mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 21:38:32 +08:00
f4d3165370
Generalize KVM_REQ_VM_BUGGED so that it can be called even in cases where it is by design that the VM cannot be operated upon. In this case any KVM_BUG_ON should still warn, so introduce a new flag kvm->vm_dead that is separate from kvm->vm_bugged. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
5715 lines
140 KiB
C
5715 lines
140 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* This module enables machines with Intel VT-x extensions to run virtual
|
|
* machines without emulation or binary translation.
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
*/
|
|
|
|
#include <kvm/iodev.h>
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/file.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/kvm_para.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/io.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/suspend.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/ioctl.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include "coalesced_mmio.h"
|
|
#include "async_pf.h"
|
|
#include "mmu_lock.h"
|
|
#include "vfio.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/kvm.h>
|
|
|
|
#include <linux/kvm_dirty_ring.h>
|
|
|
|
/* Worst case buffer size needed for holding an integer. */
|
|
#define ITOA_MAX_LEN 12
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/* Architectures should define their poll value according to the halt latency */
|
|
unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
|
|
module_param(halt_poll_ns, uint, 0644);
|
|
EXPORT_SYMBOL_GPL(halt_poll_ns);
|
|
|
|
/* Default doubles per-vcpu halt_poll_ns. */
|
|
unsigned int halt_poll_ns_grow = 2;
|
|
module_param(halt_poll_ns_grow, uint, 0644);
|
|
EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
|
|
|
|
/* The start value to grow halt_poll_ns from */
|
|
unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
|
|
module_param(halt_poll_ns_grow_start, uint, 0644);
|
|
EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
|
|
|
|
/* Default resets per-vcpu halt_poll_ns . */
|
|
unsigned int halt_poll_ns_shrink;
|
|
module_param(halt_poll_ns_shrink, uint, 0644);
|
|
EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
|
|
|
|
/*
|
|
* Ordering of locks:
|
|
*
|
|
* kvm->lock --> kvm->slots_lock --> kvm->irq_lock
|
|
*/
|
|
|
|
DEFINE_MUTEX(kvm_lock);
|
|
static DEFINE_RAW_SPINLOCK(kvm_count_lock);
|
|
LIST_HEAD(vm_list);
|
|
|
|
static cpumask_var_t cpus_hardware_enabled;
|
|
static int kvm_usage_count;
|
|
static atomic_t hardware_enable_failed;
|
|
|
|
static struct kmem_cache *kvm_vcpu_cache;
|
|
|
|
static __read_mostly struct preempt_ops kvm_preempt_ops;
|
|
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
|
|
|
|
struct dentry *kvm_debugfs_dir;
|
|
EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
|
|
|
|
static const struct file_operations stat_fops_per_vm;
|
|
|
|
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
|
|
unsigned long arg);
|
|
#ifdef CONFIG_KVM_COMPAT
|
|
static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
|
|
unsigned long arg);
|
|
#define KVM_COMPAT(c) .compat_ioctl = (c)
|
|
#else
|
|
/*
|
|
* For architectures that don't implement a compat infrastructure,
|
|
* adopt a double line of defense:
|
|
* - Prevent a compat task from opening /dev/kvm
|
|
* - If the open has been done by a 64bit task, and the KVM fd
|
|
* passed to a compat task, let the ioctls fail.
|
|
*/
|
|
static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
|
|
unsigned long arg) { return -EINVAL; }
|
|
|
|
static int kvm_no_compat_open(struct inode *inode, struct file *file)
|
|
{
|
|
return is_compat_task() ? -ENODEV : 0;
|
|
}
|
|
#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
|
|
.open = kvm_no_compat_open
|
|
#endif
|
|
static int hardware_enable_all(void);
|
|
static void hardware_disable_all(void);
|
|
|
|
static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
|
|
|
|
__visible bool kvm_rebooting;
|
|
EXPORT_SYMBOL_GPL(kvm_rebooting);
|
|
|
|
#define KVM_EVENT_CREATE_VM 0
|
|
#define KVM_EVENT_DESTROY_VM 1
|
|
static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
|
|
static unsigned long long kvm_createvm_count;
|
|
static unsigned long long kvm_active_vms;
|
|
|
|
static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
|
|
|
|
__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
}
|
|
|
|
bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
|
|
{
|
|
/*
|
|
* The metadata used by is_zone_device_page() to determine whether or
|
|
* not a page is ZONE_DEVICE is guaranteed to be valid if and only if
|
|
* the device has been pinned, e.g. by get_user_pages(). WARN if the
|
|
* page_count() is zero to help detect bad usage of this helper.
|
|
*/
|
|
if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
|
|
return false;
|
|
|
|
return is_zone_device_page(pfn_to_page(pfn));
|
|
}
|
|
|
|
bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
|
|
{
|
|
/*
|
|
* ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
|
|
* perspective they are "normal" pages, albeit with slightly different
|
|
* usage rules.
|
|
*/
|
|
if (pfn_valid(pfn))
|
|
return PageReserved(pfn_to_page(pfn)) &&
|
|
!is_zero_pfn(pfn) &&
|
|
!kvm_is_zone_device_pfn(pfn);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Switches to specified vcpu, until a matching vcpu_put()
|
|
*/
|
|
void vcpu_load(struct kvm_vcpu *vcpu)
|
|
{
|
|
int cpu = get_cpu();
|
|
|
|
__this_cpu_write(kvm_running_vcpu, vcpu);
|
|
preempt_notifier_register(&vcpu->preempt_notifier);
|
|
kvm_arch_vcpu_load(vcpu, cpu);
|
|
put_cpu();
|
|
}
|
|
EXPORT_SYMBOL_GPL(vcpu_load);
|
|
|
|
void vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
kvm_arch_vcpu_put(vcpu);
|
|
preempt_notifier_unregister(&vcpu->preempt_notifier);
|
|
__this_cpu_write(kvm_running_vcpu, NULL);
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(vcpu_put);
|
|
|
|
/* TODO: merge with kvm_arch_vcpu_should_kick */
|
|
static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
|
|
{
|
|
int mode = kvm_vcpu_exiting_guest_mode(vcpu);
|
|
|
|
/*
|
|
* We need to wait for the VCPU to reenable interrupts and get out of
|
|
* READING_SHADOW_PAGE_TABLES mode.
|
|
*/
|
|
if (req & KVM_REQUEST_WAIT)
|
|
return mode != OUTSIDE_GUEST_MODE;
|
|
|
|
/*
|
|
* Need to kick a running VCPU, but otherwise there is nothing to do.
|
|
*/
|
|
return mode == IN_GUEST_MODE;
|
|
}
|
|
|
|
static void ack_flush(void *_completed)
|
|
{
|
|
}
|
|
|
|
static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
|
|
{
|
|
if (cpumask_empty(cpus))
|
|
return false;
|
|
|
|
smp_call_function_many(cpus, ack_flush, NULL, wait);
|
|
return true;
|
|
}
|
|
|
|
static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
|
|
unsigned int req, struct cpumask *tmp,
|
|
int current_cpu)
|
|
{
|
|
int cpu;
|
|
|
|
kvm_make_request(req, vcpu);
|
|
|
|
if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
|
|
return;
|
|
|
|
/*
|
|
* Note, the vCPU could get migrated to a different pCPU at any point
|
|
* after kvm_request_needs_ipi(), which could result in sending an IPI
|
|
* to the previous pCPU. But, that's OK because the purpose of the IPI
|
|
* is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
|
|
* satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
|
|
* after this point is also OK, as the requirement is only that KVM wait
|
|
* for vCPUs that were reading SPTEs _before_ any changes were
|
|
* finalized. See kvm_vcpu_kick() for more details on handling requests.
|
|
*/
|
|
if (kvm_request_needs_ipi(vcpu, req)) {
|
|
cpu = READ_ONCE(vcpu->cpu);
|
|
if (cpu != -1 && cpu != current_cpu)
|
|
__cpumask_set_cpu(cpu, tmp);
|
|
}
|
|
}
|
|
|
|
bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
|
|
unsigned long *vcpu_bitmap)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
struct cpumask *cpus;
|
|
int i, me;
|
|
bool called;
|
|
|
|
me = get_cpu();
|
|
|
|
cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
|
|
cpumask_clear(cpus);
|
|
|
|
for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
|
|
vcpu = kvm_get_vcpu(kvm, i);
|
|
if (!vcpu)
|
|
continue;
|
|
kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
|
|
}
|
|
|
|
called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
|
|
put_cpu();
|
|
|
|
return called;
|
|
}
|
|
|
|
bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
|
|
struct kvm_vcpu *except)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
struct cpumask *cpus;
|
|
bool called;
|
|
int i, me;
|
|
|
|
me = get_cpu();
|
|
|
|
cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
|
|
cpumask_clear(cpus);
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (vcpu == except)
|
|
continue;
|
|
kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
|
|
}
|
|
|
|
called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
|
|
put_cpu();
|
|
|
|
return called;
|
|
}
|
|
|
|
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
|
|
{
|
|
return kvm_make_all_cpus_request_except(kvm, req, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
|
|
|
|
#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
|
|
void kvm_flush_remote_tlbs(struct kvm *kvm)
|
|
{
|
|
++kvm->stat.generic.remote_tlb_flush_requests;
|
|
|
|
/*
|
|
* We want to publish modifications to the page tables before reading
|
|
* mode. Pairs with a memory barrier in arch-specific code.
|
|
* - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
|
|
* and smp_mb in walk_shadow_page_lockless_begin/end.
|
|
* - powerpc: smp_mb in kvmppc_prepare_to_enter.
|
|
*
|
|
* There is already an smp_mb__after_atomic() before
|
|
* kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
|
|
* barrier here.
|
|
*/
|
|
if (!kvm_arch_flush_remote_tlb(kvm)
|
|
|| kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
|
|
++kvm->stat.generic.remote_tlb_flush;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
|
|
#endif
|
|
|
|
void kvm_reload_remote_mmus(struct kvm *kvm)
|
|
{
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
|
|
}
|
|
|
|
#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
|
|
static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
|
|
gfp_t gfp_flags)
|
|
{
|
|
gfp_flags |= mc->gfp_zero;
|
|
|
|
if (mc->kmem_cache)
|
|
return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
|
|
else
|
|
return (void *)__get_free_page(gfp_flags);
|
|
}
|
|
|
|
int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
|
|
{
|
|
void *obj;
|
|
|
|
if (mc->nobjs >= min)
|
|
return 0;
|
|
while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
|
|
obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
|
|
if (!obj)
|
|
return mc->nobjs >= min ? 0 : -ENOMEM;
|
|
mc->objects[mc->nobjs++] = obj;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
return mc->nobjs;
|
|
}
|
|
|
|
void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
while (mc->nobjs) {
|
|
if (mc->kmem_cache)
|
|
kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
|
|
else
|
|
free_page((unsigned long)mc->objects[--mc->nobjs]);
|
|
}
|
|
}
|
|
|
|
void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
void *p;
|
|
|
|
if (WARN_ON(!mc->nobjs))
|
|
p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
|
|
else
|
|
p = mc->objects[--mc->nobjs];
|
|
BUG_ON(!p);
|
|
return p;
|
|
}
|
|
#endif
|
|
|
|
static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
|
|
{
|
|
mutex_init(&vcpu->mutex);
|
|
vcpu->cpu = -1;
|
|
vcpu->kvm = kvm;
|
|
vcpu->vcpu_id = id;
|
|
vcpu->pid = NULL;
|
|
rcuwait_init(&vcpu->wait);
|
|
kvm_async_pf_vcpu_init(vcpu);
|
|
|
|
vcpu->pre_pcpu = -1;
|
|
INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
|
|
|
|
kvm_vcpu_set_in_spin_loop(vcpu, false);
|
|
kvm_vcpu_set_dy_eligible(vcpu, false);
|
|
vcpu->preempted = false;
|
|
vcpu->ready = false;
|
|
preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
|
|
vcpu->last_used_slot = 0;
|
|
}
|
|
|
|
void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_dirty_ring_free(&vcpu->dirty_ring);
|
|
kvm_arch_vcpu_destroy(vcpu);
|
|
|
|
/*
|
|
* No need for rcu_read_lock as VCPU_RUN is the only place that changes
|
|
* the vcpu->pid pointer, and at destruction time all file descriptors
|
|
* are already gone.
|
|
*/
|
|
put_pid(rcu_dereference_protected(vcpu->pid, 1));
|
|
|
|
free_page((unsigned long)vcpu->run);
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
|
|
|
|
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
|
|
static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
|
|
{
|
|
return container_of(mn, struct kvm, mmu_notifier);
|
|
}
|
|
|
|
static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
|
|
|
|
typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
|
|
unsigned long end);
|
|
|
|
struct kvm_hva_range {
|
|
unsigned long start;
|
|
unsigned long end;
|
|
pte_t pte;
|
|
hva_handler_t handler;
|
|
on_lock_fn_t on_lock;
|
|
bool flush_on_ret;
|
|
bool may_block;
|
|
};
|
|
|
|
/*
|
|
* Use a dedicated stub instead of NULL to indicate that there is no callback
|
|
* function/handler. The compiler technically can't guarantee that a real
|
|
* function will have a non-zero address, and so it will generate code to
|
|
* check for !NULL, whereas comparing against a stub will be elided at compile
|
|
* time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
|
|
*/
|
|
static void kvm_null_fn(void)
|
|
{
|
|
|
|
}
|
|
#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
|
|
|
|
static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
|
|
const struct kvm_hva_range *range)
|
|
{
|
|
bool ret = false, locked = false;
|
|
struct kvm_gfn_range gfn_range;
|
|
struct kvm_memory_slot *slot;
|
|
struct kvm_memslots *slots;
|
|
int i, idx;
|
|
|
|
/* A null handler is allowed if and only if on_lock() is provided. */
|
|
if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
|
|
IS_KVM_NULL_FN(range->handler)))
|
|
return 0;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
|
|
slots = __kvm_memslots(kvm, i);
|
|
kvm_for_each_memslot(slot, slots) {
|
|
unsigned long hva_start, hva_end;
|
|
|
|
hva_start = max(range->start, slot->userspace_addr);
|
|
hva_end = min(range->end, slot->userspace_addr +
|
|
(slot->npages << PAGE_SHIFT));
|
|
if (hva_start >= hva_end)
|
|
continue;
|
|
|
|
/*
|
|
* To optimize for the likely case where the address
|
|
* range is covered by zero or one memslots, don't
|
|
* bother making these conditional (to avoid writes on
|
|
* the second or later invocation of the handler).
|
|
*/
|
|
gfn_range.pte = range->pte;
|
|
gfn_range.may_block = range->may_block;
|
|
|
|
/*
|
|
* {gfn(page) | page intersects with [hva_start, hva_end)} =
|
|
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
|
|
*/
|
|
gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
|
|
gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
|
|
gfn_range.slot = slot;
|
|
|
|
if (!locked) {
|
|
locked = true;
|
|
KVM_MMU_LOCK(kvm);
|
|
if (!IS_KVM_NULL_FN(range->on_lock))
|
|
range->on_lock(kvm, range->start, range->end);
|
|
if (IS_KVM_NULL_FN(range->handler))
|
|
break;
|
|
}
|
|
ret |= range->handler(kvm, &gfn_range);
|
|
}
|
|
}
|
|
|
|
if (range->flush_on_ret && ret)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
if (locked)
|
|
KVM_MMU_UNLOCK(kvm);
|
|
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
|
|
/* The notifiers are averse to booleans. :-( */
|
|
return (int)ret;
|
|
}
|
|
|
|
static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
pte_t pte,
|
|
hva_handler_t handler)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
const struct kvm_hva_range range = {
|
|
.start = start,
|
|
.end = end,
|
|
.pte = pte,
|
|
.handler = handler,
|
|
.on_lock = (void *)kvm_null_fn,
|
|
.flush_on_ret = true,
|
|
.may_block = false,
|
|
};
|
|
|
|
return __kvm_handle_hva_range(kvm, &range);
|
|
}
|
|
|
|
static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
hva_handler_t handler)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
const struct kvm_hva_range range = {
|
|
.start = start,
|
|
.end = end,
|
|
.pte = __pte(0),
|
|
.handler = handler,
|
|
.on_lock = (void *)kvm_null_fn,
|
|
.flush_on_ret = false,
|
|
.may_block = false,
|
|
};
|
|
|
|
return __kvm_handle_hva_range(kvm, &range);
|
|
}
|
|
static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long address,
|
|
pte_t pte)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
|
|
trace_kvm_set_spte_hva(address);
|
|
|
|
/*
|
|
* .change_pte() must be surrounded by .invalidate_range_{start,end}().
|
|
* If mmu_notifier_count is zero, then no in-progress invalidations,
|
|
* including this one, found a relevant memslot at start(); rechecking
|
|
* memslots here is unnecessary. Note, a false positive (count elevated
|
|
* by a different invalidation) is sub-optimal but functionally ok.
|
|
*/
|
|
WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
|
|
if (!READ_ONCE(kvm->mmu_notifier_count))
|
|
return;
|
|
|
|
kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
|
|
}
|
|
|
|
void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
/*
|
|
* The count increase must become visible at unlock time as no
|
|
* spte can be established without taking the mmu_lock and
|
|
* count is also read inside the mmu_lock critical section.
|
|
*/
|
|
kvm->mmu_notifier_count++;
|
|
if (likely(kvm->mmu_notifier_count == 1)) {
|
|
kvm->mmu_notifier_range_start = start;
|
|
kvm->mmu_notifier_range_end = end;
|
|
} else {
|
|
/*
|
|
* Fully tracking multiple concurrent ranges has dimishing
|
|
* returns. Keep things simple and just find the minimal range
|
|
* which includes the current and new ranges. As there won't be
|
|
* enough information to subtract a range after its invalidate
|
|
* completes, any ranges invalidated concurrently will
|
|
* accumulate and persist until all outstanding invalidates
|
|
* complete.
|
|
*/
|
|
kvm->mmu_notifier_range_start =
|
|
min(kvm->mmu_notifier_range_start, start);
|
|
kvm->mmu_notifier_range_end =
|
|
max(kvm->mmu_notifier_range_end, end);
|
|
}
|
|
}
|
|
|
|
static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
|
|
const struct mmu_notifier_range *range)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
const struct kvm_hva_range hva_range = {
|
|
.start = range->start,
|
|
.end = range->end,
|
|
.pte = __pte(0),
|
|
.handler = kvm_unmap_gfn_range,
|
|
.on_lock = kvm_inc_notifier_count,
|
|
.flush_on_ret = true,
|
|
.may_block = mmu_notifier_range_blockable(range),
|
|
};
|
|
|
|
trace_kvm_unmap_hva_range(range->start, range->end);
|
|
|
|
/*
|
|
* Prevent memslot modification between range_start() and range_end()
|
|
* so that conditionally locking provides the same result in both
|
|
* functions. Without that guarantee, the mmu_notifier_count
|
|
* adjustments will be imbalanced.
|
|
*
|
|
* Pairs with the decrement in range_end().
|
|
*/
|
|
spin_lock(&kvm->mn_invalidate_lock);
|
|
kvm->mn_active_invalidate_count++;
|
|
spin_unlock(&kvm->mn_invalidate_lock);
|
|
|
|
__kvm_handle_hva_range(kvm, &hva_range);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
/*
|
|
* This sequence increase will notify the kvm page fault that
|
|
* the page that is going to be mapped in the spte could have
|
|
* been freed.
|
|
*/
|
|
kvm->mmu_notifier_seq++;
|
|
smp_wmb();
|
|
/*
|
|
* The above sequence increase must be visible before the
|
|
* below count decrease, which is ensured by the smp_wmb above
|
|
* in conjunction with the smp_rmb in mmu_notifier_retry().
