pointer dereference" :
"paging request", addr);
show_pte(mm, addr);
die("Oops", regs, fsr);
bust_spinlocks(0);
do_exit(SIGKILL);
}
/*
* Something tried to access memory that isn't in our memory map..
* User mode accesses just cause a SIGSEGV
*/
static void
__do_user_fault(struct task_struct *tsk, unsigned long addr,
unsigned int fsr, unsigned int sig, int code,
struct pt_regs *regs)
{
struct siginfo si;
#ifdef CONFIG_DEBUG_USER
if (user_debug & UDBG_SEGV) {
printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
tsk->comm, sig, addr, fsr);
show_pte(tsk->mm, addr);
show_regs(regs);
}
#endif
tsk->thread.address = addr;
tsk->thread.error_code = fsr;
tsk->thread.trap_no = 14;
si.si_signo = sig;
si.si_errno = 0;
si.si_code = code;
si.si_addr = (void __user *)addr;
force_sig_info(sig, &si, tsk);
}
void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->active_mm;
/*
* If we are in kernel mode at this point, we
* have no context to handle this fault with.
*/
if (user_mode(regs))
__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
else
__do_kernel_fault(mm, addr, fsr, regs);
}
#ifdef CONFIG_MMU
#define VM_FAULT_BADMAP 0x010000
#define VM_FAULT_BADACCESS 0x020000
static int
__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
struct task_struct *tsk)
{
struct vm_area_struct *vma;
int fault, mask;
vma = find_vma(mm, addr);
fault = VM_FAULT_BADMAP;
if (!vma)
goto out;
if (vma->vm_start > addr)
goto check_stack;
/*
* Ok, we have a good vm_area for this
* memory access, so we can handle it.
*/
good_area:
if (fsr & FSR_WRITE)
mask = VM_WRITE;
else
mask = VM_READ|VM_EXEC|VM_WRITE;
fault = VM_FAULT_BADACCESS;
if (!(vma->vm_flags & mask))
goto out;
/*
* If for any reason at all we couldn't handle
* the fault, make sure we exit gracefully rather
* than endlessly redo the fault.
*/
survive:
fault = handle_mm_fault(mm, vma, addr & PAGE_MASK, (fsr & FSR_WRITE) ? FAULT_FLAG_WRITE : 0);
if (unlikely(fault & VM_FAULT_ERROR)) {
if (fault & VM_FAULT_OOM)
goto out_of_memory;
else if (fault & VM_FAULT_SIGBUS)
return fault;
BUG();
}
if (fault & VM_FAULT_MAJOR)
tsk->maj_flt++;
else
tsk->min_flt++;
return fault;
out_of_memory:
if (!is_global_init(tsk))
goto out;
/*
* If we are out of memory for pid1, sleep for a while and retry
*/
up_read(&mm->mmap_sem);
yield();
down_read(&mm->mmap_sem);
goto survive;
check_stack:
if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
goto good_area;
out:
return fault;
}
static int __kprobes
do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
struct task_struct *tsk;
struct mm_struct *mm;
int fault, sig, code;
if (notify_page_fault(regs, fsr))
return 0;
tsk = current;
mm = tsk->mm;
/*
* If we're in an interrupt or have no user
* context, we must not take the fault..
*/
if (in_atomic() || !mm)
goto no_context;
/*
* As per x86, we may deadlock here. However, since the kernel only
* validly references user space from well defined areas of the code,
* we can bug out early if this is from code which shouldn't.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
goto no_context;
down_read(&mm->mmap_sem);
}
fault = __do_page_fault(mm, addr, fsr, tsk);
up_read(&mm->mmap_sem);
/*
* Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
*/
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
return 0;
/*
* If we are in kernel mode at this point, we
* have no context to handle this fault with.
*/
if (!user_mode(regs))
goto no_context;
if (fault & VM_FAULT_OOM) {
/*
* We ran out of memory, or some other thing
* happened to us that made us unable to handle
* the page fault gracefully.
*/
printk("VM: killing process %s\n", tsk->comm);
do_group_exit(SIGKILL);
return 0;
}
if (fault & VM_FAULT_SIGBUS) {
/*
* We had some memory, but were unable to
* successfully fix up this page fault.
*/
sig = SIGBUS;
code = BUS_ADRERR;
} else {
/*
* Something tried to access memory that
* isn't in our memory map..
*/
sig = SIGSEGV;
code = fault == VM_FAULT_BADACCESS ?
SEGV_ACCERR : SEGV_MAPERR;
}
__do_user_fault(tsk, addr, fsr, sig, code, regs);
return 0;
no_context:
__do_kernel_fault(mm, addr, fsr, regs);
return 0;
}
#else /* CONFIG_MMU */
static int
do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
return 0;
}
#endif /* CONFIG_MMU */
/*
* First Level Translation Fault Handler
*
* We enter here because the first level page table doesn't contain
* a valid entry for the address.
*
* If the address is in kernel space (>= TASK_SIZE), then we are
* probably faulting in the vmalloc() area.
*
* If the init_task's first level page tables contains the relevant
* entry, we copy the it to this task. If not, we send the process
* a signal, fixup the exception, or oops the kernel.
