mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-18 17:54:13 +08:00
4df4db5c6c
This is a set of changes that converts the PMAZ-A support to the driver model. The use of the driver model required switching to the hotplug SCSI initialization model, which in turn required a change to the core NCR53C9x driver. I decided not to break all the frontend drivers and introduced an additional parameter for esp_allocate() to select between the old and the new model. I hope this is OK, but I would be fine with converting NCR53C9x to the new model unconditionally as long as I do not have to fix all the other frontends (OK, perhaps I could do some of them ;-) ). Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org> Cc: James Bottomley <James.Bottomley@steeleye.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
354 lines
9.6 KiB
C
354 lines
9.6 KiB
C
/* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller.
|
|
*
|
|
* Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
|
|
*
|
|
* This driver is based on the CyberStorm driver, hence the occasional
|
|
* reference to CyberStorm.
|
|
*/
|
|
|
|
/* TODO:
|
|
*
|
|
* 1) Figure out how to make a cleaner merge with the sparc driver with regard
|
|
* to the caches and the Sparc MMU mapping.
|
|
* 2) Make as few routines required outside the generic driver. A lot of the
|
|
* routines in this file used to be inline!
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include "scsi.h"
|
|
#include <scsi/scsi_host.h>
|
|
#include "NCR53C9x.h"
|
|
|
|
#include <linux/zorro.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/amigaints.h>
|
|
#include <asm/amigahw.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
|
|
#define MKIV 1
|
|
|
|
/* The controller registers can be found in the Z2 config area at these
|
|
* offsets:
|
|
*/
|
|
#define BLZ1230_ESP_ADDR 0x8000
|
|
#define BLZ1230_DMA_ADDR 0x10000
|
|
#define BLZ1230II_ESP_ADDR 0x10000
|
|
#define BLZ1230II_DMA_ADDR 0x10021
|
|
|
|
|
|
/* The Blizzard 1230 DMA interface
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
* Only two things can be programmed in the Blizzard DMA:
|
|
* 1) The data direction is controlled by the status of bit 31 (1 = write)
|
|
* 2) The source/dest address (word aligned, shifted one right) in bits 30-0
|
|
*
|
|
* Program DMA by first latching the highest byte of the address/direction
|
|
* (i.e. bits 31-24 of the long word constructed as described in steps 1+2
|
|
* above). Then write each byte of the address/direction (starting with the
|
|
* top byte, working down) to the DMA address register.
|
|
*
|
|
* Figure out interrupt status by reading the ESP status byte.
|
|
*/
|
|
struct blz1230_dma_registers {
|
|
volatile unsigned char dma_addr; /* DMA address [0x0000] */
|
|
unsigned char dmapad2[0x7fff];
|
|
volatile unsigned char dma_latch; /* DMA latch [0x8000] */
|
|
};
|
|
|
|
struct blz1230II_dma_registers {
|
|
volatile unsigned char dma_addr; /* DMA address [0x0000] */
|
|
unsigned char dmapad2[0xf];
|
|
volatile unsigned char dma_latch; /* DMA latch [0x0010] */
|
|
};
|
|
|
|
#define BLZ1230_DMA_WRITE 0x80000000
|
|
|
|
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
|
|
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
|
|
static void dma_dump_state(struct NCR_ESP *esp);
|
|
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
|
|
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
|
|
static void dma_ints_off(struct NCR_ESP *esp);
|
|
static void dma_ints_on(struct NCR_ESP *esp);
|
|
static int dma_irq_p(struct NCR_ESP *esp);
|
|
static int dma_ports_p(struct NCR_ESP *esp);
|
|
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
|
|
|
|
static volatile unsigned char cmd_buffer[16];
|
|
/* This is where all commands are put
|
|
* before they are transferred to the ESP chip
|
|
* via PIO.