|
|
*/
|
|
kvm->mmu_notifier_count--;
|
|
}
|
|
|
|
static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
|
|
const struct mmu_notifier_range *range)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
const struct kvm_hva_range hva_range = {
|
|
.start = range->start,
|
|
.end = range->end,
|
|
.pte = __pte(0),
|
|
.handler = (void *)kvm_null_fn,
|
|
.on_lock = kvm_dec_notifier_count,
|
|
.flush_on_ret = false,
|
|
.may_block = mmu_notifier_range_blockable(range),
|
|
};
|
|
bool wake;
|
|
|
|
__kvm_handle_hva_range(kvm, &hva_range);
|
|
|
|
/* Pairs with the increment in range_start(). */
|
|
spin_lock(&kvm->mn_invalidate_lock);
|
|
wake = (--kvm->mn_active_invalidate_count == 0);
|
|
spin_unlock(&kvm->mn_invalidate_lock);
|
|
|
|
/*
|
|
* There can only be one waiter, since the wait happens under
|
|
* slots_lock.
|
|
*/
|
|
if (wake)
|
|
rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
|
|
|
|
BUG_ON(kvm->mmu_notifier_count < 0);
|
|
}
|
|
|
|
static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
trace_kvm_age_hva(start, end);
|
|
|
|
return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
|
|
}
|
|
|
|
static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
trace_kvm_age_hva(start, end);
|
|
|
|
/*
|
|
* Even though we do not flush TLB, this will still adversely
|
|
* affect performance on pre-Haswell Intel EPT, where there is
|
|
* no EPT Access Bit to clear so that we have to tear down EPT
|
|
* tables instead. If we find this unacceptable, we can always
|
|
* add a parameter to kvm_age_hva so that it effectively doesn't
|
|
* do anything on clear_young.
|
|
*
|
|
* Also note that currently we never issue secondary TLB flushes
|
|
* from clear_young, leaving this job up to the regular system
|
|
* cadence. If we find this inaccurate, we might come up with a
|
|
* more sophisticated heuristic later.
|
|
*/
|
|
return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
|
|
}
|
|
|
|
static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
trace_kvm_test_age_hva(address);
|
|
|
|
return kvm_handle_hva_range_no_flush(mn, address, address + 1,
|
|
kvm_test_age_gfn);
|
|
}
|
|
|
|
static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
kvm_arch_flush_shadow_all(kvm);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
|
|
.invalidate_range = kvm_mmu_notifier_invalidate_range,
|
|
.invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
|
|
.invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
|
|
.clear_flush_young = kvm_mmu_notifier_clear_flush_young,
|
|
.clear_young = kvm_mmu_notifier_clear_young,
|
|
.test_young = kvm_mmu_notifier_test_young,
|
|
.change_pte = kvm_mmu_notifier_change_pte,
|
|
.release = kvm_mmu_notifier_release,
|
|
};
|
|
|
|
static int kvm_init_mmu_notifier(struct kvm *kvm)
|
|
{
|
|
kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
|
|
return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
|
|
}
|
|
|
|
#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
|
|
|
|
static int kvm_init_mmu_notifier(struct kvm *kvm)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
|
|
|
|
#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
|
|
static int kvm_pm_notifier_call(struct notifier_block *bl,
|
|
unsigned long state,
|
|
void *unused)
|
|
{
|
|
struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
|
|
|
|
return kvm_arch_pm_notifier(kvm, state);
|
|
}
|
|
|
|
static void kvm_init_pm_notifier(struct kvm *kvm)
|
|
{
|
|
kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
|
|
/* Suspend KVM before we suspend ftrace, RCU, etc. */
|
|
kvm->pm_notifier.priority = INT_MAX;
|
|
register_pm_notifier(&kvm->pm_notifier);
|
|
}
|
|
|
|
static void kvm_destroy_pm_notifier(struct kvm *kvm)
|
|
{
|
|
unregister_pm_notifier(&kvm->pm_notifier);
|
|
}
|
|
#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
|
|
static void kvm_init_pm_notifier(struct kvm *kvm)
|
|
{
|
|
}
|
|
|
|
static void kvm_destroy_pm_notifier(struct kvm *kvm)
|
|
{
|
|
}
|
|
#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
|
|
|
|
static struct kvm_memslots *kvm_alloc_memslots(void)
|
|
{
|
|
int i;
|
|
struct kvm_memslots *slots;
|
|
|
|
slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
|
|
if (!slots)
|
|
return NULL;
|
|
|
|
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
|
|
slots->id_to_index[i] = -1;
|
|
|
|
return slots;
|
|
}
|
|
|
|
static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
|
|
{
|
|
if (!memslot->dirty_bitmap)
|
|
return;
|
|
|
|
kvfree(memslot->dirty_bitmap);
|
|
memslot->dirty_bitmap = NULL;
|
|
}
|
|
|
|
static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
|
|
{
|
|
kvm_destroy_dirty_bitmap(slot);
|
|
|
|
kvm_arch_free_memslot(kvm, slot);
|
|
|
|
slot->flags = 0;
|
|
slot->npages = 0;
|
|
}
|
|
|
|
static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
if (!slots)
|
|
return;
|
|
|
|
kvm_for_each_memslot(memslot, slots)
|
|
kvm_free_memslot(kvm, memslot);
|
|
|
|
kvfree(slots);
|
|
}
|
|
|
|
static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
|
|
{
|
|
switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
|
|
case KVM_STATS_TYPE_INSTANT:
|
|
return 0444;
|
|
case KVM_STATS_TYPE_CUMULATIVE:
|
|
case KVM_STATS_TYPE_PEAK:
|
|
default:
|
|
return 0644;
|
|
}
|
|
}
|
|
|
|
|
|
static void kvm_destroy_vm_debugfs(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
|
|
kvm_vcpu_stats_header.num_desc;
|
|
|
|
if (!kvm->debugfs_dentry)
|
|
return;
|
|
|
|
debugfs_remove_recursive(kvm->debugfs_dentry);
|
|
|
|
if (kvm->debugfs_stat_data) {
|
|
for (i = 0; i < kvm_debugfs_num_entries; i++)
|
|
kfree(kvm->debugfs_stat_data[i]);
|
|
kfree(kvm->debugfs_stat_data);
|
|
}
|
|
}
|
|
|
|
static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
|
|
{
|
|
static DEFINE_MUTEX(kvm_debugfs_lock);
|
|
struct dentry *dent;
|
|
char dir_name[ITOA_MAX_LEN * 2];
|
|
struct kvm_stat_data *stat_data;
|
|
const struct _kvm_stats_desc *pdesc;
|
|
int i, ret;
|
|
int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
|
|
kvm_vcpu_stats_header.num_desc;
|
|
|
|
if (!debugfs_initialized())
|
|
return 0;
|
|
|
|
snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
|
|
mutex_lock(&kvm_debugfs_lock);
|
|
dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
|
|
if (dent) {
|
|
pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
|
|
dput(dent);
|
|
mutex_unlock(&kvm_debugfs_lock);
|
|
return 0;
|
|
}
|
|
dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
|
|
mutex_unlock(&kvm_debugfs_lock);
|
|
if (IS_ERR(dent))
|
|
return 0;
|
|
|
|
kvm->debugfs_dentry = dent;
|
|
kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
|
|
sizeof(*kvm->debugfs_stat_data),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!kvm->debugfs_stat_data)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
|
|
pdesc = &kvm_vm_stats_desc[i];
|
|
stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
|
|
if (!stat_data)
|
|
return -ENOMEM;
|
|
|
|
stat_data->kvm = kvm;
|
|
stat_data->desc = pdesc;
|
|
stat_data->kind = KVM_STAT_VM;
|
|
kvm->debugfs_stat_data[i] = stat_data;
|
|
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
|
|
kvm->debugfs_dentry, stat_data,
|
|
&stat_fops_per_vm);
|
|
}
|
|
|
|
for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
|
|
pdesc = &kvm_vcpu_stats_desc[i];
|
|
stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
|
|
if (!stat_data)
|
|
return -ENOMEM;
|
|
|
|
stat_data->kvm = kvm;
|
|
stat_data->desc = pdesc;
|
|
stat_data->kind = KVM_STAT_VCPU;
|
|
kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
|
|
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
|
|
kvm->debugfs_dentry, stat_data,
|
|
&stat_fops_per_vm);
|
|
}
|
|
|
|
ret = kvm_arch_create_vm_debugfs(kvm);
|
|
if (ret) {
|
|
kvm_destroy_vm_debugfs(kvm);
|
|
return i;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called after the VM is otherwise initialized, but just before adding it to
|
|
* the vm_list.
|
|
*/
|
|
int __weak kvm_arch_post_init_vm(struct kvm *kvm)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called just after removing the VM from the vm_list, but before doing any
|
|
* other destruction.
|
|
*/
|
|
void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Called after per-vm debugfs created. When called kvm->debugfs_dentry should
|
|
* be setup already, so we can create arch-specific debugfs entries under it.
|
|
* Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
|
|
* a per-arch destroy interface is not needed.
|
|
*/
|
|
int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm *kvm_create_vm(unsigned long type)
|
|
{
|
|
struct kvm *kvm = kvm_arch_alloc_vm();
|
|
int r = -ENOMEM;
|
|
int i;
|
|
|
|
if (!kvm)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
KVM_MMU_LOCK_INIT(kvm);
|
|
mmgrab(current->mm);
|
|
kvm->mm = current->mm;
|
|
kvm_eventfd_init(kvm);
|
|
mutex_init(&kvm->lock);
|
|
mutex_init(&kvm->irq_lock);
|
|
mutex_init(&kvm->slots_lock);
|
|
mutex_init(&kvm->slots_arch_lock);
|
|
spin_lock_init(&kvm->mn_invalidate_lock);
|
|
rcuwait_init(&kvm->mn_memslots_update_rcuwait);
|
|
|
|
INIT_LIST_HEAD(&kvm->devices);
|
|
|
|
BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
|
|
|
|
if (init_srcu_struct(&kvm->srcu))
|
|
goto out_err_no_srcu;
|
|
if (init_srcu_struct(&kvm->irq_srcu))
|
|
goto out_err_no_irq_srcu;
|
|
|
|
refcount_set(&kvm->users_count, 1);
|
|
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
|
|
struct kvm_memslots *slots = kvm_alloc_memslots();
|
|
|
|
if (!slots)
|
|
goto out_err_no_arch_destroy_vm;
|
|
/* Generations must be different for each address space. */
|
|
slots->generation = i;
|
|
rcu_assign_pointer(kvm->memslots[i], slots);
|
|
}
|
|
|
|
for (i = 0; i < KVM_NR_BUSES; i++) {
|
|
rcu_assign_pointer(kvm->buses[i],
|
|
kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
|
|
if (!kvm->buses[i])
|
|
goto out_err_no_arch_destroy_vm;
|
|
}
|
|
|
|
kvm->max_halt_poll_ns = halt_poll_ns;
|
|
|
|
r = kvm_arch_init_vm(kvm, type);
|
|
if (r)
|
|
goto out_err_no_arch_destroy_vm;
|
|
|
|
r = hardware_enable_all();
|
|
if (r)
|
|
goto out_err_no_disable;
|
|
|
|
#ifdef CONFIG_HAVE_KVM_IRQFD
|
|
INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
|
|
#endif
|
|
|
|
r = kvm_init_mmu_notifier(kvm);
|
|
if (r)
|
|
goto out_err_no_mmu_notifier;
|
|
|
|
r = kvm_arch_post_init_vm(kvm);
|
|
if (r)
|
|
goto out_err;
|
|
|
|
mutex_lock(&kvm_lock);
|
|
list_add(&kvm->vm_list, &vm_list);
|
|
mutex_unlock(&kvm_lock);
|
|
|
|
preempt_notifier_inc();
|
|
kvm_init_pm_notifier(kvm);
|
|
|
|
return kvm;
|
|
|
|
out_err:
|
|
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
|
|
if (kvm->mmu_notifier.ops)
|
|
mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
|
|
#endif
|
|
out_err_no_mmu_notifier:
|
|
hardware_disable_all();
|
|
out_err_no_disable:
|
|
kvm_arch_destroy_vm(kvm);
|
|
out_err_no_arch_destroy_vm:
|
|
WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
|
|
for (i = 0; i < KVM_NR_BUSES; i++)
|
|
kfree(kvm_get_bus(kvm, i));
|
|
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
|
|
kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
|
|
cleanup_srcu_struct(&kvm->irq_srcu);
|
|
out_err_no_irq_srcu:
|
|
cleanup_srcu_struct(&kvm->srcu);
|
|
out_err_no_srcu:
|
|
kvm_arch_free_vm(kvm);
|
|
mmdrop(current->mm);
|
|
return ERR_PTR(r);
|
|
}
|
|
|
|
static void kvm_destroy_devices(struct kvm *kvm)
|
|
{
|
|
struct kvm_device *dev, *tmp;
|
|
|
|
/*
|
|
* We do not need to take the kvm->lock here, because nobody else
|
|
* has a reference to the struct kvm at this point and therefore
|
|
* cannot access the devices list anyhow.
|
|
*/
|
|
list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
|
|
list_del(&dev->vm_node);
|
|
dev->ops->destroy(dev);
|
|
}
|
|
}
|
|
|
|
static void kvm_destroy_vm(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct mm_struct *mm = kvm->mm;
|
|
|
|
kvm_destroy_pm_notifier(kvm);
|
|
kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
|
|
kvm_destroy_vm_debugfs(kvm);
|
|
kvm_arch_sync_events(kvm);
|
|
mutex_lock(&kvm_lock);
|
|
list_del(&kvm->vm_list);
|
|
mutex_unlock(&kvm_lock);
|
|
kvm_arch_pre_destroy_vm(kvm);
|
|
|
|
kvm_free_irq_routing(kvm);
|
|
for (i = 0; i < KVM_NR_BUSES; i++) {
|
|
struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
|
|
|
|
if (bus)
|
|
kvm_io_bus_destroy(bus);
|
|
kvm->buses[i] = NULL;
|
|
}
|
|
kvm_coalesced_mmio_free(kvm);
|
|
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
|
|
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
|
|
/*
|
|
* At this point, pending calls to invalidate_range_start()
|
|
* have completed but no more MMU notifiers will run, so
|
|
* mn_active_invalidate_count may remain unbalanced.
|
|
* No threads can be waiting in install_new_memslots as the
|
|
* last reference on KVM has been dropped, but freeing
|
|
* memslots would deadlock without this manual intervention.
|
|
*/
|
|
WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
|
|
kvm->mn_active_invalidate_count = 0;
|
|
#else
|
|
kvm_arch_flush_shadow_all(kvm);
|
|
#endif
|
|
kvm_arch_destroy_vm(kvm);
|
|
kvm_destroy_devices(kvm);
|
|
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
|
|
kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
|
|
cleanup_srcu_struct(&kvm->irq_srcu);
|
|
cleanup_srcu_struct(&kvm->srcu);
|
|
kvm_arch_free_vm(kvm);
|
|
preempt_notifier_dec();
|
|
hardware_disable_all();
|
|
mmdrop(mm);
|
|
}
|
|
|
|
void kvm_get_kvm(struct kvm *kvm)
|
|
{
|
|
refcount_inc(&kvm->users_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_kvm);
|
|
|
|
/*
|
|
* Make sure the vm is not during destruction, which is a safe version of
|
|
* kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
|
|
*/
|
|
bool kvm_get_kvm_safe(struct kvm *kvm)
|
|
{
|
|
return refcount_inc_not_zero(&kvm->users_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
|
|
|
|
void kvm_put_kvm(struct kvm *kvm)
|
|
{
|
|
if (refcount_dec_and_test(&kvm->users_count))
|
|
kvm_destroy_vm(kvm);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_put_kvm);
|
|
|
|
/*
|
|
* Used to put a reference that was taken on behalf of an object associated
|
|
* with a user-visible file descriptor, e.g. a vcpu or device, if installation
|
|
* of the new file descriptor fails and the reference cannot be transferred to
|
|
* its final owner. In such cases, the caller is still actively using @kvm and
|
|
* will fail miserably if the refcount unexpectedly hits zero.
|
|
*/
|
|
void kvm_put_kvm_no_destroy(struct kvm *kvm)
|
|
{
|
|
WARN_ON(refcount_dec_and_test(&kvm->users_count));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
|
|
|
|
static int kvm_vm_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
|
|
kvm_irqfd_release(kvm);
|
|
|
|
kvm_put_kvm(kvm);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocation size is twice as large as the actual dirty bitmap size.
|
|
* See kvm_vm_ioctl_get_dirty_log() why this is needed.
|
|
*/
|
|
static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
|
|
{
|
|
unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
|
|
|
|
memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
|
|
if (!memslot->dirty_bitmap)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Delete a memslot by decrementing the number of used slots and shifting all
|
|
* other entries in the array forward one spot.
|
|
*/
|
|
static inline void kvm_memslot_delete(struct kvm_memslots *slots,
|
|
struct kvm_memory_slot *memslot)
|
|
{
|
|
struct kvm_memory_slot *mslots = slots->memslots;
|
|
int i;
|
|
|
|
if (WARN_ON(slots->id_to_index[memslot->id] == -1))
|
|
return;
|
|
|
|
slots->used_slots--;
|
|
|
|
if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
|
|
atomic_set(&slots->last_used_slot, 0);
|
|
|
|
for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
|
|
mslots[i] = mslots[i + 1];
|
|
slots->id_to_index[mslots[i].id] = i;
|
|
}
|
|
mslots[i] = *memslot;
|
|
slots->id_to_index[memslot->id] = -1;
|
|
}
|
|
|
|
/*
|
|
* "Insert" a new memslot by incrementing the number of used slots. Returns
|
|
* the new slot's initial index into the memslots array.
|
|
*/
|
|
static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
|
|
{
|
|
return slots->used_slots++;
|
|
}
|
|
|
|
/*
|
|
* Move a changed memslot backwards in the array by shifting existing slots
|
|
* with a higher GFN toward the front of the array. Note, the changed memslot
|
|
* itself is not preserved in the array, i.e. not swapped at this time, only
|
|
* its new index into the array is tracked. Returns the changed memslot's
|
|
* current index into the memslots array.
|
|
*/
|
|
static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
|
|
struct kvm_memory_slot *memslot)
|
|
{
|
|
struct kvm_memory_slot *mslots = slots->memslots;
|
|
int i;
|
|
|
|
if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
|
|
WARN_ON_ONCE(!slots->used_slots))
|
|
return -1;
|
|
|
|
/*
|
|
* Move the target memslot backward in the array by shifting existing
|
|
* memslots with a higher GFN (than the target memslot) towards the
|
|
* front of the array.
|
|
*/
|
|
for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
|
|
if (memslot->base_gfn > mslots[i + 1].base_gfn)
|
|
break;
|
|
|
|
WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
|
|
|
|
/* Shift the next memslot forward one and update its index. */
|
|
mslots[i] = mslots[i + 1];
|
|
slots->id_to_index[mslots[i].id] = i;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Move a changed memslot forwards in the array by shifting existing slots with
|
|
* a lower GFN toward the back of the array. Note, the changed memslot itself
|
|
* is not preserved in the array, i.e. not swapped at this time, only its new
|
|
* index into the array is tracked. Returns the changed memslot's final index
|
|
* into the memslots array.