*
* NOTE! We MUST NOT take any locks for this case. We may be in an
* interrupt or a critical region, and should only copy the information
* from the master page table, nothing more.
*/
#ifdef CONFIG_MMU
static int __kprobes
do_translation_fault(unsigned long addr, unsigned int fsr,
struct pt_regs *regs)
{
unsigned int index;
pgd_t *pgd, *pgd_k;
pmd_t *pmd, *pmd_k;
if (addr < TASK_SIZE)
return do_page_fault(addr, fsr, regs);
index = pgd_index(addr);
/*
* FIXME: CP15 C1 is write only on ARMv3 architectures.
*/
pgd = cpu_get_pgd() + index;
pgd_k = init_mm.pgd + index;
if (pgd_none(*pgd_k))
goto bad_area;
if (!pgd_present(*pgd))
set_pgd(pgd, *pgd_k);
pmd_k = pmd_offset(pgd_k, addr);
pmd = pmd_offset(pgd, addr);
if (pmd_none(*pmd_k))
goto bad_area;
copy_pmd(pmd, pmd_k);
return 0;
bad_area:
do_bad_area(addr, fsr, regs);
return 0;
}
#else /* CONFIG_MMU */
static int
do_translation_fault(unsigned long addr, unsigned int fsr,
struct pt_regs *regs)
{
return 0;
}
#endif /* CONFIG_MMU */
/*
* Some section permission faults need to be handled gracefully.
* They can happen due to a __{get,put}_user during an oops.
*/
static int
do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
do_bad_area(addr, fsr, regs);
return 0;
}
/*
* This abort handler always returns "fault".
*/
static int
do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
return 1;
}
static struct fsr_info {
int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
int sig;
int code;
const char *name;
} fsr_info[] = {
/*
* The following are the standard ARMv3 and ARMv4 aborts. ARMv5
* defines these to be "precise" aborts.
*/
{ do_bad, SIGSEGV, 0, "vector exception" },
{ do_bad, SIGILL, BUS_ADRALN, "alignment exception" },
{ do_bad, SIGKILL, 0, "terminal exception" },
{ do_bad, SIGILL, BUS_ADRALN, "alignment exception" },
{ do_bad, SIGBUS, 0, "external abort on linefetch" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "section translation fault" },
{ do_bad, SIGBUS, 0, "external abort on linefetch" },
{ do_page_fault, SIGSEGV, SEGV_MAPERR, "page translation fault" },
{ do_bad, SIGBUS, 0, "external abort on non-linefetch" },
{ do_bad, SIGSEGV, SEGV_ACCERR, "section domain fault" },
{ do_bad, SIGBUS, 0, "external abort on non-linefetch" },
{ do_bad, SIGSEGV, SEGV_ACCERR, "page domain fault" },
{ do_bad, SIGBUS, 0, "external abort on translation" },
{ do_sect_fault, SIGSEGV, SEGV_ACCERR, "section permission fault" },
{ do_bad, SIGBUS, 0, "external abort on translation" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "page permission fault" },
/*
* The following are "imprecise" aborts, which are signalled by bit
* 10 of the FSR, and may not be recoverable. These are only
* supported if the CPU abort handler supports bit 10.
*/
{ do_bad, SIGBUS, 0, "unknown 16" },
{ do_bad, SIGBUS, 0, "unknown 17" },
{ do_bad, SIGBUS, 0, "unknown 18" },
{ do_bad, SIGBUS, 0, "unknown 19" },
{ do_bad, SIGBUS, 0, "lock abort" }, /* xscale */
{ do_bad, SIGBUS, 0, "unknown 21" },
{ do_bad, SIGBUS, BUS_OBJERR, "imprecise external abort" }, /* xscale */
{ do_bad, SIGBUS, 0, "unknown 23" },
{ do_bad, SIGBUS, 0, "dcache parity error" }, /* xscale */
{ do_bad, SIGBUS, 0, "unknown 25" },
{ do_bad, SIGBUS, 0, "unknown 26" },
{ do_bad, SIGBUS, 0, "unknown 27" },
{ do_bad, SIGBUS, 0, "unknown 28" },
{ do_bad, SIGBUS, 0, "unknown 29" },
{ do_bad, SIGBUS, 0, "unknown 30" },
{ do_bad, SIGBUS, 0, "unknown 31" }
};
void __init
hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
int sig, const char *name)
{
if (nr >= 0 && nr < ARRAY_SIZE(fsr_info)) {
fsr_info[nr].fn = fn;
fsr_info[nr].sig = sig;
fsr_info[nr].name = name;
}
}
/*
* Dispatch a data abort to the relevant handler.
*/
asmlinkage void __exception
do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
struct siginfo info;
if (!inf->fn(addr, fsr, regs))
return;
printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
inf->name, fsr, addr);
info.si_signo = inf->sig;
info.si_errno = 0;
info.si_code = inf->code;
info.si_addr = (void __user *)addr;
arm_notify_die("", regs, &info, fsr, 0);
}
asmlinkage void __exception
do_PrefetchAbort(unsigned long addr, struct pt_regs *regs)
{
do_translation_fault(addr, 0, regs);
}