mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-07 14:24:18 +08:00
c5ecd4691c
One of the problems with the current code is that it frees the CFB and releases its drm_mm node as soon as we flip FBC's enable bit. This is bad because after we disable FBC the hardware may still use the CFB for the rest of the frame, so in theory we should only release the drm_mm node one frame after we disable FBC. Otherwise, a stolen memory allocation done right after an FBC disable may result in either corrupted memory for the new owner of that memory region or corrupted screen/underruns in case the new owner changes it while the hardware is still reading it. This case is not exactly easy to reproduce since we currently don't do a lot of stolen memory allocations, but I see patches on the mailing list trying to expose stolen memory to user space, so races will be possible. I thought about three different approaches to solve this, and they all have downsides. The first approach would be to simply use multiple drm_mm nodes and freeing the unused ones only after a frame has passed. The problem with this approach is that since stolen memory is rather small, there's a risk we just won't be able to allocate a new CFB from stolen if the previous one was not freed yet. This could happen in case we quickly disable FBC from pipe A and decide to enable it on pipe B, or just if we change pipe A's fb stride while FBC is enabled. The second approach would be similar to the first one, but maintaining a single drm_mm node and keeping track of when it can be reused. This would remove the disadvantage of not having enough space for two nodes, but would create the new problem where we may not be able to enable FBC at the point intel_fbc_update() is called, so we would have to add more code to retry updating FBC after the time has passed. And that can quickly get too complex since we can get invalidate, flush, disable and other calls in the middle of the wait. Both solutions above - and also the current code - have the problem that we unnecessarily free+realloc FBC during invalidate+flush operations even if the CFB size doesn't change. The third option would be to move the allocation/deallocation to enable/disable. This makes sure that the pipe is always disabled when we allocate/deallocate the CFB, so there's no risk that the FBC hardware may read or write to the memory right after it is freed from drm_mm. The downside is that it is possible for user space to change the buffer stride without triggering a disable/enable - only deactivate/activate -, so we'll have to handle this case somehow - see igt's kms_frontbuffer_tracking test, fbc-stridechange subtest. It could be possible to implement a way to free+alloc the CFB during said stride change, but it would involve a lot of book-keeping - exactly as mentioned above - just for on case, so for now I'll keep it simple and just deactivate FBC. Besides, we may not even need to disable FBC since we do CFB over-allocation. Note from Chris: "Starting a fullscreen client that covers a single monitor in a multi-monitor setup will trigger a change in stride on one of the CRTCs (the monitors will be flipped independently).". It shouldn't be a huge problem if we lose FBC on multi-monitor setups since these setups already have problems reaching deep PC states anyway. v2: Rebase after changing the patch order. v3: - Remove references to the stride change case being "uncommon" and paste Chris' example. - Rebase after a change in a previous patch. Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/ |
||
---|---|---|
.. | ||
drm | ||
host1x | ||
ipu-v3 | ||
vga | ||
Makefile |