linux/arch/arm/kernel/entry-common.S
Linus Walleij c12366ba44 ARM: 9015/2: Define the virtual space of KASan's shadow region
Define KASAN_SHADOW_OFFSET,KASAN_SHADOW_START and KASAN_SHADOW_END for
the Arm kernel address sanitizer. We are "stealing" lowmem (the 4GB
addressable by a 32bit architecture) out of the virtual address
space to use as shadow memory for KASan as follows:

 +----+ 0xffffffff
 |    |
 |    | |-> Static kernel image (vmlinux) BSS and page table
 |    |/
 +----+ PAGE_OFFSET
 |    |
 |    | |->  Loadable kernel modules virtual address space area
 |    |/
 +----+ MODULES_VADDR = KASAN_SHADOW_END
 |    |
 |    | |-> The shadow area of kernel virtual address.
 |    |/
 +----+->  TASK_SIZE (start of kernel space) = KASAN_SHADOW_START the
 |    |   shadow address of MODULES_VADDR
 |    | |
 |    | |
 |    | |-> The user space area in lowmem. The kernel address
 |    | |   sanitizer do not use this space, nor does it map it.
 |    | |
 |    | |
 |    | |
 |    | |
 |    |/
 ------ 0

0 .. TASK_SIZE is the memory that can be used by shared
userspace/kernelspace. It us used for userspace processes and for
passing parameters and memory buffers in system calls etc. We do not
need to shadow this area.

KASAN_SHADOW_START:
 This value begins with the MODULE_VADDR's shadow address. It is the
 start of kernel virtual space. Since we have modules to load, we need
 to cover also that area with shadow memory so we can find memory
 bugs in modules.

KASAN_SHADOW_END
 This value is the 0x100000000's shadow address: the mapping that would
 be after the end of the kernel memory at 0xffffffff. It is the end of
 kernel address sanitizer shadow area. It is also the start of the
 module area.

KASAN_SHADOW_OFFSET:
 This value is used to map an address to the corresponding shadow
 address by the following formula:

   shadow_addr = (address >> 3) + KASAN_SHADOW_OFFSET;

 As you would expect, >> 3 is equal to dividing by 8, meaning each
 byte in the shadow memory covers 8 bytes of kernel memory, so one
 bit shadow memory per byte of kernel memory is used.

 The KASAN_SHADOW_OFFSET is provided in a Kconfig option depending
 on the VMSPLIT layout of the system: the kernel and userspace can
 split up lowmem in different ways according to needs, so we calculate
 the shadow offset depending on this.

When kasan is enabled, the definition of TASK_SIZE is not an 8-bit
rotated constant, so we need to modify the TASK_SIZE access code in the
*.s file.

The kernel and modules may use different amounts of memory,
according to the VMSPLIT configuration, which in turn
determines the PAGE_OFFSET.

We use the following KASAN_SHADOW_OFFSETs depending on how the
virtual memory is split up:

- 0x1f000000 if we have 1G userspace / 3G kernelspace split:
  - The kernel address space is 3G (0xc0000000)
  - PAGE_OFFSET is then set to 0x40000000 so the kernel static
    image (vmlinux) uses addresses 0x40000000 .. 0xffffffff
  - On top of that we have the MODULES_VADDR which under
    the worst case (using ARM instructions) is
    PAGE_OFFSET - 16M (0x01000000) = 0x3f000000
    so the modules use addresses 0x3f000000 .. 0x3fffffff
  - So the addresses 0x3f000000 .. 0xffffffff need to be
    covered with shadow memory. That is 0xc1000000 bytes
    of memory.
  - 1/8 of that is needed for its shadow memory, so
    0x18200000 bytes of shadow memory is needed. We
    "steal" that from the remaining lowmem.
  - The KASAN_SHADOW_START becomes 0x26e00000, to
    KASAN_SHADOW_END at 0x3effffff.
  - Now we can calculate the KASAN_SHADOW_OFFSET for any
    kernel address as 0x3f000000 needs to map to the first
    byte of shadow memory and 0xffffffff needs to map to
    the last byte of shadow memory. Since:
    SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET
    0x26e00000 = (0x3f000000 >> 3) + KASAN_SHADOW_OFFSET
    KASAN_SHADOW_OFFSET = 0x26e00000 - (0x3f000000 >> 3)
    KASAN_SHADOW_OFFSET = 0x26e00000 - 0x07e00000
    KASAN_SHADOW_OFFSET = 0x1f000000

