mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-15 10:24:44 +08:00
a5886ef4f4
The currently supported queue formats are: - GQI_RDA - GQI with raw DMA addressing - GQI_QPL - GQI with queue page list - DQO_RDA - DQO with raw DMA addressing The old `gve_priv.raw_addressing` value is only used for GQI_RDA, so we remove it in favor of just checking against GQI_RDA Signed-off-by: Bailey Forrest <bcf@google.com> Reviewed-by: Willem de Bruijn <willemb@google.com> Reviewed-by: Catherine Sullivan <csully@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
606 lines
15 KiB
C
606 lines
15 KiB
C
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
|
|
/* Google virtual Ethernet (gve) driver
|
|
*
|
|
* Copyright (C) 2015-2021 Google, Inc.
|
|
*/
|
|
|
|
#include "gve.h"
|
|
#include "gve_adminq.h"
|
|
#include "gve_utils.h"
|
|
#include <linux/etherdevice.h>
|
|
|
|
static void gve_rx_free_buffer(struct device *dev,
|
|
struct gve_rx_slot_page_info *page_info,
|
|
union gve_rx_data_slot *data_slot)
|
|
{
|
|
dma_addr_t dma = (dma_addr_t)(be64_to_cpu(data_slot->addr) &
|
|
GVE_DATA_SLOT_ADDR_PAGE_MASK);
|
|
|
|
gve_free_page(dev, page_info->page, dma, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static void gve_rx_unfill_pages(struct gve_priv *priv, struct gve_rx_ring *rx)
|
|
{
|
|
if (rx->data.raw_addressing) {
|
|
u32 slots = rx->mask + 1;
|
|
int i;
|
|
|
|
for (i = 0; i < slots; i++)
|
|
gve_rx_free_buffer(&priv->pdev->dev, &rx->data.page_info[i],
|
|
&rx->data.data_ring[i]);
|
|
} else {
|
|
gve_unassign_qpl(priv, rx->data.qpl->id);
|
|
rx->data.qpl = NULL;
|
|
}
|
|
kvfree(rx->data.page_info);
|
|
rx->data.page_info = NULL;
|
|
}
|
|
|
|
static void gve_rx_free_ring(struct gve_priv *priv, int idx)
|
|
{
|
|
struct gve_rx_ring *rx = &priv->rx[idx];
|
|
struct device *dev = &priv->pdev->dev;
|
|
u32 slots = rx->mask + 1;
|
|
size_t bytes;
|
|
|
|
gve_rx_remove_from_block(priv, idx);
|
|
|
|
bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
|
|
dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus);
|
|
rx->desc.desc_ring = NULL;
|
|
|
|
dma_free_coherent(dev, sizeof(*rx->q_resources),
|
|
rx->q_resources, rx->q_resources_bus);
|
|
rx->q_resources = NULL;
|
|
|
|
gve_rx_unfill_pages(priv, rx);
|
|
|
|
bytes = sizeof(*rx->data.data_ring) * slots;
|
|
dma_free_coherent(dev, bytes, rx->data.data_ring,
|
|
rx->data.data_bus);
|
|
rx->data.data_ring = NULL;
|
|
netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
|
|
}
|
|
|
|
static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info,
|
|
dma_addr_t addr, struct page *page, __be64 *slot_addr)
|
|
{
|
|
page_info->page = page;
|
|
page_info->page_offset = 0;
|
|
page_info->page_address = page_address(page);
|
|
*slot_addr = cpu_to_be64(addr);
|
|
}
|
|
|
|
static int gve_rx_alloc_buffer(struct gve_priv *priv, struct device *dev,
|
|
struct gve_rx_slot_page_info *page_info,
|
|
union gve_rx_data_slot *data_slot)
|
|
{
|
|
struct page *page;
|
|
dma_addr_t dma;
|
|
int err;
|
|
|
|
err = gve_alloc_page(priv, dev, &page, &dma, DMA_FROM_DEVICE);
|
|
if (err)
|
|
return err;
|
|
|
|
gve_setup_rx_buffer(page_info, dma, page, &data_slot->addr);
|
|
return 0;
|
|
}
|
|
|
|
static int gve_prefill_rx_pages(struct gve_rx_ring *rx)
|
|
{
|
|
struct gve_priv *priv = rx->gve;
|
|
u32 slots;
|
|
int err;
|
|
int i;
|
|
|
|
/* Allocate one page per Rx queue slot. Each page is split into two
|
|
* packet buffers, when possible we "page flip" between the two.