|
|
*/
|
|
|
|
/***************************************************************** Detection */
|
|
int __init blz1230_esp_detect(struct scsi_host_template *tpnt)
|
|
{
|
|
struct NCR_ESP *esp;
|
|
struct zorro_dev *z = NULL;
|
|
unsigned long address;
|
|
struct ESP_regs *eregs;
|
|
unsigned long board;
|
|
|
|
#if MKIV
|
|
#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260
|
|
#define REAL_BLZ1230_ESP_ADDR BLZ1230_ESP_ADDR
|
|
#define REAL_BLZ1230_DMA_ADDR BLZ1230_DMA_ADDR
|
|
#else
|
|
#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060
|
|
#define REAL_BLZ1230_ESP_ADDR BLZ1230II_ESP_ADDR
|
|
#define REAL_BLZ1230_DMA_ADDR BLZ1230II_DMA_ADDR
|
|
#endif
|
|
|
|
if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) {
|
|
board = z->resource.start;
|
|
if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR,
|
|
sizeof(struct ESP_regs), "NCR53C9x")) {
|
|
/* Do some magic to figure out if the blizzard is
|
|
* equipped with a SCSI controller
|
|
*/
|
|
address = ZTWO_VADDR(board);
|
|
eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR);
|
|
esp = esp_allocate(tpnt, (void *)board + REAL_BLZ1230_ESP_ADDR,
|
|
0);
|
|
|
|
esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7));
|
|
udelay(5);
|
|
if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7))
|
|
goto err_out;
|
|
|
|
/* Do command transfer with programmed I/O */
|
|
esp->do_pio_cmds = 1;
|
|
|
|
/* Required functions */
|
|
esp->dma_bytes_sent = &dma_bytes_sent;
|
|
esp->dma_can_transfer = &dma_can_transfer;
|
|
esp->dma_dump_state = &dma_dump_state;
|
|
esp->dma_init_read = &dma_init_read;
|
|
esp->dma_init_write = &dma_init_write;
|
|
esp->dma_ints_off = &dma_ints_off;
|
|
esp->dma_ints_on = &dma_ints_on;
|
|
esp->dma_irq_p = &dma_irq_p;
|
|
esp->dma_ports_p = &dma_ports_p;
|
|
esp->dma_setup = &dma_setup;
|
|
|
|
/* Optional functions */
|
|
esp->dma_barrier = 0;
|
|
esp->dma_drain = 0;
|
|
esp->dma_invalidate = 0;
|
|
esp->dma_irq_entry = 0;
|
|
esp->dma_irq_exit = 0;
|
|
esp->dma_led_on = 0;
|
|
esp->dma_led_off = 0;
|
|
esp->dma_poll = 0;
|
|
esp->dma_reset = 0;
|
|
|
|
/* SCSI chip speed */
|
|
esp->cfreq = 40000000;
|
|
|
|
/* The DMA registers on the Blizzard are mapped
|
|
* relative to the device (i.e. in the same Zorro
|
|
* I/O block).
|
|
*/
|
|
esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR);
|
|
|
|
/* ESP register base */
|
|
esp->eregs = eregs;
|
|
|
|
/* Set the command buffer */
|
|
esp->esp_command = cmd_buffer;
|
|
esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
|
|
|
|
esp->irq = IRQ_AMIGA_PORTS;
|
|
esp->slot = board+REAL_BLZ1230_ESP_ADDR;
|
|
if (request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED,
|
|
"Blizzard 1230 SCSI IV", esp->ehost))
|
|
goto err_out;
|
|
|
|
/* Figure out our scsi ID on the bus */
|
|
esp->scsi_id = 7;
|
|
|
|
/* We don't have a differential SCSI-bus. */
|
|
esp->diff = 0;
|
|
|
|
esp_initialize(esp);
|
|
|
|
printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
|
|
esps_running = esps_in_use;
|
|
return esps_in_use;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
err_out:
|
|
scsi_unregister(esp->ehost);
|
|
esp_deallocate(esp);
|
|
release_mem_region(board+REAL_BLZ1230_ESP_ADDR,
|
|
sizeof(struct ESP_regs));
|
|
return 0;
|
|
}
|
|
|
|
/************************************************************* DMA Functions */
|
|
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
|
|
{
|
|
/* Since the Blizzard DMA is fully dedicated to the ESP chip,
|
|
* the number of bytes sent (to the ESP chip) equals the number
|
|
* of bytes in the FIFO - there is no buffering in the DMA controller.
|
|
* XXXX Do I read this right? It is from host to ESP, right?
|
|
*/
|
|
return fifo_count;
|
|
}
|
|
|
|
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
|
|
{
|
|
/* I don't think there's any limit on the Blizzard DMA. So we use what
|
|
* the ESP chip can handle (24 bit).
