linux/arch/arm64/include/asm/kvm_host.h
Linus Torvalds 039aeb9deb ARM:
- Move the arch-specific code into arch/arm64/kvm
 - Start the post-32bit cleanup
 - Cherry-pick a few non-invasive pre-NV patches
 
 x86:
 - Rework of TLB flushing
 - Rework of event injection, especially with respect to nested virtualization
 - Nested AMD event injection facelift, building on the rework of generic code
 and fixing a lot of corner cases
 - Nested AMD live migration support
 - Optimization for TSC deadline MSR writes and IPIs
 - Various cleanups
 - Asynchronous page fault cleanups (from tglx, common topic branch with tip tree)
 - Interrupt-based delivery of asynchronous "page ready" events (host side)
 - Hyper-V MSRs and hypercalls for guest debugging
 - VMX preemption timer fixes
 
 s390:
 - Cleanups
 
 Generic:
 - switch vCPU thread wakeup from swait to rcuwait
 
 The other architectures, and the guest side of the asynchronous page fault
 work, will come next week.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl7VJcYUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroPf6QgAq4wU5wdd1lTGz/i3DIhNVJNJgJlp
 ozLzRdMaJbdbn5RpAK6PEBd9+pt3+UlojpFB3gpJh2Nazv2OzV4yLQgXXXyyMEx1
 5Hg7b4UCJYDrbkCiegNRv7f/4FWDkQ9dx++RZITIbxeskBBCEI+I7GnmZhGWzuC4
 7kj4ytuKAySF2OEJu0VQF6u0CvrNYfYbQIRKBXjtOwuRK4Q6L63FGMJpYo159MBQ
 asg3B1jB5TcuGZ9zrjL5LkuzaP4qZZHIRs+4kZsH9I6MODHGUxKonrkablfKxyKy
 CFK+iaHCuEXXty5K0VmWM3nrTfvpEjVjbMc7e1QGBQ5oXsDM0pqn84syRg==
 =v7Wn
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:
   - Move the arch-specific code into arch/arm64/kvm

   - Start the post-32bit cleanup

   - Cherry-pick a few non-invasive pre-NV patches

  x86:
   - Rework of TLB flushing

   - Rework of event injection, especially with respect to nested
     virtualization

   - Nested AMD event injection facelift, building on the rework of
     generic code and fixing a lot of corner cases

   - Nested AMD live migration support

   - Optimization for TSC deadline MSR writes and IPIs

   - Various cleanups

   - Asynchronous page fault cleanups (from tglx, common topic branch
     with tip tree)

   - Interrupt-based delivery of asynchronous "page ready" events (host
     side)

   - Hyper-V MSRs and hypercalls for guest debugging

   - VMX preemption timer fixes

  s390:
   - Cleanups

  Generic:
   - switch vCPU thread wakeup from swait to rcuwait

  The other architectures, and the guest side of the asynchronous page
  fault work, will come next week"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (256 commits)
  KVM: selftests: fix rdtsc() for vmx_tsc_adjust_test
  KVM: check userspace_addr for all memslots
  KVM: selftests: update hyperv_cpuid with SynDBG tests
  x86/kvm/hyper-v: Add support for synthetic debugger via hypercalls
  x86/kvm/hyper-v: enable hypercalls regardless of hypercall page
  x86/kvm/hyper-v: Add support for synthetic debugger interface
  x86/hyper-v: Add synthetic debugger definitions
  KVM: selftests: VMX preemption timer migration test
  KVM: nVMX: Fix VMX preemption timer migration
  x86/kvm/hyper-v: Explicitly align hcall param for kvm_hyperv_exit
  KVM: x86/pmu: Support full width counting
  KVM: x86/pmu: Tweak kvm_pmu_get_msr to pass 'struct msr_data' in
  KVM: x86: announce KVM_FEATURE_ASYNC_PF_INT
  KVM: x86: acknowledgment mechanism for async pf page ready notifications
  KVM: x86: interrupt based APF 'page ready' event delivery
  KVM: introduce kvm_read_guest_offset_cached()
  KVM: rename kvm_arch_can_inject_async_page_present() to kvm_arch_can_dequeue_async_page_present()
  KVM: x86: extend struct kvm_vcpu_pv_apf_data with token info
  Revert "KVM: async_pf: Fix #DF due to inject "Page not Present" and "Page Ready" exceptions simultaneously"
  KVM: VMX: Replace zero-length array with flexible-array
  ...
2020-06-03 15:13:47 -07:00