|
|
*/
|
|
slots = rx->mask + 1;
|
|
|
|
rx->data.page_info = kvzalloc(slots *
|
|
sizeof(*rx->data.page_info), GFP_KERNEL);
|
|
if (!rx->data.page_info)
|
|
return -ENOMEM;
|
|
|
|
if (!rx->data.raw_addressing)
|
|
rx->data.qpl = gve_assign_rx_qpl(priv);
|
|
for (i = 0; i < slots; i++) {
|
|
if (!rx->data.raw_addressing) {
|
|
struct page *page = rx->data.qpl->pages[i];
|
|
dma_addr_t addr = i * PAGE_SIZE;
|
|
|
|
gve_setup_rx_buffer(&rx->data.page_info[i], addr, page,
|
|
&rx->data.data_ring[i].qpl_offset);
|
|
continue;
|
|
}
|
|
err = gve_rx_alloc_buffer(priv, &priv->pdev->dev, &rx->data.page_info[i],
|
|
&rx->data.data_ring[i]);
|
|
if (err)
|
|
goto alloc_err;
|
|
}
|
|
|
|
return slots;
|
|
alloc_err:
|
|
while (i--)
|
|
gve_rx_free_buffer(&priv->pdev->dev,
|
|
&rx->data.page_info[i],
|
|
&rx->data.data_ring[i]);
|
|
return err;
|
|
}
|
|
|
|
static int gve_rx_alloc_ring(struct gve_priv *priv, int idx)
|
|
{
|
|
struct gve_rx_ring *rx = &priv->rx[idx];
|
|
struct device *hdev = &priv->pdev->dev;
|
|
u32 slots, npages;
|
|
int filled_pages;
|
|
size_t bytes;
|
|
int err;
|
|
|
|
netif_dbg(priv, drv, priv->dev, "allocating rx ring\n");
|
|
/* Make sure everything is zeroed to start with */
|
|
memset(rx, 0, sizeof(*rx));
|
|
|
|
rx->gve = priv;
|
|
rx->q_num = idx;
|
|
|
|
slots = priv->rx_data_slot_cnt;
|
|
rx->mask = slots - 1;
|
|
rx->data.raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT;
|
|
|
|
/* alloc rx data ring */
|
|
bytes = sizeof(*rx->data.data_ring) * slots;
|
|
rx->data.data_ring = dma_alloc_coherent(hdev, bytes,
|
|
&rx->data.data_bus,
|
|
GFP_KERNEL);
|
|
if (!rx->data.data_ring)
|
|
return -ENOMEM;
|
|
filled_pages = gve_prefill_rx_pages(rx);
|
|
if (filled_pages < 0) {
|
|
err = -ENOMEM;
|
|
goto abort_with_slots;
|
|
}
|
|
rx->fill_cnt = filled_pages;
|
|
/* Ensure data ring slots (packet buffers) are visible. */
|
|
dma_wmb();
|
|
|
|
/* Alloc gve_queue_resources */
|
|
rx->q_resources =
|
|
dma_alloc_coherent(hdev,
|
|
sizeof(*rx->q_resources),
|
|
&rx->q_resources_bus,
|
|
GFP_KERNEL);
|
|
if (!rx->q_resources) {
|
|
err = -ENOMEM;
|
|
goto abort_filled;
|
|
}
|
|
netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx,
|
|
(unsigned long)rx->data.data_bus);
|
|
|
|
/* alloc rx desc ring */
|
|
bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
|
|
npages = bytes / PAGE_SIZE;
|
|
if (npages * PAGE_SIZE != bytes) {
|
|
err = -EIO;
|
|
goto abort_with_q_resources;
|
|
}
|
|
|
|
rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus,
|
|
GFP_KERNEL);
|
|
if (!rx->desc.desc_ring) {
|
|
err = -ENOMEM;
|
|
goto abort_with_q_resources;
|
|
}
|
|
rx->cnt = 0;
|
|
rx->db_threshold = priv->rx_desc_cnt / 2;
|
|
rx->desc.seqno = 1;
|
|
gve_rx_add_to_block(priv, idx);
|
|
|
|
return 0;
|
|
|
|
abort_with_q_resources:
|
|
dma_free_coherent(hdev, sizeof(*rx->q_resources),
|
|
rx->q_resources, rx->q_resources_bus);
|
|
rx->q_resources = NULL;
|
|
abort_filled:
|
|
gve_rx_unfill_pages(priv, rx);
|
|
abort_with_slots:
|
|
bytes = sizeof(*rx->data.data_ring) * slots;