|
|
*/
|
|
static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
|
|
struct kvm_memory_slot *memslot,
|
|
int start)
|
|
{
|
|
struct kvm_memory_slot *mslots = slots->memslots;
|
|
int i;
|
|
|
|
for (i = start; i > 0; i--) {
|
|
if (memslot->base_gfn < mslots[i - 1].base_gfn)
|
|
break;
|
|
|
|
WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
|
|
|
|
/* Shift the next memslot back one and update its index. */
|
|
mslots[i] = mslots[i - 1];
|
|
slots->id_to_index[mslots[i].id] = i;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Re-sort memslots based on their GFN to account for an added, deleted, or
|
|
* moved memslot. Sorting memslots by GFN allows using a binary search during
|
|
* memslot lookup.
|
|
*
|
|
* IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
|
|
* at memslots[0] has the highest GFN.
|
|
*
|
|
* The sorting algorithm takes advantage of having initially sorted memslots
|
|
* and knowing the position of the changed memslot. Sorting is also optimized
|
|
* by not swapping the updated memslot and instead only shifting other memslots
|
|
* and tracking the new index for the update memslot. Only once its final
|
|
* index is known is the updated memslot copied into its position in the array.
|
|
*
|
|
* - When deleting a memslot, the deleted memslot simply needs to be moved to
|
|
* the end of the array.
|
|
*
|
|
* - When creating a memslot, the algorithm "inserts" the new memslot at the
|
|
* end of the array and then it forward to its correct location.
|
|
*
|
|
* - When moving a memslot, the algorithm first moves the updated memslot
|
|
* backward to handle the scenario where the memslot's GFN was changed to a
|
|
* lower value. update_memslots() then falls through and runs the same flow
|
|
* as creating a memslot to move the memslot forward to handle the scenario
|
|
* where its GFN was changed to a higher value.
|
|
*
|
|
* Note, slots are sorted from highest->lowest instead of lowest->highest for
|
|
* historical reasons. Originally, invalid memslots where denoted by having
|
|
* GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
|
|
* to the end of the array. The current algorithm uses dedicated logic to
|
|
* delete a memslot and thus does not rely on invalid memslots having GFN=0.
|
|
*
|
|
* The other historical motiviation for highest->lowest was to improve the
|
|
* performance of memslot lookup. KVM originally used a linear search starting
|
|
* at memslots[0]. On x86, the largest memslot usually has one of the highest,
|
|
* if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
|
|
* single memslot above the 4gb boundary. As the largest memslot is also the
|
|
* most likely to be referenced, sorting it to the front of the array was
|
|
* advantageous. The current binary search starts from the middle of the array
|
|
* and uses an LRU pointer to improve performance for all memslots and GFNs.
|
|
*/
|
|
static void update_memslots(struct kvm_memslots *slots,
|
|
struct kvm_memory_slot *memslot,
|
|
enum kvm_mr_change change)
|
|
{
|
|
int i;
|
|
|
|
if (change == KVM_MR_DELETE) {
|
|
kvm_memslot_delete(slots, memslot);
|
|
} else {
|
|
if (change == KVM_MR_CREATE)
|
|
i = kvm_memslot_insert_back(slots);
|
|
else
|
|
i = kvm_memslot_move_backward(slots, memslot);
|
|
i = kvm_memslot_move_forward(slots, memslot, i);
|
|
|
|
/*
|
|
* Copy the memslot to its new position in memslots and update
|
|
* its index accordingly.
|
|
*/
|
|
slots->memslots[i] = *memslot;
|
|
slots->id_to_index[memslot->id] = i;
|
|
}
|
|
}
|
|
|
|
static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
|
|
{
|
|
u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
|
|
|
|
#ifdef __KVM_HAVE_READONLY_MEM
|
|
valid_flags |= KVM_MEM_READONLY;
|
|
#endif
|
|
|
|
if (mem->flags & ~valid_flags)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
|
|
int as_id, struct kvm_memslots *slots)
|
|
{
|
|
struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
|
|
u64 gen = old_memslots->generation;
|
|
|
|
WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
|
|
slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
|
|
|
|
/*
|
|
* Do not store the new memslots while there are invalidations in
|
|
* progress, otherwise the locking in invalidate_range_start and
|
|
* invalidate_range_end will be unbalanced.
|
|
*/
|
|
spin_lock(&kvm->mn_invalidate_lock);
|
|
prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
|
|
while (kvm->mn_active_invalidate_count) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
spin_unlock(&kvm->mn_invalidate_lock);
|
|
schedule();
|
|
spin_lock(&kvm->mn_invalidate_lock);
|
|
}
|
|
finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
|
|
rcu_assign_pointer(kvm->memslots[as_id], slots);
|
|
spin_unlock(&kvm->mn_invalidate_lock);
|
|
|
|
/*
|
|
* Acquired in kvm_set_memslot. Must be released before synchronize
|
|
* SRCU below in order to avoid deadlock with another thread
|
|
* acquiring the slots_arch_lock in an srcu critical section.
|
|
*/
|
|
mutex_unlock(&kvm->slots_arch_lock);
|
|
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
|
|
/*
|
|
* Increment the new memslot generation a second time, dropping the
|
|
* update in-progress flag and incrementing the generation based on
|
|
* the number of address spaces. This provides a unique and easily
|
|
* identifiable generation number while the memslots are in flux.
|
|
*/
|
|
gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
|
|
|
|
/*
|
|
* Generations must be unique even across address spaces. We do not need
|
|
* a global counter for that, instead the generation space is evenly split
|
|
* across address spaces. For example, with two address spaces, address
|
|
* space 0 will use generations 0, 2, 4, ... while address space 1 will
|
|
* use generations 1, 3, 5, ...
|
|
*/
|
|
gen += KVM_ADDRESS_SPACE_NUM;
|
|
|
|
kvm_arch_memslots_updated(kvm, gen);
|
|
|
|
slots->generation = gen;
|
|
|
|
return old_memslots;
|
|
}
|
|
|
|
static size_t kvm_memslots_size(int slots)
|
|
{
|
|
return sizeof(struct kvm_memslots) +
|
|
(sizeof(struct kvm_memory_slot) * slots);
|
|
}
|
|
|
|
static void kvm_copy_memslots(struct kvm_memslots *to,
|
|
struct kvm_memslots *from)
|
|
{
|
|
memcpy(to, from, kvm_memslots_size(from->used_slots));
|
|
}
|
|
|
|
/*
|
|
* Note, at a minimum, the current number of used slots must be allocated, even
|
|
* when deleting a memslot, as we need a complete duplicate of the memslots for
|
|
* use when invalidating a memslot prior to deleting/moving the memslot.
|
|
*/
|
|
static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
|
|
enum kvm_mr_change change)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
size_t new_size;
|
|
|
|
if (change == KVM_MR_CREATE)
|
|
new_size = kvm_memslots_size(old->used_slots + 1);
|
|
else
|
|
new_size = kvm_memslots_size(old->used_slots);
|
|
|
|
slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
|
|
if (likely(slots))
|
|
kvm_copy_memslots(slots, old);
|
|
|
|
return slots;
|
|
}
|
|
|
|
static int kvm_set_memslot(struct kvm *kvm,
|
|
const struct kvm_userspace_memory_region *mem,
|
|
struct kvm_memory_slot *old,
|
|
struct kvm_memory_slot *new, int as_id,
|
|
enum kvm_mr_change change)
|
|
{
|
|
struct kvm_memory_slot *slot;
|
|
struct kvm_memslots *slots;
|
|
int r;
|
|
|
|
/*
|
|
* Released in install_new_memslots.
|
|
*
|
|
* Must be held from before the current memslots are copied until
|
|
* after the new memslots are installed with rcu_assign_pointer,
|
|
* then released before the synchronize srcu in install_new_memslots.
|
|
*
|
|
* When modifying memslots outside of the slots_lock, must be held
|
|
* before reading the pointer to the current memslots until after all
|
|
* changes to those memslots are complete.
|
|
*
|
|
* These rules ensure that installing new memslots does not lose
|
|
* changes made to the previous memslots.
|
|
*/
|
|
mutex_lock(&kvm->slots_arch_lock);
|
|
|
|
slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
|
|
if (!slots) {
|
|
mutex_unlock(&kvm->slots_arch_lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
|
|
/*
|
|
* Note, the INVALID flag needs to be in the appropriate entry
|
|
* in the freshly allocated memslots, not in @old or @new.
|
|
*/
|
|
slot = id_to_memslot(slots, old->id);
|
|
slot->flags |= KVM_MEMSLOT_INVALID;
|
|
|
|
/*
|
|
* We can re-use the memory from the old memslots.
|
|
* It will be overwritten with a copy of the new memslots
|
|
* after reacquiring the slots_arch_lock below.
|
|
*/
|
|
slots = install_new_memslots(kvm, as_id, slots);
|
|
|
|
/* From this point no new shadow pages pointing to a deleted,
|
|
* or moved, memslot will be created.
|
|
*
|
|
* validation of sp->gfn happens in:
|
|
* - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
|
|
* - kvm_is_visible_gfn (mmu_check_root)
|
|
*/
|
|
kvm_arch_flush_shadow_memslot(kvm, slot);
|
|
|
|
/* Released in install_new_memslots. */
|
|
mutex_lock(&kvm->slots_arch_lock);
|
|
|
|
/*
|
|
* The arch-specific fields of the memslots could have changed
|
|
* between releasing the slots_arch_lock in
|
|
* install_new_memslots and here, so get a fresh copy of the
|
|
* slots.
|
|
*/
|
|
kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
|
|
}
|
|
|
|
r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
|
|
if (r)
|
|
goto out_slots;
|
|
|
|
update_memslots(slots, new, change);
|
|
slots = install_new_memslots(kvm, as_id, slots);
|
|
|
|
kvm_arch_commit_memory_region(kvm, mem, old, new, change);
|
|
|
|
kvfree(slots);
|
|
return 0;
|
|
|
|
out_slots:
|
|
if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
|
|
slot = id_to_memslot(slots, old->id);
|
|
slot->flags &= ~KVM_MEMSLOT_INVALID;
|
|
slots = install_new_memslots(kvm, as_id, slots);
|
|
} else {
|
|
mutex_unlock(&kvm->slots_arch_lock);
|
|
}
|
|
kvfree(slots);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_delete_memslot(struct kvm *kvm,
|
|
const struct kvm_userspace_memory_region *mem,
|
|
struct kvm_memory_slot *old, int as_id)
|
|
{
|
|
struct kvm_memory_slot new;
|
|
int r;
|
|
|
|
if (!old->npages)
|
|
return -EINVAL;
|
|
|
|
memset(&new, 0, sizeof(new));
|
|
new.id = old->id;
|
|
/*
|
|
* This is only for debugging purpose; it should never be referenced
|
|
* for a removed memslot.
|
|
*/
|
|
new.as_id = as_id;
|
|
|
|
r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
|
|
if (r)
|
|
return r;
|
|
|
|
kvm_free_memslot(kvm, old);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate some memory and give it an address in the guest physical address
|
|
* space.
|
|
*
|
|
* Discontiguous memory is allowed, mostly for framebuffers.
|
|
*
|
|
* Must be called holding kvm->slots_lock for write.
|
|
*/
|
|
int __kvm_set_memory_region(struct kvm *kvm,
|
|
const struct kvm_userspace_memory_region *mem)
|
|
{
|
|
struct kvm_memory_slot old, new;
|
|
struct kvm_memory_slot *tmp;
|
|
enum kvm_mr_change change;
|
|
int as_id, id;
|
|
int r;
|
|
|
|
r = check_memory_region_flags(mem);
|
|
if (r)
|
|
return r;
|
|
|
|
as_id = mem->slot >> 16;
|
|
id = (u16)mem->slot;
|
|
|
|
/* General sanity checks */
|
|
if (mem->memory_size & (PAGE_SIZE - 1))
|
|
return -EINVAL;
|
|
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
|
|
return -EINVAL;
|
|
/* We can read the guest memory with __xxx_user() later on. */
|
|
if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
|
|
(mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
|
|
!access_ok((void __user *)(unsigned long)mem->userspace_addr,
|
|
mem->memory_size))
|
|
return -EINVAL;
|
|
if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
|
|
return -EINVAL;
|
|
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Make a full copy of the old memslot, the pointer will become stale
|
|
* when the memslots are re-sorted by update_memslots(), and the old
|
|
* memslot needs to be referenced after calling update_memslots(), e.g.
|
|
* to free its resources and for arch specific behavior.
|
|
*/
|
|
tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
|
|
if (tmp) {
|
|
old = *tmp;
|
|
tmp = NULL;
|
|
} else {
|
|
memset(&old, 0, sizeof(old));
|
|
old.id = id;
|
|
}
|
|
|
|
if (!mem->memory_size)
|
|
return kvm_delete_memslot(kvm, mem, &old, as_id);
|
|
|
|
new.as_id = as_id;
|
|
new.id = id;
|
|
new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
|
|
new.npages = mem->memory_size >> PAGE_SHIFT;
|
|
new.flags = mem->flags;
|
|
new.userspace_addr = mem->userspace_addr;
|
|
|
|
if (new.npages > KVM_MEM_MAX_NR_PAGES)
|
|
return -EINVAL;
|
|
|
|
if (!old.npages) {
|
|
change = KVM_MR_CREATE;
|
|
new.dirty_bitmap = NULL;
|
|
memset(&new.arch, 0, sizeof(new.arch));
|
|
} else { /* Modify an existing slot. */
|
|
if ((new.userspace_addr != old.userspace_addr) ||
|
|
(new.npages != old.npages) ||
|
|
((new.flags ^ old.flags) & KVM_MEM_READONLY))
|
|
return -EINVAL;
|
|
|
|
if (new.base_gfn != old.base_gfn)
|
|
change = KVM_MR_MOVE;
|
|
else if (new.flags != old.flags)
|
|
change = KVM_MR_FLAGS_ONLY;
|
|
else /* Nothing to change. */
|
|
return 0;
|
|
|
|
/* Copy dirty_bitmap and arch from the current memslot. */
|
|
new.dirty_bitmap = old.dirty_bitmap;
|
|
memcpy(&new.arch, &old.arch, sizeof(new.arch));
|
|
}
|
|
|
|
if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
|
|
/* Check for overlaps */
|
|
kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
|
|
if (tmp->id == id)
|
|
continue;
|
|
if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
|
|
(new.base_gfn >= tmp->base_gfn + tmp->npages)))
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
|
|
/* Allocate/free page dirty bitmap as needed */
|
|
if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
|
|
new.dirty_bitmap = NULL;
|
|
else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
|
|
r = kvm_alloc_dirty_bitmap(&new);
|
|
if (r)
|
|
return r;
|
|
|
|
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
|
|
bitmap_set(new.dirty_bitmap, 0, new.npages);
|
|
}
|
|
|
|
r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
|
|
if (r)
|
|
goto out_bitmap;
|
|
|
|
if (old.dirty_bitmap && !new.dirty_bitmap)
|
|
kvm_destroy_dirty_bitmap(&old);
|
|
return 0;
|
|
|
|
out_bitmap:
|
|
if (new.dirty_bitmap && !old.dirty_bitmap)
|
|
kvm_destroy_dirty_bitmap(&new);
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
|
|
|
|
int kvm_set_memory_region(struct kvm *kvm,
|
|
const struct kvm_userspace_memory_region *mem)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
r = __kvm_set_memory_region(kvm, mem);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_memory_region);
|
|
|
|
static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem)
|
|
{
|
|
if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
|
|
return -EINVAL;
|
|
|
|
return kvm_set_memory_region(kvm, mem);
|
|
}
|
|
|
|
#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
|
|
/**
|
|
* kvm_get_dirty_log - get a snapshot of dirty pages
|
|
* @kvm: pointer to kvm instance
|
|
* @log: slot id and address to which we copy the log
|
|
* @is_dirty: set to '1' if any dirty pages were found
|
|
* @memslot: set to the associated memslot, always valid on success
|
|
*/
|
|
int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
|
|
int *is_dirty, struct kvm_memory_slot **memslot)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
int i, as_id, id;
|
|
unsigned long n;
|
|
unsigned long any = 0;
|
|
|
|
/* Dirty ring tracking is exclusive to dirty log tracking */
|
|
if (kvm->dirty_ring_size)
|
|
return -ENXIO;
|
|
|
|
*memslot = NULL;
|
|
*is_dirty = 0;
|
|
|
|
as_id = log->slot >> 16;
|
|
id = (u16)log->slot;
|
|
if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
|
|
return -EINVAL;
|
|
|
|
slots = __kvm_memslots(kvm, as_id);
|
|
*memslot = id_to_memslot(slots, id);
|
|
if (!(*memslot) || !(*memslot)->dirty_bitmap)
|
|
return -ENOENT;
|
|
|
|
kvm_arch_sync_dirty_log(kvm, *memslot);
|
|
|
|
n = kvm_dirty_bitmap_bytes(*memslot);
|
|
|
|
for (i = 0; !any && i < n/sizeof(long); ++i)
|
|
any = (*memslot)->dirty_bitmap[i];
|
|
|
|
if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
|
|
return -EFAULT;
|
|
|
|
if (any)
|
|
*is_dirty = 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
|
|
|
|
#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
|
|
/**
|
|
* kvm_get_dirty_log_protect - get a snapshot of dirty pages
|
|
* and reenable dirty page tracking for the corresponding pages.
|
|
* @kvm: pointer to kvm instance
|
|
* @log: slot id and address to which we copy the log
|
|
*
|
|
* We need to keep it in mind that VCPU threads can write to the bitmap
|
|
* concurrently. So, to avoid losing track of dirty pages we keep the
|
|
* following order:
|
|
*
|
|
* 1. Take a snapshot of the bit and clear it if needed.
|
|
* 2. Write protect the corresponding page.
|
|
* 3. Copy the snapshot to the userspace.
|
|
* 4. Upon return caller flushes TLB's if needed.
|
|
*
|
|
* Between 2 and 4, the guest may write to the page using the remaining TLB
|
|
* entry. This is not a problem because the page is reported dirty using
|
|
* the snapshot taken before and step 4 ensures that writes done after
|
|
* exiting to userspace will be logged for the next call.
|
|
*
|
|
*/
|
|
static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int i, as_id, id;
|
|
unsigned long n;
|
|
unsigned long *dirty_bitmap;
|
|
unsigned long *dirty_bitmap_buffer;
|
|
bool flush;
|
|
|
|
/* Dirty ring tracking is exclusive to dirty log tracking */
|
|
if (kvm->dirty_ring_size)
|
|
return -ENXIO;
|
|
|
|
as_id = log->slot >> 16;
|
|
id = (u16)log->slot;
|
|
if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
|
|
return -EINVAL;
|
|
|
|
slots = __kvm_memslots(kvm, as_id);
|
|
memslot = id_to_memslot(slots, id);
|
|
if (!memslot || !memslot->dirty_bitmap)
|
|
return -ENOENT;
|
|
|
|
dirty_bitmap = memslot->dirty_bitmap;
|
|
|
|
kvm_arch_sync_dirty_log(kvm, memslot);
|
|
|
|
n = kvm_dirty_bitmap_bytes(memslot);
|
|
flush = false;
|
|
if (kvm->manual_dirty_log_protect) {
|
|
/*
|
|
* Unlike kvm_get_dirty_log, we always return false in *flush,
|
|
* because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
|
|
* is some code duplication between this function and
|
|
* kvm_get_dirty_log, but hopefully all architecture
|
|
* transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
|
|
* can be eliminated.