650 lines
20 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/include/asm/kvm_host.h:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*/
#ifndef __ARM64_KVM_HOST_H__
#define __ARM64_KVM_HOST_H__
#include <linux/bitmap.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <linux/kvm_types.h>
#include <linux/percpu.h>
#include <asm/arch_gicv3.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/cputype.h>
#include <asm/daifflags.h>
#include <asm/fpsimd.h>
#include <asm/kvm.h>
#include <asm/kvm_asm.h>
#include <asm/thread_info.h>
#define __KVM_HAVE_ARCH_INTC_INITIALIZED
#define KVM_USER_MEM_SLOTS 512
#define KVM_HALT_POLL_NS_DEFAULT 500000
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
#include <kvm/arm_pmu.h>
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
#define KVM_VCPU_MAX_FEATURES 7
#define KVM_REQ_SLEEP \
KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
#define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2)
#define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3)
#define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4)
#define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
KVM_DIRTY_LOG_INITIALLY_SET)
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
extern unsigned int kvm_sve_max_vl;
int kvm_arm_init_sve(void);
int __attribute_const__ kvm_target_cpu(void);
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
struct kvm_vmid {
/* The VMID generation used for the virt. memory system */
u64 vmid_gen;
u32 vmid;
};
struct kvm_arch {
struct kvm_vmid vmid;
/* stage2 entry level table */
pgd_t *pgd;
phys_addr_t pgd_phys;
/* VTCR_EL2 value for this VM */
u64 vtcr;
/* The last vcpu id that ran on each physical CPU */
int __percpu *last_vcpu_ran;
/* The maximum number of vCPUs depends on the used GIC model */
int max_vcpus;
/* Interrupt controller */
struct vgic_dist vgic;
/* Mandated version of PSCI */
u32 psci_version;
/*
* If we encounter a data abort without valid instruction syndrome
* information, report this to user space. User space can (and
* should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
* supported.
*/
bool return_nisv_io_abort_to_user;
};
#define KVM_NR_MEM_OBJS 40
/*
* We don't want allocation failures within the mmu code, so we preallocate
* enough memory for a single page fault in a cache.
*/
struct kvm_mmu_memory_cache {
int nobjs;
void *objects[KVM_NR_MEM_OBJS];
};
struct kvm_vcpu_fault_info {
u32 esr_el2; /* Hyp Syndrom Register */
u64 far_el2; /* Hyp Fault Address Register */
u64 hpfar_el2; /* Hyp IPA Fault Address Register */
u64 disr_el1; /* Deferred [SError] Status Register */
};
enum vcpu_sysreg {
__INVALID_SYSREG__, /* 0 is reserved as an invalid value */
MPIDR_EL1, /* MultiProcessor Affinity Register */
CSSELR_EL1, /* Cache Size Selection Register */
SCTLR_EL1, /* System Control Register */
ACTLR_EL1, /* Auxiliary Control Register */
CPACR_EL1, /* Coprocessor Access Control */
ZCR_EL1, /* SVE Control */
TTBR0_EL1, /* Translation Table Base Register 0 */
TTBR1_EL1, /* Translation Table Base Register 1 */
TCR_EL1, /* Translation Control Register */
ESR_EL1, /* Exception Syndrome Register */
AFSR0_EL1, /* Auxiliary Fault Status Register 0 */
AFSR1_EL1, /* Auxiliary Fault Status Register 1 */
FAR_EL1, /* Fault Address Register */
MAIR_EL1, /* Memory Attribute Indirection Register */
VBAR_EL1, /* Vector Base Address Register */
CONTEXTIDR_EL1, /* Context ID Register */
TPIDR_EL0, /* Thread ID, User R/W */
TPIDRRO_EL0, /* Thread ID, User R/O */
TPIDR_EL1, /* Thread ID, Privileged */
AMAIR_EL1, /* Aux Memory Attribute Indirection Register */
CNTKCTL_EL1, /* Timer Control Register (EL1) */
PAR_EL1, /* Physical Address Register */
MDSCR_EL1, /* Monitor Debug System Control Register */
MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */
DISR_EL1, /* Deferred Interrupt Status Register */
/* Performance Monitors Registers */
PMCR_EL0, /* Control Register */
PMSELR_EL0, /* Event Counter Selection Register */
PMEVCNTR0_EL0, /* Event Counter Register (0-30) */
PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
PMCCNTR_EL0, /* Cycle Counter Register */