|
|
*/
|
|
unsigned long sz = sp->SCp.this_residual;
|
|
if(sz > 0x1000000)
|
|
sz = 0x1000000;
|
|
return sz;
|
|
}
|
|
|
|
static void dma_dump_state(struct NCR_ESP *esp)
|
|
{
|
|
ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
|
|
amiga_custom.intreqr, amiga_custom.intenar));
|
|
}
|
|
|
|
void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
|
|
{
|
|
#if MKIV
|
|
struct blz1230_dma_registers *dregs =
|
|
(struct blz1230_dma_registers *) (esp->dregs);
|
|
#else
|
|
struct blz1230II_dma_registers *dregs =
|
|
(struct blz1230II_dma_registers *) (esp->dregs);
|
|
#endif
|
|
|
|
cache_clear(addr, length);
|
|
|
|
addr >>= 1;
|
|
addr &= ~(BLZ1230_DMA_WRITE);
|
|
|
|
/* First set latch */
|
|
dregs->dma_latch = (addr >> 24) & 0xff;
|
|
|
|
/* Then pump the address to the DMA address register */
|
|
#if MKIV
|
|
dregs->dma_addr = (addr >> 24) & 0xff;
|
|
#endif
|
|
dregs->dma_addr = (addr >> 16) & 0xff;
|
|
dregs->dma_addr = (addr >> 8) & 0xff;
|
|
dregs->dma_addr = (addr ) & 0xff;
|
|
}
|
|
|
|
void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
|
|
{
|
|
#if MKIV
|
|
struct blz1230_dma_registers *dregs =
|
|
(struct blz1230_dma_registers *) (esp->dregs);
|
|
#else
|
|
struct blz1230II_dma_registers *dregs =
|
|
(struct blz1230II_dma_registers *) (esp->dregs);
|
|
#endif
|
|
|
|
cache_push(addr, length);
|
|
|
|
addr >>= 1;
|
|
addr |= BLZ1230_DMA_WRITE;
|
|
|
|
/* First set latch */
|
|
dregs->dma_latch = (addr >> 24) & 0xff;
|
|
|
|
/* Then pump the address to the DMA address register */
|
|
#if MKIV
|
|
dregs->dma_addr = (addr >> 24) & 0xff;
|
|
#endif
|
|
dregs->dma_addr = (addr >> 16) & 0xff;
|
|
dregs->dma_addr = (addr >> 8) & 0xff;
|
|
dregs->dma_addr = (addr ) & 0xff;
|
|
}
|
|
|
|
static void dma_ints_off(struct NCR_ESP *esp)
|
|
{
|
|
disable_irq(esp->irq);
|
|
}
|
|
|
|
static void dma_ints_on(struct NCR_ESP *esp)
|
|
{
|
|
enable_irq(esp->irq);
|
|
}
|
|
|
|
static int dma_irq_p(struct NCR_ESP *esp)
|
|
{
|
|
return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR);
|
|
}
|
|
|
|
static int dma_ports_p(struct NCR_ESP *esp)
|
|
{
|
|
return ((amiga_custom.intenar) & IF_PORTS);
|
|
}
|
|
|
|
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
|
|
{
|
|
/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
|
|
* so when (write) is true, it actually means READ!
|
|
*/
|
|
if(write){
|
|
dma_init_read(esp, addr, count);
|
|
} else {
|
|
dma_init_write(esp, addr, count);
|
|
}
|
|
}
|
|
|
|
#define HOSTS_C
|
|
|
|
int blz1230_esp_release(struct Scsi_Host *instance)
|
|
{
|
|
#ifdef MODULE
|
|
unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
|
|
esp_deallocate((struct NCR_ESP *)instance->hostdata);
|
|
esp_release();
|
|
release_mem_region(address, sizeof(struct ESP_regs));
|
|
free_irq(IRQ_AMIGA_PORTS, esp_intr);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
|
|
static struct scsi_host_template driver_template = {
|
|
.proc_name = "esp-blz1230",
|
|
.proc_info = esp_proc_info,
|
|
.name = "Blizzard1230 SCSI IV",
|
|
.detect = blz1230_esp_detect,
|
|
.slave_alloc = esp_slave_alloc,
|
|
.slave_destroy = esp_slave_destroy,
|
|
.release = blz1230_esp_release,
|
|
.queuecommand = esp_queue,
|
|
.eh_abort_handler = esp_abort,
|
|
.eh_bus_reset_handler = esp_reset,
|
|
.can_queue = 7,
|
|
.this_id = 7,
|
|
.sg_tablesize = SG_ALL,
|
|
.cmd_per_lun = 1,
|
|
.use_clustering = ENABLE_CLUSTERING
|
|
};
|
|
|
|
|
|
#include "scsi_module.c"
|
|
|
|
MODULE_LICENSE("GPL");
|