|
|
*/
|
|
dirty_bitmap_buffer = dirty_bitmap;
|
|
} else {
|
|
dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
|
|
memset(dirty_bitmap_buffer, 0, n);
|
|
|
|
KVM_MMU_LOCK(kvm);
|
|
for (i = 0; i < n / sizeof(long); i++) {
|
|
unsigned long mask;
|
|
gfn_t offset;
|
|
|
|
if (!dirty_bitmap[i])
|
|
continue;
|
|
|
|
flush = true;
|
|
mask = xchg(&dirty_bitmap[i], 0);
|
|
dirty_bitmap_buffer[i] = mask;
|
|
|
|
offset = i * BITS_PER_LONG;
|
|
kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
|
|
offset, mask);
|
|
}
|
|
KVM_MMU_UNLOCK(kvm);
|
|
}
|
|
|
|
if (flush)
|
|
kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
|
|
|
|
if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
|
|
* @kvm: kvm instance
|
|
* @log: slot id and address to which we copy the log
|
|
*
|
|
* Steps 1-4 below provide general overview of dirty page logging. See
|
|
* kvm_get_dirty_log_protect() function description for additional details.
|
|
*
|
|
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
|
|
* always flush the TLB (step 4) even if previous step failed and the dirty
|
|
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
|
|
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
|
|
* writes will be marked dirty for next log read.
|
|
*
|
|
* 1. Take a snapshot of the bit and clear it if needed.
|
|
* 2. Write protect the corresponding page.
|
|
* 3. Copy the snapshot to the userspace.
|
|
* 4. Flush TLB's if needed.
|
|
*/
|
|
static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
|
|
struct kvm_dirty_log *log)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
r = kvm_get_dirty_log_protect(kvm, log);
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
|
|
* and reenable dirty page tracking for the corresponding pages.
|
|
* @kvm: pointer to kvm instance
|
|
* @log: slot id and address from which to fetch the bitmap of dirty pages
|
|
*/
|
|
static int kvm_clear_dirty_log_protect(struct kvm *kvm,
|
|
struct kvm_clear_dirty_log *log)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int as_id, id;
|
|
gfn_t offset;
|
|
unsigned long i, n;
|
|
unsigned long *dirty_bitmap;
|
|
unsigned long *dirty_bitmap_buffer;
|
|
bool flush;
|
|
|
|
/* Dirty ring tracking is exclusive to dirty log tracking */
|
|
if (kvm->dirty_ring_size)
|
|
return -ENXIO;
|
|
|
|
as_id = log->slot >> 16;
|
|
id = (u16)log->slot;
|
|
if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
|
|
return -EINVAL;
|
|
|
|
if (log->first_page & 63)
|
|
return -EINVAL;
|
|
|
|
slots = __kvm_memslots(kvm, as_id);
|
|
memslot = id_to_memslot(slots, id);
|
|
if (!memslot || !memslot->dirty_bitmap)
|
|
return -ENOENT;
|
|
|
|
dirty_bitmap = memslot->dirty_bitmap;
|
|
|
|
n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
|
|
|
|
if (log->first_page > memslot->npages ||
|
|
log->num_pages > memslot->npages - log->first_page ||
|
|
(log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
|
|
return -EINVAL;
|
|
|
|
kvm_arch_sync_dirty_log(kvm, memslot);
|
|
|
|
flush = false;
|
|
dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
|
|
if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
|
|
return -EFAULT;
|
|
|
|
KVM_MMU_LOCK(kvm);
|
|
for (offset = log->first_page, i = offset / BITS_PER_LONG,
|
|
n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
|
|
i++, offset += BITS_PER_LONG) {
|
|
unsigned long mask = *dirty_bitmap_buffer++;
|
|
atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
|
|
if (!mask)
|
|
continue;
|
|
|
|
mask &= atomic_long_fetch_andnot(mask, p);
|
|
|
|
/*
|
|
* mask contains the bits that really have been cleared. This
|
|
* never includes any bits beyond the length of the memslot (if
|
|
* the length is not aligned to 64 pages), therefore it is not
|
|
* a problem if userspace sets them in log->dirty_bitmap.
|
|
*/
|
|
if (mask) {
|
|
flush = true;
|
|
kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
|
|
offset, mask);
|
|
}
|
|
}
|
|
KVM_MMU_UNLOCK(kvm);
|
|
|
|
if (flush)
|
|
kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
|
|
struct kvm_clear_dirty_log *log)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
r = kvm_clear_dirty_log_protect(kvm, log);
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
|
|
|
|
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
return __gfn_to_memslot(kvm_memslots(kvm), gfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_memslot);
|
|
|
|
struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
|
|
struct kvm_memory_slot *slot;
|
|
int slot_index;
|
|
|
|
slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
|
|
if (slot)
|
|
return slot;
|
|
|
|
/*
|
|
* Fall back to searching all memslots. We purposely use
|
|
* search_memslots() instead of __gfn_to_memslot() to avoid
|
|
* thrashing the VM-wide last_used_index in kvm_memslots.
|
|
*/
|
|
slot = search_memslots(slots, gfn, &slot_index);
|
|
if (slot) {
|
|
vcpu->last_used_slot = slot_index;
|
|
return slot;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
|
|
|
|
bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
|
|
|
|
return kvm_is_visible_memslot(memslot);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
|
|
|
|
bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
|
|
|
|
return kvm_is_visible_memslot(memslot);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
|
|
|
|
unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long addr, size;
|
|
|
|
size = PAGE_SIZE;
|
|
|
|
addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
|
|
if (kvm_is_error_hva(addr))
|
|
return PAGE_SIZE;
|
|
|
|
mmap_read_lock(current->mm);
|
|
vma = find_vma(current->mm, addr);
|
|
if (!vma)
|
|
goto out;
|
|
|
|
size = vma_kernel_pagesize(vma);
|
|
|
|
out:
|
|
mmap_read_unlock(current->mm);
|
|
|
|
return size;
|
|
}
|
|
|
|
static bool memslot_is_readonly(struct kvm_memory_slot *slot)
|
|
{
|
|
return slot->flags & KVM_MEM_READONLY;
|
|
}
|
|
|
|
static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
|
|
gfn_t *nr_pages, bool write)
|
|
{
|
|
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
|
|
return KVM_HVA_ERR_BAD;
|
|
|
|
if (memslot_is_readonly(slot) && write)
|
|
return KVM_HVA_ERR_RO_BAD;
|
|
|
|
if (nr_pages)
|
|
*nr_pages = slot->npages - (gfn - slot->base_gfn);
|
|
|
|
return __gfn_to_hva_memslot(slot, gfn);
|
|
}
|
|
|
|
static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
|
|
gfn_t *nr_pages)
|
|
{
|
|
return __gfn_to_hva_many(slot, gfn, nr_pages, true);
|
|
}
|
|
|
|
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
|
|
gfn_t gfn)
|
|
{
|
|
return gfn_to_hva_many(slot, gfn, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
|
|
|
|
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_hva);
|
|
|
|
unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
|
|
|
|
/*
|
|
* Return the hva of a @gfn and the R/W attribute if possible.
|
|
*
|
|
* @slot: the kvm_memory_slot which contains @gfn
|
|
* @gfn: the gfn to be translated
|
|
* @writable: used to return the read/write attribute of the @slot if the hva
|
|
* is valid and @writable is not NULL
|
|
*/
|
|
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
|
|
gfn_t gfn, bool *writable)
|
|
{
|
|
unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
|
|
|
|
if (!kvm_is_error_hva(hva) && writable)
|
|
*writable = !memslot_is_readonly(slot);
|
|
|
|
return hva;
|
|
}
|
|
|
|
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
|
|
{
|
|
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
|
|
|
|
return gfn_to_hva_memslot_prot(slot, gfn, writable);
|
|
}
|
|
|
|
unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
|
|
{
|
|
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
|
|
|
|
return gfn_to_hva_memslot_prot(slot, gfn, writable);
|
|
}
|
|
|
|
static inline int check_user_page_hwpoison(unsigned long addr)
|
|
{
|
|
int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
|
|
|
|
rc = get_user_pages(addr, 1, flags, NULL, NULL);
|
|
return rc == -EHWPOISON;
|
|
}
|
|
|
|
/*
|
|
* The fast path to get the writable pfn which will be stored in @pfn,
|
|
* true indicates success, otherwise false is returned. It's also the
|
|
* only part that runs if we can in atomic context.
|
|
*/
|
|
static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
|
|
bool *writable, kvm_pfn_t *pfn)
|
|
{
|
|
struct page *page[1];
|
|
|
|
/*
|
|
* Fast pin a writable pfn only if it is a write fault request
|
|
* or the caller allows to map a writable pfn for a read fault
|
|
* request.
|
|
*/
|
|
if (!(write_fault || writable))
|
|
return false;
|
|
|
|
if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
|
|
*pfn = page_to_pfn(page[0]);
|
|
|
|
if (writable)
|
|
*writable = true;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* The slow path to get the pfn of the specified host virtual address,
|
|
* 1 indicates success, -errno is returned if error is detected.
|
|
*/
|
|
static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
|
|
bool *writable, kvm_pfn_t *pfn)
|
|
{
|
|
unsigned int flags = FOLL_HWPOISON;
|
|
struct page *page;
|
|
int npages = 0;
|
|
|
|
might_sleep();
|
|
|
|
if (writable)
|
|
*writable = write_fault;
|
|
|
|
if (write_fault)
|
|
flags |= FOLL_WRITE;
|
|
if (async)
|
|
flags |= FOLL_NOWAIT;
|
|
|
|
npages = get_user_pages_unlocked(addr, 1, &page, flags);
|
|
if (npages != 1)
|
|
return npages;
|
|
|
|
/* map read fault as writable if possible */
|
|
if (unlikely(!write_fault) && writable) {
|
|
struct page *wpage;
|
|
|
|
if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
|
|
*writable = true;
|
|
put_page(page);
|
|
page = wpage;
|
|
}
|
|
}
|
|
*pfn = page_to_pfn(page);
|
|
return npages;
|
|
}
|
|
|
|
static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
|
|
{
|
|
if (unlikely(!(vma->vm_flags & VM_READ)))
|
|
return false;
|
|
|
|
if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int kvm_try_get_pfn(kvm_pfn_t pfn)
|
|
{
|
|
if (kvm_is_reserved_pfn(pfn))
|
|
return 1;
|
|
return get_page_unless_zero(pfn_to_page(pfn));
|
|
}
|
|
|
|
static int hva_to_pfn_remapped(struct vm_area_struct *vma,
|
|
unsigned long addr, bool *async,
|
|
bool write_fault, bool *writable,
|
|
kvm_pfn_t *p_pfn)
|
|
{
|
|
kvm_pfn_t pfn;
|
|
pte_t *ptep;
|
|
spinlock_t *ptl;
|
|
int r;
|
|
|
|
r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
|
|
if (r) {
|
|
/*
|
|
* get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
|
|
* not call the fault handler, so do it here.
|
|
*/
|
|
bool unlocked = false;
|
|
r = fixup_user_fault(current->mm, addr,
|
|
(write_fault ? FAULT_FLAG_WRITE : 0),
|
|
&unlocked);
|
|
if (unlocked)
|
|
return -EAGAIN;
|
|
if (r)
|
|
return r;
|
|
|
|
r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
if (write_fault && !pte_write(*ptep)) {
|
|
pfn = KVM_PFN_ERR_RO_FAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (writable)
|
|
*writable = pte_write(*ptep);
|
|
pfn = pte_pfn(*ptep);
|
|
|
|
/*
|
|
* Get a reference here because callers of *hva_to_pfn* and
|
|
* *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
|
|
* returned pfn. This is only needed if the VMA has VM_MIXEDMAP
|
|
* set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
|
|
* simply do nothing for reserved pfns.
|
|
*
|
|
* Whoever called remap_pfn_range is also going to call e.g.
|
|
* unmap_mapping_range before the underlying pages are freed,
|
|
* causing a call to our MMU notifier.
|
|
*
|
|
* Certain IO or PFNMAP mappings can be backed with valid
|
|
* struct pages, but be allocated without refcounting e.g.,
|
|
* tail pages of non-compound higher order allocations, which
|
|
* would then underflow the refcount when the caller does the
|
|
* required put_page. Don't allow those pages here.
|
|
*/
|
|
if (!kvm_try_get_pfn(pfn))
|
|
r = -EFAULT;
|
|
|
|
out:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
*p_pfn = pfn;
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Pin guest page in memory and return its pfn.
|
|
* @addr: host virtual address which maps memory to the guest
|
|
* @atomic: whether this function can sleep
|
|
* @async: whether this function need to wait IO complete if the
|
|
* host page is not in the memory
|
|
* @write_fault: whether we should get a writable host page
|
|
* @writable: whether it allows to map a writable host page for !@write_fault
|
|
*
|
|
* The function will map a writable host page for these two cases:
|
|
* 1): @write_fault = true
|
|
* 2): @write_fault = false && @writable, @writable will tell the caller
|
|
* whether the mapping is writable.
|
|
*/
|
|
static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
|
|
bool write_fault, bool *writable)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
kvm_pfn_t pfn = 0;
|
|
int npages, r;
|
|
|
|
/* we can do it either atomically or asynchronously, not both */
|
|
BUG_ON(atomic && async);
|
|
|
|
if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
|
|
return pfn;
|
|
|
|
if (atomic)
|
|
return KVM_PFN_ERR_FAULT;
|
|
|
|
npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
|
|
if (npages == 1)
|
|
return pfn;
|
|
|
|
mmap_read_lock(current->mm);
|
|
if (npages == -EHWPOISON ||
|
|
(!async && check_user_page_hwpoison(addr))) {
|
|
pfn = KVM_PFN_ERR_HWPOISON;
|
|
goto exit;
|
|
}
|
|
|
|
retry:
|
|
vma = vma_lookup(current->mm, addr);
|
|
|
|
if (vma == NULL)
|
|
pfn = KVM_PFN_ERR_FAULT;
|
|
else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
|
|
r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
|
|
if (r == -EAGAIN)
|
|
goto retry;
|
|
if (r < 0)
|
|
pfn = KVM_PFN_ERR_FAULT;
|
|
} else {
|
|
if (async && vma_is_valid(vma, write_fault))
|
|
*async = true;
|
|
pfn = KVM_PFN_ERR_FAULT;
|
|
}
|
|
exit:
|
|
mmap_read_unlock(current->mm);
|
|
return pfn;
|
|
}
|
|
|
|
kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
|
|
bool atomic, bool *async, bool write_fault,
|
|
bool *writable, hva_t *hva)
|
|
{
|
|
unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
|
|
|
|
if (hva)
|
|
*hva = addr;
|
|
|
|
if (addr == KVM_HVA_ERR_RO_BAD) {
|
|
if (writable)
|
|
*writable = false;
|
|
return KVM_PFN_ERR_RO_FAULT;
|
|
}
|
|
|
|
if (kvm_is_error_hva(addr)) {
|
|
if (writable)
|
|
*writable = false;
|
|
return KVM_PFN_NOSLOT;
|
|
}
|
|
|
|
/* Do not map writable pfn in the readonly memslot. */
|
|
if (writable && memslot_is_readonly(slot)) {
|
|
*writable = false;
|
|
writable = NULL;
|
|
}
|
|
|
|
return hva_to_pfn(addr, atomic, async, write_fault,
|
|
writable);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
|
|
|
|
kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
|
|
bool *writable)
|
|
{
|
|
return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
|
|
write_fault, writable, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
|
|
|
|
kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
|
|
{
|
|
return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
|
|
|
|
kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
|
|
{
|
|
return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
|
|
|
|
kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
|
|
|
|
kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn);
|
|
|
|
kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
|
|
|
|
int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
|
|
struct page **pages, int nr_pages)
|
|
{
|
|
unsigned long addr;
|
|
gfn_t entry = 0;
|
|
|
|
addr = gfn_to_hva_many(slot, gfn, &entry);
|
|
if (kvm_is_error_hva(addr))
|
|
return -1;
|
|
|
|
if (entry < nr_pages)
|
|
return 0;
|
|
|
|
return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
|
|
|
|
static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
|
|
{
|
|
if (is_error_noslot_pfn(pfn))
|
|
return KVM_ERR_PTR_BAD_PAGE;
|
|
|
|
if (kvm_is_reserved_pfn(pfn)) {
|
|
WARN_ON(1);
|
|
return KVM_ERR_PTR_BAD_PAGE;
|
|
}
|
|
|
|
return pfn_to_page(pfn);
|
|
}
|
|
|
|
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
kvm_pfn_t pfn;
|
|
|
|
pfn = gfn_to_pfn(kvm, gfn);
|
|
|
|
return kvm_pfn_to_page(pfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_page);
|
|
|
|
void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
|
|
{
|
|
if (pfn == 0)
|
|
return;
|
|
|
|
if (cache)
|
|
cache->pfn = cache->gfn = 0;
|
|
|
|
if (dirty)
|
|
kvm_release_pfn_dirty(pfn);
|
|
else
|
|
kvm_release_pfn_clean(pfn);
|
|
}
|
|
|
|
static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
|
|
struct gfn_to_pfn_cache *cache, u64 gen)
|
|
{
|
|
kvm_release_pfn(cache->pfn, cache->dirty, cache);
|
|
|
|
cache->pfn = gfn_to_pfn_memslot(slot, gfn);
|
|
cache->gfn = gfn;
|
|
cache->dirty = false;
|
|
cache->generation = gen;
|
|
}
|
|
|
|
static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
|
|
struct kvm_host_map *map,
|
|
struct gfn_to_pfn_cache *cache,
|
|
bool atomic)
|
|
{
|
|
kvm_pfn_t pfn;
|
|
void *hva = NULL;
|
|
struct page *page = KVM_UNMAPPED_PAGE;
|
|
struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
|
|
u64 gen = slots->generation;
|
|
|
|
if (!map)
|
|
return -EINVAL;
|
|
|
|
if (cache) {
|
|
if (!cache->pfn || cache->gfn != gfn ||
|
|
cache->generation != gen) {
|
|
if (atomic)
|
|
return -EAGAIN;
|
|
kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
|
|
}
|
|
pfn = cache->pfn;
|
|
} else {
|
|
if (atomic)
|
|
return -EAGAIN;
|
|
pfn = gfn_to_pfn_memslot(slot, gfn);
|
|
}
|
|
if (is_error_noslot_pfn(pfn))
|
|
return -EINVAL;
|
|
|
|
if (pfn_valid(pfn)) {
|
|
page = pfn_to_page(pfn);
|
|
if (atomic)
|
|
hva = kmap_atomic(page);
|
|
else
|
|
hva = kmap(page);
|
|
#ifdef CONFIG_HAS_IOMEM
|
|
} else if (!atomic) {
|
|
hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
|
|
} else {
|
|
return -EINVAL;
|
|
#endif
|
|
}
|
|
|
|
if (!hva)
|
|
return -EFAULT;
|
|
|
|
map->page = page;
|
|
map->hva = hva;
|
|
map->pfn = pfn;
|
|
map->gfn = gfn;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
|
|
struct gfn_to_pfn_cache *cache, bool atomic)
|
|
{
|
|
return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
|
|
cache, atomic);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_map_gfn);
|
|
|
|
int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
|
|
{
|
|
return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
|
|
NULL, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_map);
|
|
|
|
static void __kvm_unmap_gfn(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
struct kvm_host_map *map,
|
|
struct gfn_to_pfn_cache *cache,
|
|
bool dirty, bool atomic)
|
|
{
|
|
if (!map)
|
|
return;
|
|
|
|
if (!map->hva)
|
|
return;
|
|
|
|
if (map->page != KVM_UNMAPPED_PAGE) {
|
|
if (atomic)
|
|
kunmap_atomic(map->hva);
|
|
else
|
|
kunmap(map->page);
|
|
}
|
|
#ifdef CONFIG_HAS_IOMEM
|
|
else if (!atomic)
|
|
memunmap(map->hva);
|
|
else
|
|
WARN_ONCE(1, "Unexpected unmapping in atomic context");
|
|
#endif
|
|
|
|
if (dirty)
|
|
mark_page_dirty_in_slot(kvm, memslot, map->gfn);
|
|
|
|
if (cache)
|
|
cache->dirty |= dirty;
|
|
else
|
|
kvm_release_pfn(map->pfn, dirty, NULL);
|
|
|
|
map->hva = NULL;
|
|
map->page = NULL;
|
|
}
|
|
|
|
int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
|
|
struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
|
|
{
|
|
__kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
|
|
cache, dirty, atomic);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
|
|
|
|
void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
|
|
{
|
|
__kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
|
|
map, NULL, dirty, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
|
|
|
|
struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
kvm_pfn_t pfn;
|
|
|
|
pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
|
|
|
|
return kvm_pfn_to_page(pfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
|
|
|
|
void kvm_release_page_clean(struct page *page)
|
|
{
|
|
WARN_ON(is_error_page(page));
|
|
|
|
kvm_release_pfn_clean(page_to_pfn(page));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_page_clean);
|
|
|
|
void kvm_release_pfn_clean(kvm_pfn_t pfn)
|
|
{
|
|
if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
|
|
put_page(pfn_to_page(pfn));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
|
|
|
|
void kvm_release_page_dirty(struct page *page)
|
|
{
|
|
WARN_ON(is_error_page(page));
|
|
|
|
kvm_release_pfn_dirty(page_to_pfn(page));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
|
|
|
|
void kvm_release_pfn_dirty(kvm_pfn_t pfn)
|
|
{
|
|
kvm_set_pfn_dirty(pfn);
|
|
kvm_release_pfn_clean(pfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
|
|
|
|
void kvm_set_pfn_dirty(kvm_pfn_t pfn)
|
|
{
|
|
if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
|
|
SetPageDirty(pfn_to_page(pfn));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
|
|
|
|
void kvm_set_pfn_accessed(kvm_pfn_t pfn)
|
|
{
|
|
if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
|
|
mark_page_accessed(pfn_to_page(pfn));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
|
|
|
|
static int next_segment(unsigned long len, int offset)
|
|
{
|
|
if (len > PAGE_SIZE - offset)
|
|
return PAGE_SIZE - offset;
|
|
else
|
|
return len;
|
|
}
|
|
|
|
static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
|
|
void *data, int offset, int len)
|
|
{
|
|
int r;
|
|
unsigned long addr;
|
|
|
|
addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
|
|
if (kvm_is_error_hva(addr))
|
|
return -EFAULT;
|
|
r = __copy_from_user(data, (void __user *)addr + offset, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
|
|
int len)
|
|
{
|
|
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
|
|
|
|
return __kvm_read_guest_page(slot, gfn, data, offset, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_page);
|
|
|
|
int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
|
|
int offset, int len)
|
|
{
|
|
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
|
|
|
|
return __kvm_read_guest_page(slot, gfn, data, offset, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
|
|
|
|
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
data += seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest);
|
|
|
|
int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
data += seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
|
|
|
|
static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
|
|
void *data, int offset, unsigned long len)
|
|
{
|
|
int r;
|
|
unsigned long addr;
|
|
|
|
addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
|
|
if (kvm_is_error_hva(addr))
|
|
return -EFAULT;
|
|
pagefault_disable();
|
|
r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
|
|
pagefault_enable();
|
|
if (r)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *data, unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
|
|
int offset = offset_in_page(gpa);
|
|
|
|
return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
|
|
|
|
static int __kvm_write_guest_page(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot, gfn_t gfn,
|
|
const void *data, int offset, int len)
|
|
{
|
|
int r;
|
|
unsigned long addr;
|
|
|
|
addr = gfn_to_hva_memslot(memslot, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return -EFAULT;
|
|
r = __copy_to_user((void __user *)addr + offset, data, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
mark_page_dirty_in_slot(kvm, memslot, gfn);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
|
|
const void *data, int offset, int len)
|
|
{
|
|
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
|
|
|
|
return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_guest_page);
|
|
|
|
int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
|
|
const void *data, int offset, int len)
|
|
{
|
|
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
|
|
|
|
return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
|
|
|
|
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
|
|
unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
data += seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_guest);
|
|
|
|
int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
|
|
unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
data += seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
|
|
|
|
static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
|
|
struct gfn_to_hva_cache *ghc,
|
|
gpa_t gpa, unsigned long len)
|
|
{
|
|
int offset = offset_in_page(gpa);
|
|
gfn_t start_gfn = gpa >> PAGE_SHIFT;
|
|
gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
|
|
gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
|
|
gfn_t nr_pages_avail;
|
|
|
|
/* Update ghc->generation before performing any error checks. */
|
|
ghc->generation = slots->generation;
|
|
|
|
if (start_gfn > end_gfn) {
|
|
ghc->hva = KVM_HVA_ERR_BAD;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If the requested region crosses two memslots, we still
|
|
* verify that the entire region is valid here.