|
|
dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus);
|
|
rx->data.data_ring = NULL;
|
|
|
|
return err;
|
|
}
|
|
|
|
int gve_rx_alloc_rings(struct gve_priv *priv)
|
|
{
|
|
int err = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
|
|
err = gve_rx_alloc_ring(priv, i);
|
|
if (err) {
|
|
netif_err(priv, drv, priv->dev,
|
|
"Failed to alloc rx ring=%d: err=%d\n",
|
|
i, err);
|
|
break;
|
|
}
|
|
}
|
|
/* Unallocate if there was an error */
|
|
if (err) {
|
|
int j;
|
|
|
|
for (j = 0; j < i; j++)
|
|
gve_rx_free_ring(priv, j);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void gve_rx_free_rings(struct gve_priv *priv)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < priv->rx_cfg.num_queues; i++)
|
|
gve_rx_free_ring(priv, i);
|
|
}
|
|
|
|
void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx)
|
|
{
|
|
u32 db_idx = be32_to_cpu(rx->q_resources->db_index);
|
|
|
|
iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]);
|
|
}
|
|
|
|
static enum pkt_hash_types gve_rss_type(__be16 pkt_flags)
|
|
{
|
|
if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP)))
|
|
return PKT_HASH_TYPE_L4;
|
|
if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
|
|
return PKT_HASH_TYPE_L3;
|
|
return PKT_HASH_TYPE_L2;
|
|
}
|
|
|
|
static struct sk_buff *gve_rx_add_frags(struct napi_struct *napi,
|
|
struct gve_rx_slot_page_info *page_info,
|
|
u16 len)
|
|
{
|
|
struct sk_buff *skb = napi_get_frags(napi);
|
|
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
skb_add_rx_frag(skb, 0, page_info->page,
|
|
page_info->page_offset +
|
|
GVE_RX_PAD, len, PAGE_SIZE / 2);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr)
|
|
{
|
|
const __be64 offset = cpu_to_be64(PAGE_SIZE / 2);
|
|
|
|
/* "flip" to other packet buffer on this page */
|
|
page_info->page_offset ^= PAGE_SIZE / 2;
|
|
*(slot_addr) ^= offset;
|
|
}
|
|
|
|
static bool gve_rx_can_flip_buffers(struct net_device *netdev)
|
|
{
|
|
return PAGE_SIZE == 4096
|
|
? netdev->mtu + GVE_RX_PAD + ETH_HLEN <= PAGE_SIZE / 2 : false;
|
|
}
|
|
|
|
static int gve_rx_can_recycle_buffer(struct page *page)
|
|
{
|
|
int pagecount = page_count(page);
|
|
|
|
/* This page is not being used by any SKBs - reuse */
|
|
if (pagecount == 1)
|
|
return 1;
|
|
/* This page is still being used by an SKB - we can't reuse */
|
|
else if (pagecount >= 2)
|
|
return 0;
|
|
WARN(pagecount < 1, "Pagecount should never be < 1");
|
|
return -1;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
gve_rx_raw_addressing(struct device *dev, struct net_device *netdev,
|
|
struct gve_rx_slot_page_info *page_info, u16 len,
|
|
struct napi_struct *napi,
|
|
union gve_rx_data_slot *data_slot)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = gve_rx_add_frags(napi, page_info, len);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
/* Optimistically stop the kernel from freeing the page by increasing
|
|
* the page bias. We will check the refcount in refill to determine if
|
|
* we need to alloc a new page.
