mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-17 09:14:19 +08:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
220 lines
5.3 KiB
C
220 lines
5.3 KiB
C
/*
|
|
* Copyright 2007-2008 Paul Mackerras, IBM Corp.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
/*
|
|
* Free all pages allocated for subpage protection maps and pointers.
|
|
* Also makes sure that the subpage_prot_table structure is
|
|
* reinitialized for the next user.
|
|
*/
|
|
void subpage_prot_free(struct mm_struct *mm)
|
|
{
|
|
struct subpage_prot_table *spt = &mm->context.spt;
|
|
unsigned long i, j, addr;
|
|
u32 **p;
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
if (spt->low_prot[i]) {
|
|
free_page((unsigned long)spt->low_prot[i]);
|
|
spt->low_prot[i] = NULL;
|
|
}
|
|
}
|
|
addr = 0;
|
|
for (i = 0; i < 2; ++i) {
|
|
p = spt->protptrs[i];
|
|
if (!p)
|
|
continue;
|
|
spt->protptrs[i] = NULL;
|
|
for (j = 0; j < SBP_L2_COUNT && addr < spt->maxaddr;
|
|
++j, addr += PAGE_SIZE)
|
|
if (p[j])
|
|
free_page((unsigned long)p[j]);
|
|
free_page((unsigned long)p);
|
|
}
|
|
spt->maxaddr = 0;
|
|
}
|
|
|
|
void subpage_prot_init_new_context(struct mm_struct *mm)
|
|
{
|
|
struct subpage_prot_table *spt = &mm->context.spt;
|
|
|
|
memset(spt, 0, sizeof(*spt));
|
|
}
|
|
|
|
static void hpte_flush_range(struct mm_struct *mm, unsigned long addr,
|
|
int npages)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
if (pgd_none(*pgd))
|
|
return;
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud))
|
|
return;
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
return;
|
|
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
|
|
arch_enter_lazy_mmu_mode();
|
|
for (; npages > 0; --npages) {
|
|
pte_update(mm, addr, pte, 0, 0);
|
|
addr += PAGE_SIZE;
|
|
++pte;
|
|
}
|
|
arch_leave_lazy_mmu_mode();
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
}
|
|
|
|
/*
|
|
* Clear the subpage protection map for an address range, allowing
|
|
* all accesses that are allowed by the pte permissions.
|
|
*/
|
|
static void subpage_prot_clear(unsigned long addr, unsigned long len)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct subpage_prot_table *spt = &mm->context.spt;
|
|
u32 **spm, *spp;
|
|
int i, nw;
|
|
unsigned long next, limit;
|
|
|
|
down_write(&mm->mmap_sem);
|
|
limit = addr + len;
|
|
if (limit > spt->maxaddr)
|
|
limit = spt->maxaddr;
|
|
for (; addr < limit; addr = next) {
|
|
next = pmd_addr_end(addr, limit);
|
|
if (addr < 0x100000000) {
|
|
spm = spt->low_prot;
|
|
} else {
|
|
spm = spt->protptrs[addr >> SBP_L3_SHIFT];
|
|
if (!spm)
|
|
continue;
|
|
}
|
|
spp = spm[(addr >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
|
|
if (!spp)
|
|
continue;
|
|
spp += (addr >> PAGE_SHIFT) & (SBP_L1_COUNT - 1);
|
|
|
|
i = (addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
|
nw = PTRS_PER_PTE - i;
|
|
if (addr + (nw << PAGE_SHIFT) > next)
|
|
nw = (next - addr) >> PAGE_SHIFT;
|
|
|
|
memset(spp, 0, nw * sizeof(u32));
|
|
|
|
/* now flush any existing HPTEs for the range */
|
|
hpte_flush_range(mm, addr, nw);
|
|
}
|
|
up_write(&mm->mmap_sem);
|
|
}
|
|
|
|
/*
|
|
* Copy in a subpage protection map for an address range.
|
|
* The map has 2 bits per 4k subpage, so 32 bits per 64k page.
|
|
* Each 2-bit field is 0 to allow any access, 1 to prevent writes,
|
|
* 2 or 3 to prevent all accesses.
|
|
* Note that the normal page protections also apply; the subpage
|
|
* protection mechanism is an additional constraint, so putting 0
|
|
* in a 2-bit field won't allow writes to a page that is otherwise
|
|
* write-protected.
|
|
*/
|
|
long sys_subpage_prot(unsigned long addr, unsigned long len, u32 __user *map)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct subpage_prot_table *spt = &mm->context.spt;
|
|
u32 **spm, *spp;
|
|
int i, nw;
|
|
unsigned long next, limit;
|
|
int err;
|
|
|
|
/* Check parameters */
|
|
if ((addr & ~PAGE_MASK) || (len & ~PAGE_MASK) ||
|
|
addr >= TASK_SIZE || len >= TASK_SIZE || addr + len > TASK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (is_hugepage_only_range(mm, addr, len))
|
|
return -EINVAL;
|
|
|
|
if (!map) {
|
|
/* Clear out the protection map for the address range */
|
|
subpage_prot_clear(addr, len);
|
|
return 0;
|
|
}
|
|
|
|
if (!access_ok(VERIFY_READ, map, (len >> PAGE_SHIFT) * sizeof(u32)))
|
|
return -EFAULT;
|
|
|
|
down_write(&mm->mmap_sem);
|
|
for (limit = addr + len; addr < limit; addr = next) {
|
|
next = pmd_addr_end(addr, limit);
|
|
err = -ENOMEM;
|
|
if (addr < 0x100000000) {
|
|
spm = spt->low_prot;
|
|
} else {
|
|
spm = spt->protptrs[addr >> SBP_L3_SHIFT];
|
|
if (!spm) {
|
|
spm = (u32 **)get_zeroed_page(GFP_KERNEL);
|
|
if (!spm)
|
|
goto out;
|
|
spt->protptrs[addr >> SBP_L3_SHIFT] = spm;
|
|
}
|
|
}
|
|
spm += (addr >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1);
|
|
spp = *spm;
|
|
if (!spp) {
|
|
spp = (u32 *)get_zeroed_page(GFP_KERNEL);
|
|
if (!spp)
|
|
goto out;
|
|
*spm = spp;
|
|
}
|
|
spp += (addr >> PAGE_SHIFT) & (SBP_L1_COUNT - 1);
|
|
|
|
local_irq_disable();
|
|
demote_segment_4k(mm, addr);
|
|
local_irq_enable();
|
|
|
|
i = (addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
|
nw = PTRS_PER_PTE - i;
|
|
if (addr + (nw << PAGE_SHIFT) > next)
|
|
nw = (next - addr) >> PAGE_SHIFT;
|
|
|
|
up_write(&mm->mmap_sem);
|
|
err = -EFAULT;
|
|
if (__copy_from_user(spp, map, nw * sizeof(u32)))
|
|
goto out2;
|
|
map += nw;
|
|
down_write(&mm->mmap_sem);
|
|
|
|
/* now flush any existing HPTEs for the range */
|
|
hpte_flush_range(mm, addr, nw);
|
|
}
|
|
if (limit > spt->maxaddr)
|
|
spt->maxaddr = limit;
|
|
err = 0;
|
|
out:
|
|
up_write(&mm->mmap_sem);
|
|
out2:
|
|
return err;
|
|
}
|