|
|
*/
|
|
for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
|
|
ghc->memslot = __gfn_to_memslot(slots, start_gfn);
|
|
ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
|
|
&nr_pages_avail);
|
|
if (kvm_is_error_hva(ghc->hva))
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Use the slow path for cross page reads and writes. */
|
|
if (nr_pages_needed == 1)
|
|
ghc->hva += offset;
|
|
else
|
|
ghc->memslot = NULL;
|
|
|
|
ghc->gpa = gpa;
|
|
ghc->len = len;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
|
gpa_t gpa, unsigned long len)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
|
|
|
|
int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
|
void *data, unsigned int offset,
|
|
unsigned long len)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
int r;
|
|
gpa_t gpa = ghc->gpa + offset;
|
|
|
|
BUG_ON(len + offset > ghc->len);
|
|
|
|
if (slots->generation != ghc->generation) {
|
|
if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (kvm_is_error_hva(ghc->hva))
|
|
return -EFAULT;
|
|
|
|
if (unlikely(!ghc->memslot))
|
|
return kvm_write_guest(kvm, gpa, data, len);
|
|
|
|
r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
|
|
|
|
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
|
void *data, unsigned long len)
|
|
{
|
|
return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
|
|
|
|
int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
|
void *data, unsigned int offset,
|
|
unsigned long len)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
int r;
|
|
gpa_t gpa = ghc->gpa + offset;
|
|
|
|
BUG_ON(len + offset > ghc->len);
|
|
|
|
if (slots->generation != ghc->generation) {
|
|
if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (kvm_is_error_hva(ghc->hva))
|
|
return -EFAULT;
|
|
|
|
if (unlikely(!ghc->memslot))
|
|
return kvm_read_guest(kvm, gpa, data, len);
|
|
|
|
r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
|
|
|
|
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
|
void *data, unsigned long len)
|
|
{
|
|
return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
|
|
|
|
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
|
|
{
|
|
const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_clear_guest);
|
|
|
|
void mark_page_dirty_in_slot(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
gfn_t gfn)
|
|
{
|
|
if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
|
|
unsigned long rel_gfn = gfn - memslot->base_gfn;
|
|
u32 slot = (memslot->as_id << 16) | memslot->id;
|
|
|
|
if (kvm->dirty_ring_size)
|
|
kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
|
|
slot, rel_gfn);
|
|
else
|
|
set_bit_le(rel_gfn, memslot->dirty_bitmap);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
|
|
|
|
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
mark_page_dirty_in_slot(kvm, memslot, gfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mark_page_dirty);
|
|
|
|
void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
|
|
mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
|
|
|
|
void kvm_sigset_activate(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu->sigset_active)
|
|
return;
|
|
|
|
/*
|
|
* This does a lockless modification of ->real_blocked, which is fine
|
|
* because, only current can change ->real_blocked and all readers of
|
|
* ->real_blocked don't care as long ->real_blocked is always a subset
|
|
* of ->blocked.
|
|
*/
|
|
sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
|
|
}
|
|
|
|
void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu->sigset_active)
|
|
return;
|
|
|
|
sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
|
|
sigemptyset(¤t->real_blocked);
|
|
}
|
|
|
|
static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned int old, val, grow, grow_start;
|
|
|
|
old = val = vcpu->halt_poll_ns;
|
|
grow_start = READ_ONCE(halt_poll_ns_grow_start);
|
|
grow = READ_ONCE(halt_poll_ns_grow);
|
|
if (!grow)
|
|
goto out;
|
|
|
|
val *= grow;
|
|
if (val < grow_start)
|
|
val = grow_start;
|
|
|
|
if (val > vcpu->kvm->max_halt_poll_ns)
|
|
val = vcpu->kvm->max_halt_poll_ns;
|
|
|
|
vcpu->halt_poll_ns = val;
|
|
out:
|
|
trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
|
|
}
|
|
|
|
static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned int old, val, shrink, grow_start;
|
|
|
|
old = val = vcpu->halt_poll_ns;
|
|
shrink = READ_ONCE(halt_poll_ns_shrink);
|
|
grow_start = READ_ONCE(halt_poll_ns_grow_start);
|
|
if (shrink == 0)
|
|
val = 0;
|
|
else
|
|
val /= shrink;
|
|
|
|
if (val < grow_start)
|
|
val = 0;
|
|
|
|
vcpu->halt_poll_ns = val;
|
|
trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
|
|
}
|
|
|
|
static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret = -EINTR;
|
|
int idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
|
|
if (kvm_arch_vcpu_runnable(vcpu)) {
|
|
kvm_make_request(KVM_REQ_UNHALT, vcpu);
|
|
goto out;
|
|
}
|
|
if (kvm_cpu_has_pending_timer(vcpu))
|
|
goto out;
|
|
if (signal_pending(current))
|
|
goto out;
|
|
if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
|
|
goto out;
|
|
|
|
ret = 0;
|
|
out:
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
return ret;
|
|
}
|
|
|
|
static inline void
|
|
update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
|
|
{
|
|
if (waited)
|
|
vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
|
|
else
|
|
vcpu->stat.generic.halt_poll_success_ns += poll_ns;
|
|
}
|
|
|
|
/*
|
|
* The vCPU has executed a HLT instruction with in-kernel mode enabled.
|
|
*/
|
|
void kvm_vcpu_block(struct kvm_vcpu *vcpu)
|
|
{
|
|
ktime_t start, cur, poll_end;
|
|
bool waited = false;
|
|
u64 block_ns;
|
|
|
|
kvm_arch_vcpu_blocking(vcpu);
|
|
|
|
start = cur = poll_end = ktime_get();
|
|
if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
|
|
ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
|
|
|
|
++vcpu->stat.generic.halt_attempted_poll;
|
|
do {
|
|
/*
|
|
* This sets KVM_REQ_UNHALT if an interrupt
|
|
* arrives.
|
|
*/
|
|
if (kvm_vcpu_check_block(vcpu) < 0) {
|
|
++vcpu->stat.generic.halt_successful_poll;
|
|
if (!vcpu_valid_wakeup(vcpu))
|
|
++vcpu->stat.generic.halt_poll_invalid;
|
|
|
|
KVM_STATS_LOG_HIST_UPDATE(
|
|
vcpu->stat.generic.halt_poll_success_hist,
|
|
ktime_to_ns(ktime_get()) -
|
|
ktime_to_ns(start));
|
|
goto out;
|
|
}
|
|
cpu_relax();
|
|
poll_end = cur = ktime_get();
|
|
} while (kvm_vcpu_can_poll(cur, stop));
|
|
|
|
KVM_STATS_LOG_HIST_UPDATE(
|
|
vcpu->stat.generic.halt_poll_fail_hist,
|
|
ktime_to_ns(ktime_get()) - ktime_to_ns(start));
|
|
}
|
|
|
|
|
|
prepare_to_rcuwait(&vcpu->wait);
|
|
for (;;) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
if (kvm_vcpu_check_block(vcpu) < 0)
|
|
break;
|
|
|
|
waited = true;
|
|
schedule();
|
|
}
|
|
finish_rcuwait(&vcpu->wait);
|
|
cur = ktime_get();
|
|
if (waited) {
|
|
vcpu->stat.generic.halt_wait_ns +=
|
|
ktime_to_ns(cur) - ktime_to_ns(poll_end);
|
|
KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
|
|
ktime_to_ns(cur) - ktime_to_ns(poll_end));
|
|
}
|
|
out:
|
|
kvm_arch_vcpu_unblocking(vcpu);
|
|
block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
|
|
|
|
update_halt_poll_stats(
|
|
vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
|
|
|
|
if (!kvm_arch_no_poll(vcpu)) {
|
|
if (!vcpu_valid_wakeup(vcpu)) {
|
|
shrink_halt_poll_ns(vcpu);
|
|
} else if (vcpu->kvm->max_halt_poll_ns) {
|
|
if (block_ns <= vcpu->halt_poll_ns)
|
|
;
|
|
/* we had a long block, shrink polling */
|
|
else if (vcpu->halt_poll_ns &&
|
|
block_ns > vcpu->kvm->max_halt_poll_ns)
|
|
shrink_halt_poll_ns(vcpu);
|
|
/* we had a short halt and our poll time is too small */
|
|
else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
|
|
block_ns < vcpu->kvm->max_halt_poll_ns)
|
|
grow_halt_poll_ns(vcpu);
|
|
} else {
|
|
vcpu->halt_poll_ns = 0;
|
|
}
|
|
}
|
|
|
|
trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
|
|
kvm_arch_vcpu_block_finish(vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_block);
|
|
|
|
bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct rcuwait *waitp;
|
|
|
|
waitp = kvm_arch_vcpu_get_wait(vcpu);
|
|
if (rcuwait_wake_up(waitp)) {
|
|
WRITE_ONCE(vcpu->ready, true);
|
|
++vcpu->stat.generic.halt_wakeup;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
|
|
|
|
#ifndef CONFIG_S390
|
|
/*
|
|
* Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
|
|
*/
|
|
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
|
|
{
|
|
int me, cpu;
|
|
|
|
if (kvm_vcpu_wake_up(vcpu))
|
|
return;
|
|
|
|
/*
|
|
* Note, the vCPU could get migrated to a different pCPU at any point
|
|
* after kvm_arch_vcpu_should_kick(), which could result in sending an
|
|
* IPI to the previous pCPU. But, that's ok because the purpose of the
|
|
* IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
|
|
* vCPU also requires it to leave IN_GUEST_MODE.
|
|
*/
|
|
me = get_cpu();
|
|
if (kvm_arch_vcpu_should_kick(vcpu)) {
|
|
cpu = READ_ONCE(vcpu->cpu);
|
|
if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
|
|
smp_send_reschedule(cpu);
|
|
}
|
|
put_cpu();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
|
|
#endif /* !CONFIG_S390 */
|
|
|
|
int kvm_vcpu_yield_to(struct kvm_vcpu *target)
|
|
{
|
|
struct pid *pid;
|
|
struct task_struct *task = NULL;
|
|
int ret = 0;
|
|
|
|
rcu_read_lock();
|
|
pid = rcu_dereference(target->pid);
|
|
if (pid)
|
|
task = get_pid_task(pid, PIDTYPE_PID);
|
|
rcu_read_unlock();
|
|
if (!task)
|
|
return ret;
|
|
ret = yield_to(task, 1);
|
|
put_task_struct(task);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
|
|
|
|
/*
|
|
* Helper that checks whether a VCPU is eligible for directed yield.
|
|
* Most eligible candidate to yield is decided by following heuristics:
|
|
*
|
|
* (a) VCPU which has not done pl-exit or cpu relax intercepted recently
|
|
* (preempted lock holder), indicated by @in_spin_loop.
|
|
* Set at the beginning and cleared at the end of interception/PLE handler.
|
|
*
|
|
* (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
|
|
* chance last time (mostly it has become eligible now since we have probably
|
|
* yielded to lockholder in last iteration. This is done by toggling
|
|
* @dy_eligible each time a VCPU checked for eligibility.)
|
|
*
|
|
* Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
|
|
* to preempted lock-holder could result in wrong VCPU selection and CPU
|
|
* burning. Giving priority for a potential lock-holder increases lock
|
|
* progress.
|
|
*
|
|
* Since algorithm is based on heuristics, accessing another VCPU data without
|
|
* locking does not harm. It may result in trying to yield to same VCPU, fail
|
|
* and continue with next VCPU and so on.
|
|
*/
|
|
static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
|
|
bool eligible;
|
|
|
|
eligible = !vcpu->spin_loop.in_spin_loop ||
|
|
vcpu->spin_loop.dy_eligible;
|
|
|
|
if (vcpu->spin_loop.in_spin_loop)
|
|
kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
|
|
|
|
return eligible;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Unlike kvm_arch_vcpu_runnable, this function is called outside
|
|
* a vcpu_load/vcpu_put pair. However, for most architectures
|
|
* kvm_arch_vcpu_runnable does not require vcpu_load.
|
|
*/
|
|
bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_arch_vcpu_runnable(vcpu);
|
|
}
|
|
|
|
static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_arch_dy_runnable(vcpu))
|
|
return true;
|
|
|
|
#ifdef CONFIG_KVM_ASYNC_PF
|
|
if (!list_empty_careful(&vcpu->async_pf.done))
|
|
return true;
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
|
|
{
|
|
struct kvm *kvm = me->kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
|
|
int yielded = 0;
|
|
int try = 3;
|
|
int pass;
|
|
int i;
|
|
|
|
kvm_vcpu_set_in_spin_loop(me, true);
|
|
/*
|
|
* We boost the priority of a VCPU that is runnable but not
|
|
* currently running, because it got preempted by something
|
|
* else and called schedule in __vcpu_run. Hopefully that
|
|
* VCPU is holding the lock that we need and will release it.
|
|
* We approximate round-robin by starting at the last boosted VCPU.
|
|
*/
|
|
for (pass = 0; pass < 2 && !yielded && try; pass++) {
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!pass && i <= last_boosted_vcpu) {
|
|
i = last_boosted_vcpu;
|
|
continue;
|
|
} else if (pass && i > last_boosted_vcpu)
|
|
break;
|
|
if (!READ_ONCE(vcpu->ready))
|
|
continue;
|
|
if (vcpu == me)
|
|
continue;
|
|
if (rcuwait_active(&vcpu->wait) &&
|
|
!vcpu_dy_runnable(vcpu))
|
|
continue;
|
|
if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
|
|
!kvm_arch_dy_has_pending_interrupt(vcpu) &&
|
|
!kvm_arch_vcpu_in_kernel(vcpu))
|
|
continue;
|
|
if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
|
|
continue;
|
|
|
|
yielded = kvm_vcpu_yield_to(vcpu);
|
|
if (yielded > 0) {
|
|
kvm->last_boosted_vcpu = i;
|
|
break;
|
|
} else if (yielded < 0) {
|
|
try--;
|
|
if (!try)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
kvm_vcpu_set_in_spin_loop(me, false);
|
|
|
|
/* Ensure vcpu is not eligible during next spinloop */
|
|
kvm_vcpu_set_dy_eligible(me, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
|
|
|
|
static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
|
|
{
|
|
#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
|
|
return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
|
|
(pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
|
|
kvm->dirty_ring_size / PAGE_SIZE);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
|
|
{
|
|
struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
|
|
struct page *page;
|
|
|
|
if (vmf->pgoff == 0)
|
|
page = virt_to_page(vcpu->run);
|
|
#ifdef CONFIG_X86
|
|
else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
|
|
page = virt_to_page(vcpu->arch.pio_data);
|
|
#endif
|
|
#ifdef CONFIG_KVM_MMIO
|
|
else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
|
|
page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
|
|
#endif
|
|
else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
|
|
page = kvm_dirty_ring_get_page(
|
|
&vcpu->dirty_ring,
|
|
vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
|
|
else
|
|
return kvm_arch_vcpu_fault(vcpu, vmf);
|
|
get_page(page);
|
|
vmf->page = page;
|
|
return 0;
|
|
}
|
|
|
|
static const struct vm_operations_struct kvm_vcpu_vm_ops = {
|
|
.fault = kvm_vcpu_fault,
|
|
};
|
|
|
|
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct kvm_vcpu *vcpu = file->private_data;
|
|
unsigned long pages = vma_pages(vma);
|
|
|
|
if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
|
|
kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
|
|
((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
|
|
return -EINVAL;
|
|
|
|
vma->vm_ops = &kvm_vcpu_vm_ops;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
|
|
kvm_put_kvm(vcpu->kvm);
|
|
return 0;
|
|
}
|
|
|
|
static struct file_operations kvm_vcpu_fops = {
|
|
.release = kvm_vcpu_release,
|
|
.unlocked_ioctl = kvm_vcpu_ioctl,
|
|
.mmap = kvm_vcpu_mmap,
|
|
.llseek = noop_llseek,
|
|
KVM_COMPAT(kvm_vcpu_compat_ioctl),
|
|
};
|
|
|
|
/*
|
|
* Allocates an inode for the vcpu.