|
|
*/
|
|
get_page(page_info->page);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
gve_rx_qpl(struct device *dev, struct net_device *netdev,
|
|
struct gve_rx_ring *rx, struct gve_rx_slot_page_info *page_info,
|
|
u16 len, struct napi_struct *napi,
|
|
union gve_rx_data_slot *data_slot)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
/* if raw_addressing mode is not enabled gvnic can only receive into
|
|
* registered segments. If the buffer can't be recycled, our only
|
|
* choice is to copy the data out of it so that we can return it to the
|
|
* device.
|
|
*/
|
|
if (page_info->can_flip) {
|
|
skb = gve_rx_add_frags(napi, page_info, len);
|
|
/* No point in recycling if we didn't get the skb */
|
|
if (skb) {
|
|
/* Make sure that the page isn't freed. */
|
|
get_page(page_info->page);
|
|
gve_rx_flip_buff(page_info, &data_slot->qpl_offset);
|
|
}
|
|
} else {
|
|
skb = gve_rx_copy(netdev, napi, page_info, len, GVE_RX_PAD);
|
|
if (skb) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_copied_pkt++;
|
|
u64_stats_update_end(&rx->statss);
|
|
}
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
static bool gve_rx(struct gve_rx_ring *rx, struct gve_rx_desc *rx_desc,
|
|
netdev_features_t feat, u32 idx)
|
|
{
|
|
struct gve_rx_slot_page_info *page_info;
|
|
struct gve_priv *priv = rx->gve;
|
|
struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
|
|
struct net_device *dev = priv->dev;
|
|
union gve_rx_data_slot *data_slot;
|
|
struct sk_buff *skb = NULL;
|
|
dma_addr_t page_bus;
|
|
u16 len;
|
|
|
|
/* drop this packet */
|
|
if (unlikely(rx_desc->flags_seq & GVE_RXF_ERR)) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_desc_err_dropped_pkt++;
|
|
u64_stats_update_end(&rx->statss);
|
|
return false;
|
|
}
|
|
|
|
len = be16_to_cpu(rx_desc->len) - GVE_RX_PAD;
|
|
page_info = &rx->data.page_info[idx];
|
|
|
|
data_slot = &rx->data.data_ring[idx];
|
|
page_bus = (rx->data.raw_addressing) ?