PMEVTYPER0_EL0, /* Event Type Register (0-30) */
PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
PMCCFILTR_EL0, /* Cycle Count Filter Register */
PMCNTENSET_EL0, /* Count Enable Set Register */
PMINTENSET_EL1, /* Interrupt Enable Set Register */
PMOVSSET_EL0, /* Overflow Flag Status Set Register */
PMSWINC_EL0, /* Software Increment Register */
PMUSERENR_EL0, /* User Enable Register */
/* Pointer Authentication Registers in a strict increasing order. */
APIAKEYLO_EL1,
APIAKEYHI_EL1,
APIBKEYLO_EL1,
APIBKEYHI_EL1,
APDAKEYLO_EL1,
APDAKEYHI_EL1,
APDBKEYLO_EL1,
APDBKEYHI_EL1,
APGAKEYLO_EL1,
APGAKEYHI_EL1,
/* 32bit specific registers. Keep them at the end of the range */
DACR32_EL2, /* Domain Access Control Register */
IFSR32_EL2, /* Instruction Fault Status Register */
FPEXC32_EL2, /* Floating-Point Exception Control Register */
DBGVCR32_EL2, /* Debug Vector Catch Register */
NR_SYS_REGS /* Nothing after this line! */
};
/* 32bit mapping */
#define c0_MPIDR (MPIDR_EL1 * 2) /* MultiProcessor ID Register */
#define c0_CSSELR (CSSELR_EL1 * 2)/* Cache Size Selection Register */
#define c1_SCTLR (SCTLR_EL1 * 2) /* System Control Register */
#define c1_ACTLR (ACTLR_EL1 * 2) /* Auxiliary Control Register */
#define c1_CPACR (CPACR_EL1 * 2) /* Coprocessor Access Control */
#define c2_TTBR0 (TTBR0_EL1 * 2) /* Translation Table Base Register 0 */
#define c2_TTBR0_high (c2_TTBR0 + 1) /* TTBR0 top 32 bits */
#define c2_TTBR1 (TTBR1_EL1 * 2) /* Translation Table Base Register 1 */
#define c2_TTBR1_high (c2_TTBR1 + 1) /* TTBR1 top 32 bits */
#define c2_TTBCR (TCR_EL1 * 2) /* Translation Table Base Control R. */
#define c3_DACR (DACR32_EL2 * 2)/* Domain Access Control Register */
#define c5_DFSR (ESR_EL1 * 2) /* Data Fault Status Register */
#define c5_IFSR (IFSR32_EL2 * 2)/* Instruction Fault Status Register */
#define c5_ADFSR (AFSR0_EL1 * 2) /* Auxiliary Data Fault Status R */
#define c5_AIFSR (AFSR1_EL1 * 2) /* Auxiliary Instr Fault Status R */
#define c6_DFAR (FAR_EL1 * 2) /* Data Fault Address Register */
#define c6_IFAR (c6_DFAR + 1) /* Instruction Fault Address Register */
#define c7_PAR (PAR_EL1 * 2) /* Physical Address Register */
#define c7_PAR_high (c7_PAR + 1) /* PAR top 32 bits */
#define c10_PRRR (MAIR_EL1 * 2) /* Primary Region Remap Register */
#define c10_NMRR (c10_PRRR + 1) /* Normal Memory Remap Register */
#define c12_VBAR (VBAR_EL1 * 2) /* Vector Base Address Register */
#define c13_CID (CONTEXTIDR_EL1 * 2) /* Context ID Register */
#define c13_TID_URW (TPIDR_EL0 * 2) /* Thread ID, User R/W */
#define c13_TID_URO (TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
#define c13_TID_PRIV (TPIDR_EL1 * 2) /* Thread ID, Privileged */
#define c10_AMAIR0 (AMAIR_EL1 * 2) /* Aux Memory Attr Indirection Reg */
#define c10_AMAIR1 (c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
#define c14_CNTKCTL (CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
#define cp14_DBGDSCRext (MDSCR_EL1 * 2)
#define cp14_DBGBCR0 (DBGBCR0_EL1 * 2)
#define cp14_DBGBVR0 (DBGBVR0_EL1 * 2)
#define cp14_DBGBXVR0 (cp14_DBGBVR0 + 1)
#define cp14_DBGWCR0 (DBGWCR0_EL1 * 2)
#define cp14_DBGWVR0 (DBGWVR0_EL1 * 2)
#define cp14_DBGDCCINT (MDCCINT_EL1 * 2)
#define NR_COPRO_REGS (NR_SYS_REGS * 2)
struct kvm_cpu_context {
struct kvm_regs gp_regs;
union {
u64 sys_regs[NR_SYS_REGS];
u32 copro[NR_COPRO_REGS];
};
struct kvm_vcpu *__hyp_running_vcpu;
};
struct kvm_pmu_events {
u32 events_host;
u32 events_guest;
};
struct kvm_host_data {
struct kvm_cpu_context host_ctxt;
struct kvm_pmu_events pmu_events;
};
typedef struct kvm_host_data kvm_host_data_t;
struct vcpu_reset_state {
unsigned long pc;
unsigned long r0;
bool be;
bool reset;
};
struct kvm_vcpu_arch {
struct kvm_cpu_context ctxt;
void *sve_state;
unsigned int sve_max_vl;
/* HYP configuration */
u64 hcr_el2;
u32 mdcr_el2;
/* Exception Information */
struct kvm_vcpu_fault_info fault;
/* State of various workarounds, see kvm_asm.h for bit assignment */
u64 workaround_flags;
/* Miscellaneous vcpu state flags */
u64 flags;
/*
* We maintain more than a single set of debug registers to support
* debugging the guest from the host and to maintain separate host and