|
|
*/
|
|
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
|
|
{
|
|
char name[8 + 1 + ITOA_MAX_LEN + 1];
|
|
|
|
snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
|
|
return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
|
|
}
|
|
|
|
static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
|
|
struct dentry *debugfs_dentry;
|
|
char dir_name[ITOA_MAX_LEN * 2];
|
|
|
|
if (!debugfs_initialized())
|
|
return;
|
|
|
|
snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
|
|
debugfs_dentry = debugfs_create_dir(dir_name,
|
|
vcpu->kvm->debugfs_dentry);
|
|
|
|
kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Creates some virtual cpus. Good luck creating more than one.
|
|
*/
|
|
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
|
|
{
|
|
int r;
|
|
struct kvm_vcpu *vcpu;
|
|
struct page *page;
|
|
|
|
if (id >= KVM_MAX_VCPU_IDS)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
if (kvm->created_vcpus == KVM_MAX_VCPUS) {
|
|
mutex_unlock(&kvm->lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
kvm->created_vcpus++;
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
r = kvm_arch_vcpu_precreate(kvm, id);
|
|
if (r)
|
|
goto vcpu_decrement;
|
|
|
|
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
|
|
if (!vcpu) {
|
|
r = -ENOMEM;
|
|
goto vcpu_decrement;
|
|
}
|
|
|
|
BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
|
|
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
|
if (!page) {
|
|
r = -ENOMEM;
|
|
goto vcpu_free;
|
|
}
|
|
vcpu->run = page_address(page);
|
|
|
|
kvm_vcpu_init(vcpu, kvm, id);
|
|
|
|
r = kvm_arch_vcpu_create(vcpu);
|
|
if (r)
|
|
goto vcpu_free_run_page;
|
|
|
|
if (kvm->dirty_ring_size) {
|
|
r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
|
|
id, kvm->dirty_ring_size);
|
|
if (r)
|
|
goto arch_vcpu_destroy;
|
|
}
|
|
|
|
mutex_lock(&kvm->lock);
|
|
if (kvm_get_vcpu_by_id(kvm, id)) {
|
|
r = -EEXIST;
|
|
goto unlock_vcpu_destroy;
|
|
}
|
|
|
|
vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
|
|
BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
|
|
|
|
/* Fill the stats id string for the vcpu */
|
|
snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
|
|
task_pid_nr(current), id);
|
|
|
|
/* Now it's all set up, let userspace reach it */
|
|
kvm_get_kvm(kvm);
|
|
r = create_vcpu_fd(vcpu);
|
|
if (r < 0) {
|
|
kvm_put_kvm_no_destroy(kvm);
|
|
goto unlock_vcpu_destroy;
|
|
}
|
|
|
|
kvm->vcpus[vcpu->vcpu_idx] = vcpu;
|
|
|
|
/*
|
|
* Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
|
|
* before kvm->online_vcpu's incremented value.
|
|
*/
|
|
smp_wmb();
|
|
atomic_inc(&kvm->online_vcpus);
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
kvm_arch_vcpu_postcreate(vcpu);
|
|
kvm_create_vcpu_debugfs(vcpu);
|
|
return r;
|
|
|
|
unlock_vcpu_destroy:
|
|
mutex_unlock(&kvm->lock);
|
|
kvm_dirty_ring_free(&vcpu->dirty_ring);
|
|
arch_vcpu_destroy:
|
|
kvm_arch_vcpu_destroy(vcpu);
|
|
vcpu_free_run_page:
|
|
free_page((unsigned long)vcpu->run);
|
|
vcpu_free:
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
vcpu_decrement:
|
|
mutex_lock(&kvm->lock);
|
|
kvm->created_vcpus--;
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
|
|
{
|
|
if (sigset) {
|
|
sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
vcpu->sigset_active = 1;
|
|
vcpu->sigset = *sigset;
|
|
} else
|
|
vcpu->sigset_active = 0;
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
|
|
size_t size, loff_t *offset)
|
|
{
|
|
struct kvm_vcpu *vcpu = file->private_data;
|
|
|
|
return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
|
|
&kvm_vcpu_stats_desc[0], &vcpu->stat,
|
|
sizeof(vcpu->stat), user_buffer, size, offset);
|
|
}
|
|
|
|
static const struct file_operations kvm_vcpu_stats_fops = {
|
|
.read = kvm_vcpu_stats_read,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
|
|
{
|
|
int fd;
|
|
struct file *file;
|
|
char name[15 + ITOA_MAX_LEN + 1];
|
|
|
|
snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
|
|
|
|
fd = get_unused_fd_flags(O_CLOEXEC);
|
|
if (fd < 0)
|
|
return fd;
|
|
|
|
file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
|
|
if (IS_ERR(file)) {
|
|
put_unused_fd(fd);
|
|
return PTR_ERR(file);
|
|
}
|
|
file->f_mode |= FMODE_PREAD;
|
|
fd_install(fd, file);
|
|
|
|
return fd;
|
|
}
|
|
|
|
static long kvm_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
struct kvm_fpu *fpu = NULL;
|
|
struct kvm_sregs *kvm_sregs = NULL;
|
|
|
|
if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
|
|
return -EIO;
|
|
|
|
if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Some architectures have vcpu ioctls that are asynchronous to vcpu
|
|
* execution; mutex_lock() would break them.
|
|
*/
|
|
r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
|
|
if (r != -ENOIOCTLCMD)
|
|
return r;
|
|
|
|
if (mutex_lock_killable(&vcpu->mutex))
|
|
return -EINTR;
|
|
switch (ioctl) {
|
|
case KVM_RUN: {
|
|
struct pid *oldpid;
|
|
r = -EINVAL;
|
|
if (arg)
|
|
goto out;
|
|
oldpid = rcu_access_pointer(vcpu->pid);
|
|
if (unlikely(oldpid != task_pid(current))) {
|
|
/* The thread running this VCPU changed. */
|
|
struct pid *newpid;
|
|
|
|
r = kvm_arch_vcpu_run_pid_change(vcpu);
|
|
if (r)
|
|
break;
|
|
|
|
newpid = get_task_pid(current, PIDTYPE_PID);
|
|
rcu_assign_pointer(vcpu->pid, newpid);
|
|
if (oldpid)
|
|
synchronize_rcu();
|
|
put_pid(oldpid);
|
|
}
|
|
r = kvm_arch_vcpu_ioctl_run(vcpu);
|
|
trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
|
|
break;
|
|
}
|
|
case KVM_GET_REGS: {
|
|
struct kvm_regs *kvm_regs;
|
|
|
|
r = -ENOMEM;
|
|
kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
|
|
if (!kvm_regs)
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
|
|
if (r)
|
|
goto out_free1;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
|
|
goto out_free1;
|
|
r = 0;
|
|
out_free1:
|
|
kfree(kvm_regs);
|
|
break;
|
|
}
|
|
case KVM_SET_REGS: {
|
|
struct kvm_regs *kvm_regs;
|
|
|
|
kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
|
|
if (IS_ERR(kvm_regs)) {
|
|
r = PTR_ERR(kvm_regs);
|
|
goto out;
|
|
}
|
|
r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
|
|
kfree(kvm_regs);
|
|
break;
|
|
}
|
|
case KVM_GET_SREGS: {
|
|
kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
|
|
GFP_KERNEL_ACCOUNT);
|
|
r = -ENOMEM;
|
|
if (!kvm_sregs)
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_SREGS: {
|
|
kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
|
|
if (IS_ERR(kvm_sregs)) {
|
|
r = PTR_ERR(kvm_sregs);
|
|
kvm_sregs = NULL;
|
|
goto out;
|
|
}
|
|
r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
|
|
break;
|
|
}
|
|
case KVM_GET_MP_STATE: {
|
|
struct kvm_mp_state mp_state;
|
|
|
|
r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_MP_STATE: {
|
|
struct kvm_mp_state mp_state;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
|
|
break;
|
|
}
|
|
case KVM_TRANSLATE: {
|
|
struct kvm_translation tr;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&tr, argp, sizeof(tr)))
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &tr, sizeof(tr)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_GUEST_DEBUG: {
|
|
struct kvm_guest_debug dbg;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&dbg, argp, sizeof(dbg)))
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
|
|
break;
|
|
}
|
|
case KVM_SET_SIGNAL_MASK: {
|
|
struct kvm_signal_mask __user *sigmask_arg = argp;
|
|
struct kvm_signal_mask kvm_sigmask;
|
|
sigset_t sigset, *p;
|
|
|
|
p = NULL;
|
|
if (argp) {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_sigmask, argp,
|
|
sizeof(kvm_sigmask)))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (kvm_sigmask.len != sizeof(sigset))
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&sigset, sigmask_arg->sigset,
|
|
sizeof(sigset)))
|
|
goto out;
|
|
p = &sigset;
|
|
}
|
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
|
|
break;
|
|
}
|
|
case KVM_GET_FPU: {
|
|
fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
|
|
r = -ENOMEM;
|
|
if (!fpu)
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_FPU: {
|
|
fpu = memdup_user(argp, sizeof(*fpu));
|
|
if (IS_ERR(fpu)) {
|
|
r = PTR_ERR(fpu);
|
|
fpu = NULL;
|
|
goto out;
|
|
}
|
|
r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
|
|
break;
|
|
}
|
|
case KVM_GET_STATS_FD: {
|
|
r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
|
|
break;
|
|
}
|
|
default:
|
|
r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
|
|
}
|
|
out:
|
|
mutex_unlock(&vcpu->mutex);
|
|
kfree(fpu);
|
|
kfree(kvm_sregs);
|
|
return r;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_COMPAT
|
|
static long kvm_vcpu_compat_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = compat_ptr(arg);
|
|
int r;
|
|
|
|
if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
|
|
return -EIO;
|
|
|
|
switch (ioctl) {
|
|
case KVM_SET_SIGNAL_MASK: {
|
|
struct kvm_signal_mask __user *sigmask_arg = argp;
|
|
struct kvm_signal_mask kvm_sigmask;
|
|
sigset_t sigset;
|
|
|
|
if (argp) {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_sigmask, argp,
|
|
sizeof(kvm_sigmask)))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (kvm_sigmask.len != sizeof(compat_sigset_t))
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (get_compat_sigset(&sigset,
|
|
(compat_sigset_t __user *)sigmask_arg->sigset))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
|
|
} else
|
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
|
|
break;
|
|
}
|
|
default:
|
|
r = kvm_vcpu_ioctl(filp, ioctl, arg);
|
|
}
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
|
|
{
|
|
struct kvm_device *dev = filp->private_data;
|
|
|
|
if (dev->ops->mmap)
|
|
return dev->ops->mmap(dev, vma);
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int kvm_device_ioctl_attr(struct kvm_device *dev,
|
|
int (*accessor)(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr),
|
|
unsigned long arg)
|
|
{
|
|
struct kvm_device_attr attr;
|
|
|
|
if (!accessor)
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
|
|
return -EFAULT;
|
|
|
|
return accessor(dev, &attr);
|
|
}
|
|
|
|
static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
|
|
unsigned long arg)
|
|
{
|
|
struct kvm_device *dev = filp->private_data;
|
|
|
|
if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
|
|
return -EIO;
|
|
|
|
switch (ioctl) {
|
|
case KVM_SET_DEVICE_ATTR:
|
|
return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
|
|
case KVM_GET_DEVICE_ATTR:
|
|
return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
|
|
case KVM_HAS_DEVICE_ATTR:
|
|
return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
|
|
default:
|
|
if (dev->ops->ioctl)
|
|
return dev->ops->ioctl(dev, ioctl, arg);
|
|
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static int kvm_device_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm_device *dev = filp->private_data;
|
|
struct kvm *kvm = dev->kvm;
|
|
|
|
if (dev->ops->release) {
|
|
mutex_lock(&kvm->lock);
|
|
list_del(&dev->vm_node);
|
|
dev->ops->release(dev);
|
|
mutex_unlock(&kvm->lock);
|
|
}
|
|
|
|
kvm_put_kvm(kvm);
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations kvm_device_fops = {
|
|
.unlocked_ioctl = kvm_device_ioctl,
|
|
.release = kvm_device_release,
|
|
KVM_COMPAT(kvm_device_ioctl),
|
|
.mmap = kvm_device_mmap,
|
|
};
|
|
|
|
struct kvm_device *kvm_device_from_filp(struct file *filp)
|
|
{
|
|
if (filp->f_op != &kvm_device_fops)
|
|
return NULL;
|
|
|
|
return filp->private_data;
|
|
}
|
|
|
|
static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
|
|
#ifdef CONFIG_KVM_MPIC
|
|
[KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
|
|
[KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
|
|
#endif
|
|
};
|
|
|
|
int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
|
|
{
|
|
if (type >= ARRAY_SIZE(kvm_device_ops_table))
|
|
return -ENOSPC;
|
|
|
|
if (kvm_device_ops_table[type] != NULL)
|
|
return -EEXIST;
|
|
|
|
kvm_device_ops_table[type] = ops;
|
|
return 0;
|
|
}
|
|
|
|
void kvm_unregister_device_ops(u32 type)
|
|
{
|
|
if (kvm_device_ops_table[type] != NULL)
|
|
kvm_device_ops_table[type] = NULL;
|
|
}
|
|
|
|
static int kvm_ioctl_create_device(struct kvm *kvm,
|
|
struct kvm_create_device *cd)
|
|
{
|
|
const struct kvm_device_ops *ops = NULL;
|
|
struct kvm_device *dev;
|
|
bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
|
|
int type;
|
|
int ret;
|
|
|
|
if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
|
|
return -ENODEV;
|
|
|
|
type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
|
|
ops = kvm_device_ops_table[type];
|
|
if (ops == NULL)
|
|
return -ENODEV;
|
|
|
|
if (test)
|
|
return 0;
|
|
|
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
dev->ops = ops;
|
|
dev->kvm = kvm;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
ret = ops->create(dev, type);
|
|
if (ret < 0) {
|
|
mutex_unlock(&kvm->lock);
|
|
kfree(dev);
|
|
return ret;
|
|
}
|
|
list_add(&dev->vm_node, &kvm->devices);
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
if (ops->init)
|
|
ops->init(dev);
|
|
|
|
kvm_get_kvm(kvm);
|
|
ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
|
|
if (ret < 0) {
|
|
kvm_put_kvm_no_destroy(kvm);
|
|
mutex_lock(&kvm->lock);
|
|
list_del(&dev->vm_node);
|
|
mutex_unlock(&kvm->lock);
|
|
ops->destroy(dev);
|
|
return ret;
|
|
}
|
|
|
|
cd->fd = ret;
|
|
return 0;
|
|
}
|
|
|
|
static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
|
|
{
|
|
switch (arg) {
|
|
case KVM_CAP_USER_MEMORY:
|
|
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
|
|
case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
|
|
case KVM_CAP_INTERNAL_ERROR_DATA:
|
|
#ifdef CONFIG_HAVE_KVM_MSI
|
|
case KVM_CAP_SIGNAL_MSI:
|
|
#endif
|
|
#ifdef CONFIG_HAVE_KVM_IRQFD
|
|
case KVM_CAP_IRQFD:
|
|
case KVM_CAP_IRQFD_RESAMPLE:
|
|
#endif
|
|
case KVM_CAP_IOEVENTFD_ANY_LENGTH:
|
|
case KVM_CAP_CHECK_EXTENSION_VM:
|
|
case KVM_CAP_ENABLE_CAP_VM:
|
|
case KVM_CAP_HALT_POLL:
|
|
return 1;
|
|
#ifdef CONFIG_KVM_MMIO
|
|
case KVM_CAP_COALESCED_MMIO:
|
|
return KVM_COALESCED_MMIO_PAGE_OFFSET;
|
|
case KVM_CAP_COALESCED_PIO:
|
|
return 1;
|
|
#endif
|
|
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
|
|
case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
|
|
return KVM_DIRTY_LOG_MANUAL_CAPS;
|
|
#endif
|
|
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
|
|
case KVM_CAP_IRQ_ROUTING:
|
|
return KVM_MAX_IRQ_ROUTES;
|
|
#endif
|
|
#if KVM_ADDRESS_SPACE_NUM > 1
|
|
case KVM_CAP_MULTI_ADDRESS_SPACE:
|
|
return KVM_ADDRESS_SPACE_NUM;
|
|
#endif
|
|
case KVM_CAP_NR_MEMSLOTS:
|
|
return KVM_USER_MEM_SLOTS;
|
|
case KVM_CAP_DIRTY_LOG_RING:
|
|
#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
|
|
return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
case KVM_CAP_BINARY_STATS_FD:
|
|
return 1;
|
|
default:
|
|
break;
|
|
}
|
|
return kvm_vm_ioctl_check_extension(kvm, arg);
|
|
}
|
|
|
|
static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
|
|
{
|
|
int r;
|
|
|
|
if (!KVM_DIRTY_LOG_PAGE_OFFSET)
|
|
return -EINVAL;
|
|
|
|
/* the size should be power of 2 */
|
|
if (!size || (size & (size - 1)))
|
|
return -EINVAL;
|
|
|
|
/* Should be bigger to keep the reserved entries, or a page */
|
|
if (size < kvm_dirty_ring_get_rsvd_entries() *
|
|
sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (size > KVM_DIRTY_RING_MAX_ENTRIES *
|
|
sizeof(struct kvm_dirty_gfn))
|
|
return -E2BIG;
|
|
|
|
/* We only allow it to set once */
|
|
if (kvm->dirty_ring_size)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
if (kvm->created_vcpus) {
|
|
/* We don't allow to change this value after vcpu created */
|
|
r = -EINVAL;
|
|
} else {
|
|
kvm->dirty_ring_size = size;
|
|
r = 0;
|
|
}
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
int cleared = 0;
|
|
|
|
if (!kvm->dirty_ring_size)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
if (cleared)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
return cleared;
|
|
}
|
|
|
|
int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
|
|
struct kvm_enable_cap *cap)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
|
|