|
|
be64_to_cpu(data_slot->addr) & GVE_DATA_SLOT_ADDR_PAGE_MASK :
|
|
rx->data.qpl->page_buses[idx];
|
|
dma_sync_single_for_cpu(&priv->pdev->dev, page_bus,
|
|
PAGE_SIZE, DMA_FROM_DEVICE);
|
|
|
|
if (len <= priv->rx_copybreak) {
|
|
/* Just copy small packets */
|
|
skb = gve_rx_copy(dev, napi, page_info, len, GVE_RX_PAD);
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_copied_pkt++;
|
|
rx->rx_copybreak_pkt++;
|
|
u64_stats_update_end(&rx->statss);
|
|
} else {
|
|
u8 can_flip = gve_rx_can_flip_buffers(dev);
|
|
int recycle = 0;
|
|
|
|
if (can_flip) {
|
|
recycle = gve_rx_can_recycle_buffer(page_info->page);
|
|
if (recycle < 0) {
|
|
if (!rx->data.raw_addressing)
|
|
gve_schedule_reset(priv);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
page_info->can_flip = can_flip && recycle;
|
|
if (rx->data.raw_addressing) {
|
|
skb = gve_rx_raw_addressing(&priv->pdev->dev, dev,
|
|
page_info, len, napi,
|
|
data_slot);
|
|
} else {
|
|
skb = gve_rx_qpl(&priv->pdev->dev, dev, rx,
|
|
page_info, len, napi, data_slot);
|
|
}
|
|
}
|
|
|
|
if (!skb) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_skb_alloc_fail++;
|
|
u64_stats_update_end(&rx->statss);
|
|
return false;
|
|
}
|
|
|
|
if (likely(feat & NETIF_F_RXCSUM)) {
|
|
/* NIC passes up the partial sum */
|
|
if (rx_desc->csum)
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
else
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
skb->csum = csum_unfold(rx_desc->csum);
|
|
}
|
|
|
|
/* parse flags & pass relevant info up */
|
|
if (likely(feat & NETIF_F_RXHASH) &&
|
|
gve_needs_rss(rx_desc->flags_seq))
|
|
skb_set_hash(skb, be32_to_cpu(rx_desc->rss_hash),
|
|
gve_rss_type(rx_desc->flags_seq));
|
|
|
|
if (skb_is_nonlinear(skb))
|
|
napi_gro_frags(napi);
|
|
else
|
|
napi_gro_receive(napi, skb);
|
|
return true;
|
|
}
|
|
|
|
static bool gve_rx_work_pending(struct gve_rx_ring *rx)
|
|
{
|
|
struct gve_rx_desc *desc;
|
|
__be16 flags_seq;
|
|
u32 next_idx;
|
|
|
|
next_idx = rx->cnt & rx->mask;
|
|
desc = rx->desc.desc_ring + next_idx;
|
|
|
|
flags_seq = desc->flags_seq;
|
|
/* Make sure we have synchronized the seq no with the device */
|
|
smp_rmb();
|
|
|
|
return (GVE_SEQNO(flags_seq) == rx->desc.seqno);
|
|
}
|
|
|
|
static bool gve_rx_refill_buffers(struct gve_priv *priv, struct gve_rx_ring *rx)
|
|
{
|
|
int refill_target = rx->mask + 1;
|
|
u32 fill_cnt = rx->fill_cnt;
|
|
|
|
while (fill_cnt - rx->cnt < refill_target) {
|
|
struct gve_rx_slot_page_info *page_info;
|
|
u32 idx = fill_cnt & rx->mask;
|
|
|
|
page_info = &rx->data.page_info[idx];
|
|
if (page_info->can_flip) {
|
|
/* The other half of the page is free because it was
|
|
* free when we processed the descriptor. Flip to it.
|
|
*/
|
|
union gve_rx_data_slot *data_slot =
|
|
&rx->data.data_ring[idx];
|
|
|
|
gve_rx_flip_buff(page_info, &data_slot->addr);
|
|
page_info->can_flip = 0;
|
|
} else {
|
|
/* It is possible that the networking stack has already
|
|
* finished processing all outstanding packets in the buffer
|
|
* and it can be reused.
|
|
* Flipping is unnecessary here - if the networking stack still
|
|
* owns half the page it is impossible to tell which half. Either
|
|
* the whole page is free or it needs to be replaced.