* guest state during world switches. vcpu_debug_state are the debug
* registers of the vcpu as the guest sees them. host_debug_state are
* the host registers which are saved and restored during
* world switches. external_debug_state contains the debug
* values we want to debug the guest. This is set via the
* KVM_SET_GUEST_DEBUG ioctl.
*
* debug_ptr points to the set of debug registers that should be loaded
* onto the hardware when running the guest.
*/
struct kvm_guest_debug_arch *debug_ptr;
struct kvm_guest_debug_arch vcpu_debug_state;
struct kvm_guest_debug_arch external_debug_state;
/* Pointer to host CPU context */
struct kvm_cpu_context *host_cpu_context;
struct thread_info *host_thread_info; /* hyp VA */
struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */
struct {
/* {Break,watch}point registers */
struct kvm_guest_debug_arch regs;
/* Statistical profiling extension */
u64 pmscr_el1;
} host_debug_state;
/* VGIC state */
struct vgic_cpu vgic_cpu;
struct arch_timer_cpu timer_cpu;
struct kvm_pmu pmu;
/*
* Anything that is not used directly from assembly code goes
* here.
*/
/*
* Guest registers we preserve during guest debugging.
*
* These shadow registers are updated by the kvm_handle_sys_reg
* trap handler if the guest accesses or updates them while we
* are using guest debug.
*/
struct {
u32 mdscr_el1;
} guest_debug_preserved;
/* vcpu power-off state */
bool power_off;
/* Don't run the guest (internal implementation need) */
bool pause;
/* Cache some mmu pages needed inside spinlock regions */
struct kvm_mmu_memory_cache mmu_page_cache;
/* Target CPU and feature flags */
int target;
DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
/* Detect first run of a vcpu */
bool has_run_once;
/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
u64 vsesr_el2;
/* Additional reset state */
struct vcpu_reset_state reset_state;
/* True when deferrable sysregs are loaded on the physical CPU,
* see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
bool sysregs_loaded_on_cpu;
/* Guest PV state */
struct {
u64 steal;
u64 last_steal;
gpa_t base;
} steal;
};
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
#define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
sve_ffr_offset((vcpu)->arch.sve_max_vl)))
#define vcpu_sve_state_size(vcpu) ({ \
size_t __size_ret; \
unsigned int __vcpu_vq; \
\
if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \
__size_ret = 0; \
} else { \
__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl); \
__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \
} \
\
__size_ret; \
})
/* vcpu_arch flags field values: */
#define KVM_ARM64_DEBUG_DIRTY (1 << 0)
#define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */
#define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */
#define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */
#define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */
#define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */
#define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */
#define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */
#define vcpu_has_sve(vcpu) (system_supports_sve() && \
((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
#define vcpu_has_ptrauth(vcpu) ((system_supports_address_auth() || \
system_supports_generic_auth()) && \
((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH))
#define vcpu_gp_regs(v) (&(v)->arch.ctxt.gp_regs)
/*
* Only use __vcpu_sys_reg if you know you want the memory backed version of a
* register, and not the one most recently accessed by a running VCPU. For
* example, for userspace access or for system registers that are never context
* switched, but only emulated.
*/
#define __vcpu_sys_reg(v,r) ((v)->arch.ctxt.sys_regs[(r)])
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
/*
* CP14 and CP15 live in the same array, as they are backed by the
* same system registers.
*/
#define vcpu_cp14(v,r) ((v)->arch.ctxt.copro[(r)])
#define vcpu_cp15(v,r) ((v)->arch.ctxt.copro[(r)])
struct kvm_vm_stat {
ulong remote_tlb_flush;
};
struct kvm_vcpu_stat {
u64 halt_successful_poll;
u64 halt_attempted_poll;