struct kvm_enable_cap *cap)
|
|
{
|
|
switch (cap->cap) {
|
|
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
|
|
case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
|
|
u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
|
|
|
|
if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
|
|
allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
|
|
|
|
if (cap->flags || (cap->args[0] & ~allowed_options))
|
|
return -EINVAL;
|
|
kvm->manual_dirty_log_protect = cap->args[0];
|
|
return 0;
|
|
}
|
|
#endif
|
|
case KVM_CAP_HALT_POLL: {
|
|
if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
|
|
return -EINVAL;
|
|
|
|
kvm->max_halt_poll_ns = cap->args[0];
|
|
return 0;
|
|
}
|
|
case KVM_CAP_DIRTY_LOG_RING:
|
|
return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
|
|
default:
|
|
return kvm_vm_ioctl_enable_cap(kvm, cap);
|
|
}
|
|
}
|
|
|
|
static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
|
|
size_t size, loff_t *offset)
|
|
{
|
|
struct kvm *kvm = file->private_data;
|
|
|
|
return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
|
|
&kvm_vm_stats_desc[0], &kvm->stat,
|
|
sizeof(kvm->stat), user_buffer, size, offset);
|
|
}
|
|
|
|
static const struct file_operations kvm_vm_stats_fops = {
|
|
.read = kvm_vm_stats_read,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
|
|
{
|
|
int fd;
|
|
struct file *file;
|
|
|
|
fd = get_unused_fd_flags(O_CLOEXEC);
|
|
if (fd < 0)
|
|
return fd;
|
|
|
|
file = anon_inode_getfile("kvm-vm-stats",
|
|
&kvm_vm_stats_fops, kvm, O_RDONLY);
|
|
if (IS_ERR(file)) {
|
|
put_unused_fd(fd);
|
|
return PTR_ERR(file);
|
|
}
|
|
file->f_mode |= FMODE_PREAD;
|
|
fd_install(fd, file);
|
|
|
|
return fd;
|
|
}
|
|
|
|
static long kvm_vm_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
|
|
if (kvm->mm != current->mm || kvm->vm_dead)
|
|
return -EIO;
|
|
switch (ioctl) {
|
|
case KVM_CREATE_VCPU:
|
|
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
|
|
break;
|
|
case KVM_ENABLE_CAP: {
|
|
struct kvm_enable_cap cap;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cap, argp, sizeof(cap)))
|
|
goto out;
|
|
r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
|
|
break;
|
|
}
|
|
case KVM_SET_USER_MEMORY_REGION: {
|
|
struct kvm_userspace_memory_region kvm_userspace_mem;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_userspace_mem, argp,
|
|
sizeof(kvm_userspace_mem)))
|
|
goto out;
|
|
|
|
r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
|
|
break;
|
|
}
|
|
case KVM_GET_DIRTY_LOG: {
|
|
struct kvm_dirty_log log;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&log, argp, sizeof(log)))
|
|
goto out;
|
|
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
|
|
break;
|
|
}
|
|
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
|
|
case KVM_CLEAR_DIRTY_LOG: {
|
|
struct kvm_clear_dirty_log log;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&log, argp, sizeof(log)))
|
|
goto out;
|
|
r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_KVM_MMIO
|
|
case KVM_REGISTER_COALESCED_MMIO: {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&zone, argp, sizeof(zone)))
|
|
goto out;
|
|
r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
|
|
break;
|
|
}
|
|
case KVM_UNREGISTER_COALESCED_MMIO: {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&zone, argp, sizeof(zone)))
|
|
goto out;
|
|
r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
|
|
break;
|
|
}
|
|
#endif
|
|
case KVM_IRQFD: {
|
|
struct kvm_irqfd data;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&data, argp, sizeof(data)))
|
|
goto out;
|
|
r = kvm_irqfd(kvm, &data);
|
|
break;
|
|
}
|
|
case KVM_IOEVENTFD: {
|
|
struct kvm_ioeventfd data;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&data, argp, sizeof(data)))
|
|
goto out;
|
|
r = kvm_ioeventfd(kvm, &data);
|
|
break;
|
|
}
|
|
#ifdef CONFIG_HAVE_KVM_MSI
|
|
case KVM_SIGNAL_MSI: {
|
|
struct kvm_msi msi;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&msi, argp, sizeof(msi)))
|
|
goto out;
|
|
r = kvm_send_userspace_msi(kvm, &msi);
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef __KVM_HAVE_IRQ_LINE
|
|
case KVM_IRQ_LINE_STATUS:
|
|
case KVM_IRQ_LINE: {
|
|
struct kvm_irq_level irq_event;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
|
|
goto out;
|
|
|
|
r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
|
|
ioctl == KVM_IRQ_LINE_STATUS);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
if (ioctl == KVM_IRQ_LINE_STATUS) {
|
|
if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
|
|
goto out;
|
|
}
|
|
|
|
r = 0;
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
|
|
case KVM_SET_GSI_ROUTING: {
|
|
struct kvm_irq_routing routing;
|
|
struct kvm_irq_routing __user *urouting;
|
|
struct kvm_irq_routing_entry *entries = NULL;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&routing, argp, sizeof(routing)))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (!kvm_arch_can_set_irq_routing(kvm))
|
|
goto out;
|
|
if (routing.nr > KVM_MAX_IRQ_ROUTES)
|
|
goto out;
|
|
if (routing.flags)
|
|
goto out;
|
|
if (routing.nr) {
|
|
urouting = argp;
|
|
entries = vmemdup_user(urouting->entries,
|
|
array_size(sizeof(*entries),
|
|
routing.nr));
|
|
if (IS_ERR(entries)) {
|
|
r = PTR_ERR(entries);
|
|
goto out;
|
|
}
|
|
}
|
|
r = kvm_set_irq_routing(kvm, entries, routing.nr,
|
|
routing.flags);
|
|
kvfree(entries);
|
|
break;
|
|
}
|
|
#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
|
|
case KVM_CREATE_DEVICE: {
|
|
struct kvm_create_device cd;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cd, argp, sizeof(cd)))
|
|
goto out;
|
|
|
|
r = kvm_ioctl_create_device(kvm, &cd);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &cd, sizeof(cd)))
|
|
goto out;
|
|
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_CHECK_EXTENSION:
|
|
r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
|
|
break;
|
|
case KVM_RESET_DIRTY_RINGS:
|
|
r = kvm_vm_ioctl_reset_dirty_pages(kvm);
|
|
break;
|
|
case KVM_GET_STATS_FD:
|
|
r = kvm_vm_ioctl_get_stats_fd(kvm);
|
|
break;
|
|
default:
|
|
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_COMPAT
|
|
struct compat_kvm_dirty_log {
|
|
__u32 slot;
|
|
__u32 padding1;
|
|
union {
|
|
compat_uptr_t dirty_bitmap; /* one bit per page */
|
|
__u64 padding2;
|
|
};
|
|
};
|
|
|
|
struct compat_kvm_clear_dirty_log {
|
|
__u32 slot;
|
|
__u32 num_pages;
|
|
__u64 first_page;
|
|
union {
|
|
compat_uptr_t dirty_bitmap; /* one bit per page */
|
|
__u64 padding2;
|
|
};
|
|
};
|
|
|
|
static long kvm_vm_compat_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
int r;
|
|
|
|
if (kvm->mm != current->mm || kvm->vm_dead)
|
|
return -EIO;
|
|
switch (ioctl) {
|
|
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
|
|
case KVM_CLEAR_DIRTY_LOG: {
|
|
struct compat_kvm_clear_dirty_log compat_log;
|
|
struct kvm_clear_dirty_log log;
|
|
|
|
if (copy_from_user(&compat_log, (void __user *)arg,
|
|
sizeof(compat_log)))
|
|
return -EFAULT;
|
|
log.slot = compat_log.slot;
|
|
log.num_pages = compat_log.num_pages;
|
|
log.first_page = compat_log.first_page;
|
|
log.padding2 = compat_log.padding2;
|
|
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
|
|
|
|
r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
|
|
break;
|
|
}
|
|
#endif
|
|
case KVM_GET_DIRTY_LOG: {
|
|
struct compat_kvm_dirty_log compat_log;
|
|
struct kvm_dirty_log log;
|
|
|
|
if (copy_from_user(&compat_log, (void __user *)arg,
|
|
sizeof(compat_log)))
|
|
return -EFAULT;
|
|
log.slot = compat_log.slot;
|
|
log.padding1 = compat_log.padding1;
|
|
log.padding2 = compat_log.padding2;
|
|
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
|
|
|
|
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
|
|
break;
|
|
}
|
|
default:
|
|
r = kvm_vm_ioctl(filp, ioctl, arg);
|
|
}
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
static struct file_operations kvm_vm_fops = {
|
|
.release = kvm_vm_release,
|
|
.unlocked_ioctl = kvm_vm_ioctl,
|
|
.llseek = noop_llseek,
|
|
KVM_COMPAT(kvm_vm_compat_ioctl),
|
|
};
|
|
|
|
bool file_is_kvm(struct file *file)
|
|
{
|
|
return file && file->f_op == &kvm_vm_fops;
|
|
}
|
|
EXPORT_SYMBOL_GPL(file_is_kvm);
|
|
|
|
static int kvm_dev_ioctl_create_vm(unsigned long type)
|
|
{
|
|
int r;
|
|
struct kvm *kvm;
|
|
struct file *file;
|
|
|
|
kvm = kvm_create_vm(type);
|
|
if (IS_ERR(kvm))
|
|
return PTR_ERR(kvm);
|
|
#ifdef CONFIG_KVM_MMIO
|
|
r = kvm_coalesced_mmio_init(kvm);
|
|
if (r < 0)
|
|
goto put_kvm;
|
|
#endif
|
|
r = get_unused_fd_flags(O_CLOEXEC);
|
|
if (r < 0)
|
|
goto put_kvm;
|
|
|
|
snprintf(kvm->stats_id, sizeof(kvm->stats_id),
|
|
"kvm-%d", task_pid_nr(current));
|
|
|
|
file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
|
|
if (IS_ERR(file)) {
|
|
put_unused_fd(r);
|
|
r = PTR_ERR(file);
|
|
goto put_kvm;
|
|
}
|
|
|
|
/*
|
|
* Don't call kvm_put_kvm anymore at this point; file->f_op is
|
|
* already set, with ->release() being kvm_vm_release(). In error
|
|
* cases it will be called by the final fput(file) and will take
|
|
* care of doing kvm_put_kvm(kvm).
|
|
*/
|
|
if (kvm_create_vm_debugfs(kvm, r) < 0) {
|
|
put_unused_fd(r);
|
|
fput(file);
|
|
return -ENOMEM;
|
|
}
|
|
kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
|
|
|
|
fd_install(r, file);
|
|
return r;
|
|
|
|
put_kvm:
|
|
kvm_put_kvm(kvm);
|
|
return r;
|
|
}
|
|
|
|
static long kvm_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
long r = -EINVAL;
|
|
|
|
switch (ioctl) {
|
|
case KVM_GET_API_VERSION:
|
|
if (arg)
|
|
goto out;
|
|
r = KVM_API_VERSION;
|
|
break;
|
|
case KVM_CREATE_VM:
|
|
r = kvm_dev_ioctl_create_vm(arg);
|
|
break;
|
|
case KVM_CHECK_EXTENSION:
|
|
r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
|
|
break;
|
|
case KVM_GET_VCPU_MMAP_SIZE:
|
|
if (arg)
|
|
goto out;
|
|
r = PAGE_SIZE; /* struct kvm_run */
|
|
#ifdef CONFIG_X86
|
|
r += PAGE_SIZE; /* pio data page */
|
|
#endif
|
|
#ifdef CONFIG_KVM_MMIO
|
|
r += PAGE_SIZE; /* coalesced mmio ring page */
|
|
#endif
|
|
break;
|
|
case KVM_TRACE_ENABLE:
|
|
case KVM_TRACE_PAUSE:
|
|
case KVM_TRACE_DISABLE:
|
|
r = -EOPNOTSUPP;
|
|
break;
|
|
default:
|
|
return kvm_arch_dev_ioctl(filp, ioctl, arg);
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static struct file_operations kvm_chardev_ops = {
|
|
.unlocked_ioctl = kvm_dev_ioctl,
|
|
.llseek = noop_llseek,
|
|
KVM_COMPAT(kvm_dev_ioctl),
|
|
};
|
|
|
|
static struct miscdevice kvm_dev = {
|
|
KVM_MINOR,
|
|
"kvm",
|
|
&kvm_chardev_ops,
|
|
};
|
|
|
|
static void hardware_enable_nolock(void *junk)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
int r;
|
|
|
|
if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
|
|
return;
|
|
|
|
cpumask_set_cpu(cpu, cpus_hardware_enabled);
|
|
|
|
r = kvm_arch_hardware_enable();
|
|
|
|
if (r) {
|
|
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
|
|
atomic_inc(&hardware_enable_failed);
|
|
pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
|
|
}
|
|
}
|
|
|
|
static int kvm_starting_cpu(unsigned int cpu)
|
|
{
|
|
raw_spin_lock(&kvm_count_lock);
|
|
if (kvm_usage_count)
|
|
hardware_enable_nolock(NULL);
|
|
raw_spin_unlock(&kvm_count_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void hardware_disable_nolock(void *junk)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
|
|
return;
|
|
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
|
|
kvm_arch_hardware_disable();
|
|
}
|
|
|
|
static int kvm_dying_cpu(unsigned int cpu)
|
|
{
|
|
raw_spin_lock(&kvm_count_lock);
|
|
if (kvm_usage_count)
|
|
hardware_disable_nolock(NULL);
|
|
raw_spin_unlock(&kvm_count_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void hardware_disable_all_nolock(void)
|
|
{
|
|
BUG_ON(!kvm_usage_count);
|
|
|
|
kvm_usage_count--;
|
|
if (!kvm_usage_count)
|
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
|
}
|
|
|
|
static void hardware_disable_all(void)
|
|
{
|
|
raw_spin_lock(&kvm_count_lock);
|
|
hardware_disable_all_nolock();
|
|
raw_spin_unlock(&kvm_count_lock);
|
|
}
|
|
|
|
static int hardware_enable_all(void)
|
|
{
|
|
int r = 0;
|
|
|
|
raw_spin_lock(&kvm_count_lock);
|
|
|
|
kvm_usage_count++;
|
|
if (kvm_usage_count == 1) {
|
|
atomic_set(&hardware_enable_failed, 0);
|
|
on_each_cpu(hardware_enable_nolock, NULL, 1);
|
|
|
|
if (atomic_read(&hardware_enable_failed)) {
|
|
hardware_disable_all_nolock();
|
|
r = -EBUSY;
|
|
}
|
|
}
|
|
|
|
raw_spin_unlock(&kvm_count_lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
|
|
void *v)
|
|
{
|
|
/*
|
|
* Some (well, at least mine) BIOSes hang on reboot if
|
|
* in vmx root mode.
|
|
*
|
|
* And Intel TXT required VMX off for all cpu when system shutdown.
|
|
*/
|
|
pr_info("kvm: exiting hardware virtualization\n");
|
|
kvm_rebooting = true;
|
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block kvm_reboot_notifier = {
|
|
.notifier_call = kvm_reboot,
|
|
.priority = 0,
|
|
};
|
|
|
|
static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bus->dev_count; i++) {
|
|
struct kvm_io_device *pos = bus->range[i].dev;
|
|
|
|
kvm_iodevice_destructor(pos);
|
|
}
|
|
kfree(bus);
|
|
}
|
|
|
|
static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
|
|
const struct kvm_io_range *r2)
|
|
{
|
|
gpa_t addr1 = r1->addr;
|
|
gpa_t addr2 = r2->addr;
|
|
|
|
if (addr1 < addr2)
|
|
return -1;
|
|
|
|
/* If r2->len == 0, match the exact address. If r2->len != 0,
|
|
* accept any overlapping write. Any order is acceptable for
|
|
* overlapping ranges, because kvm_io_bus_get_first_dev ensures
|
|
* we process all of them.
|
|
*/
|
|
if (r2->len) {
|
|
addr1 += r1->len;
|
|
addr2 += r2->len;
|
|
}
|
|
|
|
if (addr1 > addr2)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
|
|
{
|
|
return kvm_io_bus_cmp(p1, p2);
|
|
}
|
|
|
|
static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
|
|
gpa_t addr, int len)
|
|
{
|
|
struct kvm_io_range *range, key;
|
|
int off;
|
|
|
|
key = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
};
|
|
|
|
range = bsearch(&key, bus->range, bus->dev_count,
|
|
sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
|
|
if (range == NULL)
|
|
return -ENOENT;
|
|
|
|
off = range - bus->range;
|
|
|
|
while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
|
|
off--;
|
|
|
|
return off;
|
|
}
|
|
|
|
static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
|
|
struct kvm_io_range *range, const void *val)
|
|
{
|
|
int idx;
|
|
|
|
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
|
|
if (idx < 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
while (idx < bus->dev_count &&
|
|
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
|
|
if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
|
|
range->len, val))
|
|
return idx;
|
|
idx++;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* kvm_io_bus_write - called under kvm->slots_lock */
|
|
int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
|
|
int len, const void *val)
|
|
{
|
|
struct kvm_io_bus *bus;
|
|
struct kvm_io_range range;
|
|
int r;
|
|
|
|
range = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
};
|
|
|
|
bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
|
|
if (!bus)
|
|
return -ENOMEM;
|
|
r = __kvm_io_bus_write(vcpu, bus, &range, val);
|
|
return r < 0 ? r : 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_io_bus_write);
|
|
|
|
/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
|
|
int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
|
|
gpa_t addr, int len, const void *val, long cookie)
|
|
{
|
|
struct kvm_io_bus *bus;
|
|
struct kvm_io_range range;
|
|
|
|
range = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
};
|
|
|
|
bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
|
|
if (!bus)
|
|
return -ENOMEM;
|
|
|
|
/* First try the device referenced by cookie. */
|
|
if ((cookie >= 0) && (cookie < bus->dev_count) &&
|
|
(kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
|
|
if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
|
|
val))
|
|
return cookie;
|
|
|
|
/*
|
|
* cookie contained garbage; fall back to search and return the
|
|
* correct cookie value.