|
|
*/
|
|
int recycle = gve_rx_can_recycle_buffer(page_info->page);
|
|
|
|
if (recycle < 0) {
|
|
if (!rx->data.raw_addressing)
|
|
gve_schedule_reset(priv);
|
|
return false;
|
|
}
|
|
if (!recycle) {
|
|
/* We can't reuse the buffer - alloc a new one*/
|
|
union gve_rx_data_slot *data_slot =
|
|
&rx->data.data_ring[idx];
|
|
struct device *dev = &priv->pdev->dev;
|
|
|
|
gve_rx_free_buffer(dev, page_info, data_slot);
|
|
page_info->page = NULL;
|
|
if (gve_rx_alloc_buffer(priv, dev, page_info, data_slot))
|
|
break;
|
|
}
|
|
}
|
|
fill_cnt++;
|
|
}
|
|
rx->fill_cnt = fill_cnt;
|
|
return true;
|
|
}
|
|
|
|
bool gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
|
|
netdev_features_t feat)
|
|
{
|
|
struct gve_priv *priv = rx->gve;
|
|
u32 work_done = 0, packets = 0;
|
|
struct gve_rx_desc *desc;
|
|
u32 cnt = rx->cnt;
|
|
u32 idx = cnt & rx->mask;
|
|
u64 bytes = 0;
|
|
|
|
desc = rx->desc.desc_ring + idx;
|
|
while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) &&
|
|
work_done < budget) {
|
|
bool dropped;
|
|
|
|
netif_info(priv, rx_status, priv->dev,
|
|
"[%d] idx=%d desc=%p desc->flags_seq=0x%x\n",
|
|
rx->q_num, idx, desc, desc->flags_seq);
|
|
netif_info(priv, rx_status, priv->dev,
|
|
"[%d] seqno=%d rx->desc.seqno=%d\n",
|
|
rx->q_num, GVE_SEQNO(desc->flags_seq),
|
|
rx->desc.seqno);
|
|
dropped = !gve_rx(rx, desc, feat, idx);
|
|
if (!dropped) {
|
|
bytes += be16_to_cpu(desc->len) - GVE_RX_PAD;
|
|
packets++;
|
|
}
|
|
cnt++;
|
|
idx = cnt & rx->mask;
|
|
desc = rx->desc.desc_ring + idx;
|
|
rx->desc.seqno = gve_next_seqno(rx->desc.seqno);
|
|
work_done++;
|
|
}
|
|
|
|
if (!work_done && rx->fill_cnt - cnt > rx->db_threshold)
|
|
return false;
|
|
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rpackets += packets;
|
|
rx->rbytes += bytes;
|
|
u64_stats_update_end(&rx->statss);
|
|
rx->cnt = cnt;
|
|
|
|
/* restock ring slots */
|
|
if (!rx->data.raw_addressing) {
|
|
/* In QPL mode buffs are refilled as the desc are processed */
|
|
rx->fill_cnt += work_done;
|
|
} else if (rx->fill_cnt - cnt <= rx->db_threshold) {
|
|
/* In raw addressing mode buffs are only refilled if the avail
|
|
* falls below a threshold.
|
|
*/
|
|
if (!gve_rx_refill_buffers(priv, rx))
|
|
return false;
|
|
|
|
/* If we were not able to completely refill buffers, we'll want
|
|
* to schedule this queue for work again to refill buffers.
|
|
*/
|
|
if (rx->fill_cnt - cnt <= rx->db_threshold) {
|
|
gve_rx_write_doorbell(priv, rx);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
gve_rx_write_doorbell(priv, rx);
|
|
return gve_rx_work_pending(rx);
|
|
}
|
|
|
|
bool gve_rx_poll(struct gve_notify_block *block, int budget)
|
|
{
|
|
struct gve_rx_ring *rx = block->rx;
|
|
netdev_features_t feat;
|
|
bool repoll = false;
|
|
|
|
feat = block->napi.dev->features;
|
|
|
|
/* If budget is 0, do all the work */
|
|
if (budget == 0)
|
|
budget = INT_MAX;
|
|
|
|
if (budget > 0)
|
|
repoll |= gve_clean_rx_done(rx, budget, feat);
|
|
else
|
|
repoll |= gve_rx_work_pending(rx);
|
|
return repoll;
|
|
}
|