u64 halt_poll_success_ns;
u64 halt_poll_fail_ns;
u64 halt_poll_invalid;
u64 halt_wakeup;
u64 hvc_exit_stat;
u64 wfe_exit_stat;
u64 wfi_exit_stat;
u64 mmio_exit_user;
u64 mmio_exit_kernel;
u64 exits;
};
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events);
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events);
#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva_range(struct kvm *kvm,
unsigned long start, unsigned long end);
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
void kvm_arm_halt_guest(struct kvm *kvm);
void kvm_arm_resume_guest(struct kvm *kvm);
u64 __kvm_call_hyp(void *hypfn, ...);
/*
* The couple of isb() below are there to guarantee the same behaviour
* on VHE as on !VHE, where the eret to EL1 acts as a context
* synchronization event.
*/
#define kvm_call_hyp(f, ...) \
do { \
if (has_vhe()) { \
f(__VA_ARGS__); \
isb(); \
} else { \
__kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \
} \
} while(0)
#define kvm_call_hyp_ret(f, ...) \
({ \
typeof(f(__VA_ARGS__)) ret; \
\
if (has_vhe()) { \
ret = f(__VA_ARGS__); \
isb(); \
} else { \
ret = __kvm_call_hyp(kvm_ksym_ref(f), \
##__VA_ARGS__); \
} \
\
ret; \
})
void force_vm_exit(const cpumask_t *mask);
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
int exception_index);
void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
int exception_index);
/* MMIO helpers */
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run);
int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
phys_addr_t fault_ipa);
int kvm_perf_init(void);
int kvm_perf_teardown(void);
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
{
vcpu_arch->steal.base = GPA_INVALID;
}
static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
{
return (vcpu_arch->steal.base != GPA_INVALID);
}
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data);
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
{
/* The host's MPIDR is immutable, so let's set it up at boot time */
cpu_ctxt->sys_regs[MPIDR_EL1] = read_cpuid_mpidr();
}
static inline bool kvm_arch_requires_vhe(void)
{
/*
* The Arm architecture specifies that implementation of SVE
* requires VHE also to be implemented. The KVM code for arm64
* relies on this when SVE is present:
*/
if (system_supports_sve())
return true;
return false;
}
void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
void kvm_arm_init_debug(void);
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
{
return (!has_vhe() && attr->exclude_host);
}
#ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
{
return kvm_arch_vcpu_run_map_fp(vcpu);
}
void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
void kvm_clr_pmu_events(u32 clr);
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
#else
static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
static inline void kvm_clr_pmu_events(u32 clr) {}
#endif
#define KVM_BP_HARDEN_UNKNOWN -1
#define KVM_BP_HARDEN_WA_NEEDED 0
#define KVM_BP_HARDEN_NOT_REQUIRED 1
static inline int kvm_arm_harden_branch_predictor(void)
{
switch (get_spectre_v2_workaround_state()) {
case ARM64_BP_HARDEN_WA_NEEDED:
return KVM_BP_HARDEN_WA_NEEDED;
case ARM64_BP_HARDEN_NOT_REQUIRED:
return KVM_BP_HARDEN_NOT_REQUIRED;
case ARM64_BP_HARDEN_UNKNOWN:
default:
return KVM_BP_HARDEN_UNKNOWN;
}
}
#define KVM_SSBD_UNKNOWN -1
#define KVM_SSBD_FORCE_DISABLE 0
#define KVM_SSBD_KERNEL 1
#define KVM_SSBD_FORCE_ENABLE 2
#define KVM_SSBD_MITIGATED 3
static inline int kvm_arm_have_ssbd(void)
{
switch (arm64_get_ssbd_state()) {
case ARM64_SSBD_FORCE_DISABLE:
return KVM_SSBD_FORCE_DISABLE;
case ARM64_SSBD_KERNEL:
return KVM_SSBD_KERNEL;
case ARM64_SSBD_FORCE_ENABLE:
return KVM_SSBD_FORCE_ENABLE;
case ARM64_SSBD_MITIGATED:
return KVM_SSBD_MITIGATED;
case ARM64_SSBD_UNKNOWN:
default:
return KVM_SSBD_UNKNOWN;
}
}
void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
int kvm_set_ipa_limit(void);
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);
void kvm_arch_free_vm(struct kvm *kvm);
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
#define kvm_arm_vcpu_sve_finalized(vcpu) \
((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
#endif /* __ARM64_KVM_HOST_H__ */