|
|
*/
|
|
return __kvm_io_bus_write(vcpu, bus, &range, val);
|
|
}
|
|
|
|
static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
|
|
struct kvm_io_range *range, void *val)
|
|
{
|
|
int idx;
|
|
|
|
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
|
|
if (idx < 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
while (idx < bus->dev_count &&
|
|
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
|
|
if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
|
|
range->len, val))
|
|
return idx;
|
|
idx++;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* kvm_io_bus_read - called under kvm->slots_lock */
|
|
int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
|
|
int len, void *val)
|
|
{
|
|
struct kvm_io_bus *bus;
|
|
struct kvm_io_range range;
|
|
int r;
|
|
|
|
range = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
};
|
|
|
|
bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
|
|
if (!bus)
|
|
return -ENOMEM;
|
|
r = __kvm_io_bus_read(vcpu, bus, &range, val);
|
|
return r < 0 ? r : 0;
|
|
}
|
|
|
|
/* Caller must hold slots_lock. */
|
|
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
|
int len, struct kvm_io_device *dev)
|
|
{
|
|
int i;
|
|
struct kvm_io_bus *new_bus, *bus;
|
|
struct kvm_io_range range;
|
|
|
|
bus = kvm_get_bus(kvm, bus_idx);
|
|
if (!bus)
|
|
return -ENOMEM;
|
|
|
|
/* exclude ioeventfd which is limited by maximum fd */
|
|
if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
|
|
return -ENOSPC;
|
|
|
|
new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!new_bus)
|
|
return -ENOMEM;
|
|
|
|
range = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
.dev = dev,
|
|
};
|
|
|
|
for (i = 0; i < bus->dev_count; i++)
|
|
if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
|
|
break;
|
|
|
|
memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
|
|
new_bus->dev_count++;
|
|
new_bus->range[i] = range;
|
|
memcpy(new_bus->range + i + 1, bus->range + i,
|
|
(bus->dev_count - i) * sizeof(struct kvm_io_range));
|
|
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
kfree(bus);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
|
|
struct kvm_io_device *dev)
|
|
{
|
|
int i, j;
|
|
struct kvm_io_bus *new_bus, *bus;
|
|
|
|
lockdep_assert_held(&kvm->slots_lock);
|
|
|
|
bus = kvm_get_bus(kvm, bus_idx);
|
|
if (!bus)
|
|
return 0;
|
|
|
|
for (i = 0; i < bus->dev_count; i++) {
|
|
if (bus->range[i].dev == dev) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == bus->dev_count)
|
|
return 0;
|
|
|
|
new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (new_bus) {
|
|
memcpy(new_bus, bus, struct_size(bus, range, i));
|
|
new_bus->dev_count--;
|
|
memcpy(new_bus->range + i, bus->range + i + 1,
|
|
flex_array_size(new_bus, range, new_bus->dev_count - i));
|
|
}
|
|
|
|
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
|
|
/* Destroy the old bus _after_ installing the (null) bus. */
|
|
if (!new_bus) {
|
|
pr_err("kvm: failed to shrink bus, removing it completely\n");
|
|
for (j = 0; j < bus->dev_count; j++) {
|
|
if (j == i)
|
|
continue;
|
|
kvm_iodevice_destructor(bus->range[j].dev);
|
|
}
|
|
}
|
|
|
|
kfree(bus);
|
|
return new_bus ? 0 : -ENOMEM;
|
|
}
|
|
|
|
struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
|
|
gpa_t addr)
|
|
{
|
|
struct kvm_io_bus *bus;
|
|
int dev_idx, srcu_idx;
|
|
struct kvm_io_device *iodev = NULL;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
|
|
if (!bus)
|
|
goto out_unlock;
|
|
|
|
dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
|
|
if (dev_idx < 0)
|
|
goto out_unlock;
|
|
|
|
iodev = bus->range[dev_idx].dev;
|
|
|
|
out_unlock:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
return iodev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
|
|
|
|
static int kvm_debugfs_open(struct inode *inode, struct file *file,
|
|
int (*get)(void *, u64 *), int (*set)(void *, u64),
|
|
const char *fmt)
|
|
{
|
|
struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
|
|
inode->i_private;
|
|
|
|
/*
|
|
* The debugfs files are a reference to the kvm struct which
|
|
* is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
|
|
* avoids the race between open and the removal of the debugfs directory.
|
|
*/
|
|
if (!kvm_get_kvm_safe(stat_data->kvm))
|
|
return -ENOENT;
|
|
|
|
if (simple_attr_open(inode, file, get,
|
|
kvm_stats_debugfs_mode(stat_data->desc) & 0222
|
|
? set : NULL,
|
|
fmt)) {
|
|
kvm_put_kvm(stat_data->kvm);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_debugfs_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
|
|
inode->i_private;
|
|
|
|
simple_attr_release(inode, file);
|
|
kvm_put_kvm(stat_data->kvm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
|
|
{
|
|
*val = *(u64 *)((void *)(&kvm->stat) + offset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
|
|
{
|
|
*(u64 *)((void *)(&kvm->stat) + offset) = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
|
|
{
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
*val = 0;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
*val += *(u64 *)((void *)(&vcpu->stat) + offset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
|
|
{
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_stat_data_get(void *data, u64 *val)
|
|
{
|
|
int r = -EFAULT;
|
|
struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
|
|
|
|
switch (stat_data->kind) {
|
|
case KVM_STAT_VM:
|
|
r = kvm_get_stat_per_vm(stat_data->kvm,
|
|
stat_data->desc->desc.offset, val);
|
|
break;
|
|
case KVM_STAT_VCPU:
|
|
r = kvm_get_stat_per_vcpu(stat_data->kvm,
|
|
stat_data->desc->desc.offset, val);
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvm_stat_data_clear(void *data, u64 val)
|
|
{
|
|
int r = -EFAULT;
|
|
struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
|
|
|
|
if (val)
|
|
return -EINVAL;
|
|
|
|
switch (stat_data->kind) {
|
|
case KVM_STAT_VM:
|
|
r = kvm_clear_stat_per_vm(stat_data->kvm,
|
|
stat_data->desc->desc.offset);
|
|
break;
|
|
case KVM_STAT_VCPU:
|
|
r = kvm_clear_stat_per_vcpu(stat_data->kvm,
|
|
stat_data->desc->desc.offset);
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvm_stat_data_open(struct inode *inode, struct file *file)
|
|
{
|
|
__simple_attr_check_format("%llu\n", 0ull);
|
|
return kvm_debugfs_open(inode, file, kvm_stat_data_get,
|
|
kvm_stat_data_clear, "%llu\n");
|
|
}
|
|
|
|
static const struct file_operations stat_fops_per_vm = {
|
|
.owner = THIS_MODULE,
|
|
.open = kvm_stat_data_open,
|
|
.release = kvm_debugfs_release,
|
|
.read = simple_attr_read,
|
|
.write = simple_attr_write,
|
|
.llseek = no_llseek,
|
|
};
|
|
|
|
static int vm_stat_get(void *_offset, u64 *val)
|
|
{
|
|
unsigned offset = (long)_offset;
|
|
struct kvm *kvm;
|
|
u64 tmp_val;
|
|
|
|
*val = 0;
|
|
mutex_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
kvm_get_stat_per_vm(kvm, offset, &tmp_val);
|
|
*val += tmp_val;
|
|
}
|
|
mutex_unlock(&kvm_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int vm_stat_clear(void *_offset, u64 val)
|
|
{
|
|
unsigned offset = (long)_offset;
|
|
struct kvm *kvm;
|
|
|
|
if (val)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
kvm_clear_stat_per_vm(kvm, offset);
|
|
}
|
|
mutex_unlock(&kvm_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
|
|
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
|
|
|
|
static int vcpu_stat_get(void *_offset, u64 *val)
|
|
{
|
|
unsigned offset = (long)_offset;
|
|
struct kvm *kvm;
|
|
u64 tmp_val;
|
|
|
|
*val = 0;
|
|
mutex_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
|
|
*val += tmp_val;
|
|
}
|
|
mutex_unlock(&kvm_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int vcpu_stat_clear(void *_offset, u64 val)
|
|
{
|
|
unsigned offset = (long)_offset;
|
|
struct kvm *kvm;
|
|
|
|
if (val)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
kvm_clear_stat_per_vcpu(kvm, offset);
|
|
}
|
|
mutex_unlock(&kvm_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
|
|
"%llu\n");
|
|
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
|
|
|
|
static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
|
|
{
|
|
struct kobj_uevent_env *env;
|
|
unsigned long long created, active;
|
|
|
|
if (!kvm_dev.this_device || !kvm)
|
|
return;
|
|
|
|
mutex_lock(&kvm_lock);
|
|
if (type == KVM_EVENT_CREATE_VM) {
|
|
kvm_createvm_count++;
|
|
kvm_active_vms++;
|
|
} else if (type == KVM_EVENT_DESTROY_VM) {
|
|
kvm_active_vms--;
|
|
}
|
|
created = kvm_createvm_count;
|
|
active = kvm_active_vms;
|
|
mutex_unlock(&kvm_lock);
|
|
|
|
env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
|
|
if (!env)
|
|
return;
|
|
|
|
add_uevent_var(env, "CREATED=%llu", created);
|
|
add_uevent_var(env, "COUNT=%llu", active);
|
|
|
|
if (type == KVM_EVENT_CREATE_VM) {
|
|
add_uevent_var(env, "EVENT=create");
|
|
kvm->userspace_pid = task_pid_nr(current);
|
|
} else if (type == KVM_EVENT_DESTROY_VM) {
|
|
add_uevent_var(env, "EVENT=destroy");
|
|
}
|
|
add_uevent_var(env, "PID=%d", kvm->userspace_pid);
|
|
|
|
if (kvm->debugfs_dentry) {
|
|
char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
|
|
|
|
if (p) {
|
|
tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
|
|
if (!IS_ERR(tmp))
|
|
add_uevent_var(env, "STATS_PATH=%s", tmp);
|
|
kfree(p);
|
|
}
|
|
}
|
|
/* no need for checks, since we are adding at most only 5 keys */
|
|
env->envp[env->envp_idx++] = NULL;
|
|
kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
|
|
kfree(env);
|
|
}
|
|
|
|
static void kvm_init_debug(void)
|
|
{
|
|
const struct file_operations *fops;
|
|
const struct _kvm_stats_desc *pdesc;
|
|
int i;
|
|
|
|
kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
|
|
|
|
for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
|
|
pdesc = &kvm_vm_stats_desc[i];
|
|
if (kvm_stats_debugfs_mode(pdesc) & 0222)
|
|
fops = &vm_stat_fops;
|
|
else
|
|
fops = &vm_stat_readonly_fops;
|
|
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
|
|
kvm_debugfs_dir,
|
|
(void *)(long)pdesc->desc.offset, fops);
|
|
}
|
|
|
|
for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
|
|
pdesc = &kvm_vcpu_stats_desc[i];
|
|
if (kvm_stats_debugfs_mode(pdesc) & 0222)
|
|
fops = &vcpu_stat_fops;
|
|
else
|
|
fops = &vcpu_stat_readonly_fops;
|
|
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
|
|
kvm_debugfs_dir,
|
|
(void *)(long)pdesc->desc.offset, fops);
|
|
}
|
|
}
|
|
|
|
static int kvm_suspend(void)
|
|
{
|
|
if (kvm_usage_count)
|
|
hardware_disable_nolock(NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_resume(void)
|
|
{
|
|
if (kvm_usage_count) {
|
|
#ifdef CONFIG_LOCKDEP
|
|
WARN_ON(lockdep_is_held(&kvm_count_lock));
|
|
#endif
|
|
hardware_enable_nolock(NULL);
|
|
}
|
|
}
|
|
|
|
static struct syscore_ops kvm_syscore_ops = {
|
|
.suspend = kvm_suspend,
|
|
.resume = kvm_resume,
|
|
};
|
|
|
|
static inline
|
|
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
|
|
{
|
|
return container_of(pn, struct kvm_vcpu, preempt_notifier);
|
|
}
|
|
|
|
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
|
|
{
|
|
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
|
|
|
|
WRITE_ONCE(vcpu->preempted, false);
|
|
WRITE_ONCE(vcpu->ready, false);
|
|
|
|
__this_cpu_write(kvm_running_vcpu, vcpu);
|
|
kvm_arch_sched_in(vcpu, cpu);
|
|
kvm_arch_vcpu_load(vcpu, cpu);
|
|
}
|
|
|
|
static void kvm_sched_out(struct preempt_notifier *pn,
|
|
struct task_struct *next)
|
|
{
|
|
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
|
|
|
|
if (current->on_rq) {
|
|
WRITE_ONCE(vcpu->preempted, true);
|
|
WRITE_ONCE(vcpu->ready, true);
|
|
}
|
|
kvm_arch_vcpu_put(vcpu);
|
|
__this_cpu_write(kvm_running_vcpu, NULL);
|
|
}
|
|
|
|
/**
|
|
* kvm_get_running_vcpu - get the vcpu running on the current CPU.
|
|
*
|
|
* We can disable preemption locally around accessing the per-CPU variable,
|
|
* and use the resolved vcpu pointer after enabling preemption again,
|
|
* because even if the current thread is migrated to another CPU, reading
|
|
* the per-CPU value later will give us the same value as we update the
|
|
* per-CPU variable in the preempt notifier handlers.
|
|
*/
|
|
struct kvm_vcpu *kvm_get_running_vcpu(void)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
preempt_disable();
|
|
vcpu = __this_cpu_read(kvm_running_vcpu);
|
|
preempt_enable();
|
|
|
|
return vcpu;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
|
|
|
|
/**
|
|
* kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
|
|
*/
|
|
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
|
|
{
|
|
return &kvm_running_vcpu;
|
|
}
|
|
|
|
struct kvm_cpu_compat_check {
|
|
void *opaque;
|
|
int *ret;
|
|
};
|
|
|
|
static void check_processor_compat(void *data)
|
|
{
|
|
struct kvm_cpu_compat_check *c = data;
|
|
|
|
*c->ret = kvm_arch_check_processor_compat(c->opaque);
|
|
}
|
|
|
|
int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
|
|
struct module *module)
|
|
{
|
|
struct kvm_cpu_compat_check c;
|
|
int r;
|
|
int cpu;
|
|
|
|
r = kvm_arch_init(opaque);
|
|
if (r)
|
|
goto out_fail;
|
|
|
|
/*
|
|
* kvm_arch_init makes sure there's at most one caller
|
|
* for architectures that support multiple implementations,
|
|
* like intel and amd on x86.
|
|
* kvm_arch_init must be called before kvm_irqfd_init to avoid creating
|
|
* conflicts in case kvm is already setup for another implementation.
|
|
*/
|
|
r = kvm_irqfd_init();
|
|
if (r)
|
|
goto out_irqfd;
|
|
|
|
if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
|
|
r = -ENOMEM;
|
|
goto out_free_0;
|
|
}
|
|
|
|
r = kvm_arch_hardware_setup(opaque);
|
|
if (r < 0)
|
|
goto out_free_1;
|
|
|
|
c.ret = &r;
|
|
c.opaque = opaque;
|
|
for_each_online_cpu(cpu) {
|
|
smp_call_function_single(cpu, check_processor_compat, &c, 1);
|
|
if (r < 0)
|
|
goto out_free_2;
|
|
}
|
|
|
|
r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
|
|
kvm_starting_cpu, kvm_dying_cpu);
|
|
if (r)
|
|
goto out_free_2;
|
|
register_reboot_notifier(&kvm_reboot_notifier);
|
|
|
|
/* A kmem cache lets us meet the alignment requirements of fx_save. */
|
|
if (!vcpu_align)
|
|
vcpu_align = __alignof__(struct kvm_vcpu);
|
|
kvm_vcpu_cache =
|
|
kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
|
|
SLAB_ACCOUNT,
|
|
offsetof(struct kvm_vcpu, arch),
|
|
offsetofend(struct kvm_vcpu, stats_id)
|
|
- offsetof(struct kvm_vcpu, arch),
|
|
NULL);
|
|
if (!kvm_vcpu_cache) {
|
|
r = -ENOMEM;
|
|
goto out_free_3;
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
|
|
GFP_KERNEL, cpu_to_node(cpu))) {
|
|
r = -ENOMEM;
|
|
goto out_free_4;
|
|
}
|
|
}
|
|
|
|
r = kvm_async_pf_init();
|
|
if (r)
|
|
goto out_free_5;
|
|
|
|
kvm_chardev_ops.owner = module;
|
|
kvm_vm_fops.owner = module;
|
|
kvm_vcpu_fops.owner = module;
|
|
|
|
r = misc_register(&kvm_dev);
|
|
if (r) {
|
|
pr_err("kvm: misc device register failed\n");
|
|
goto out_unreg;
|
|
}
|
|
|
|
register_syscore_ops(&kvm_syscore_ops);
|
|
|
|
kvm_preempt_ops.sched_in = kvm_sched_in;
|
|
kvm_preempt_ops.sched_out = kvm_sched_out;
|
|
|
|
kvm_init_debug();
|
|
|
|
r = kvm_vfio_ops_init();
|
|
WARN_ON(r);
|
|
|
|
return 0;
|
|
|
|
out_unreg:
|
|
kvm_async_pf_deinit();
|
|
out_free_5:
|
|
for_each_possible_cpu(cpu)
|
|
free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
|
|
out_free_4:
|
|
kmem_cache_destroy(kvm_vcpu_cache);
|
|
out_free_3:
|
|
unregister_reboot_notifier(&kvm_reboot_notifier);
|
|
cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
|
|
out_free_2:
|
|
kvm_arch_hardware_unsetup();
|
|
out_free_1:
|
|
free_cpumask_var(cpus_hardware_enabled);
|
|
out_free_0:
|
|
kvm_irqfd_exit();
|
|
out_irqfd:
|
|
kvm_arch_exit();
|
|
out_fail:
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_init);
|
|
|
|
void kvm_exit(void)
|
|
{
|
|
int cpu;
|
|
|
|
debugfs_remove_recursive(kvm_debugfs_dir);
|
|
misc_deregister(&kvm_dev);
|
|
for_each_possible_cpu(cpu)
|
|
free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
|
|
kmem_cache_destroy(kvm_vcpu_cache);
|
|
kvm_async_pf_deinit();
|
|
unregister_syscore_ops(&kvm_syscore_ops);
|
|
unregister_reboot_notifier(&kvm_reboot_notifier);
|
|
cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
|
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
|
kvm_arch_hardware_unsetup();
|
|
kvm_arch_exit();
|
|
kvm_irqfd_exit();
|
|
free_cpumask_var(cpus_hardware_enabled);
|
|
kvm_vfio_ops_exit();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_exit);
|
|
|
|
struct kvm_vm_worker_thread_context {
|
|
struct kvm *kvm;
|
|
struct task_struct *parent;
|
|
struct completion init_done;
|
|
kvm_vm_thread_fn_t thread_fn;
|
|
uintptr_t data;
|
|
int err;
|
|
};
|
|
|
|
static int kvm_vm_worker_thread(void *context)
|
|
{
|
|
/*
|
|
* The init_context is allocated on the stack of the parent thread, so
|
|
* we have to locally copy anything that is needed beyond initialization
|
|
*/
|
|
struct kvm_vm_worker_thread_context *init_context = context;
|
|
struct kvm *kvm = init_context->kvm;
|
|
kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
|
|
uintptr_t data = init_context->data;
|
|
int err;
|
|
|
|
err = kthread_park(current);
|
|
/* kthread_park(current) is never supposed to return an error */
|
|
WARN_ON(err != 0);
|
|
if (err)
|
|
goto init_complete;
|
|
|
|
err = cgroup_attach_task_all(init_context->parent, current);
|
|
if (err) {
|
|
kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
|
|
__func__, err);
|
|
goto init_complete;
|
|
}
|
|
|
|
set_user_nice(current, task_nice(init_context->parent));
|
|
|
|
init_complete:
|
|
init_context->err = err;
|
|
complete(&init_context->init_done);
|
|
init_context = NULL;
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
/* Wait to be woken up by the spawner before proceeding. */
|
|
kthread_parkme();
|
|
|
|
if (!kthread_should_stop())
|
|
err = thread_fn(kvm, data);
|
|
|
|
return err;
|
|
}
|
|
|
|
int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
|
|
uintptr_t data, const char *name,
|
|
struct task_struct **thread_ptr)
|
|
{
|
|
struct kvm_vm_worker_thread_context init_context = {};
|
|
struct task_struct *thread;
|
|
|
|
*thread_ptr = NULL;
|
|
init_context.kvm = kvm;
|
|
init_context.parent = current;
|
|
init_context.thread_fn = thread_fn;
|
|
init_context.data = data;
|
|
init_completion(&init_context.init_done);
|
|
|
|
thread = kthread_run(kvm_vm_worker_thread, &init_context,
|
|
"%s-%d", name, task_pid_nr(current));
|
|
if (IS_ERR(thread))
|
|
return PTR_ERR(thread);
|
|
|
|
/* kthread_run is never supposed to return NULL */
|
|
WARN_ON(thread == NULL);
|
|
|
|
wait_for_completion(&init_context.init_done);
|
|
|
|
if (!init_context.err)
|
|
*thread_ptr = thread;
|
|
|
|
return init_context.err;
|
|
}
|