- 0x5f000000 if we have 2G userspace / 2G kernelspace split:
  - The kernel space is 2G (0x80000000)
  - PAGE_OFFSET is set to 0x80000000 so the kernel static
    image uses 0x80000000 .. 0xffffffff.
  - On top of that we have the MODULES_VADDR which under
    the worst case (using ARM instructions) is
    PAGE_OFFSET - 16M (0x01000000) = 0x7f000000
    so the modules use addresses 0x7f000000 .. 0x7fffffff
  - So the addresses 0x7f000000 .. 0xffffffff need to be
    covered with shadow memory. That is 0x81000000 bytes
    of memory.
  - 1/8 of that is needed for its shadow memory, so
    0x10200000 bytes of shadow memory is needed. We
    "steal" that from the remaining lowmem.
  - The KASAN_SHADOW_START becomes 0x6ee00000, to
    KASAN_SHADOW_END at 0x7effffff.
  - Now we can calculate the KASAN_SHADOW_OFFSET for any
    kernel address as 0x7f000000 needs to map to the first
    byte of shadow memory and 0xffffffff needs to map to
    the last byte of shadow memory. Since:
    SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET
    0x6ee00000 = (0x7f000000 >> 3) + KASAN_SHADOW_OFFSET
    KASAN_SHADOW_OFFSET = 0x6ee00000 - (0x7f000000 >> 3)
    KASAN_SHADOW_OFFSET = 0x6ee00000 - 0x0fe00000
    KASAN_SHADOW_OFFSET = 0x5f000000

- 0x9f000000 if we have 3G userspace / 1G kernelspace split,
  and this is the default split for ARM:
  - The kernel address space is 1GB (0x40000000)
  - PAGE_OFFSET is set to 0xc0000000 so the kernel static
    image uses 0xc0000000 .. 0xffffffff.
  - On top of that we have the MODULES_VADDR which under
    the worst case (using ARM instructions) is
    PAGE_OFFSET - 16M (0x01000000) = 0xbf000000
    so the modules use addresses 0xbf000000 .. 0xbfffffff
  - So the addresses 0xbf000000 .. 0xffffffff need to be
    covered with shadow memory. That is 0x41000000 bytes
    of memory.
  - 1/8 of that is needed for its shadow memory, so
    0x08200000 bytes of shadow memory is needed. We
    "steal" that from the remaining lowmem.
  - The KASAN_SHADOW_START becomes 0xb6e00000, to
    KASAN_SHADOW_END at 0xbfffffff.
  - Now we can calculate the KASAN_SHADOW_OFFSET for any
    kernel address as 0xbf000000 needs to map to the first
    byte of shadow memory and 0xffffffff needs to map to
    the last byte of shadow memory. Since:
    SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET
    0xb6e00000 = (0xbf000000 >> 3) + KASAN_SHADOW_OFFSET
    KASAN_SHADOW_OFFSET = 0xb6e00000 - (0xbf000000 >> 3)
    KASAN_SHADOW_OFFSET = 0xb6e00000 - 0x17e00000
    KASAN_SHADOW_OFFSET = 0x9f000000

- 0x8f000000 if we have 3G userspace / 1G kernelspace with
  full 1 GB low memory (VMSPLIT_3G_OPT):
  - The kernel address space is 1GB (0x40000000)
  - PAGE_OFFSET is set to 0xb0000000 so the kernel static
    image uses 0xb0000000 .. 0xffffffff.
  - On top of that we have the MODULES_VADDR which under
    the worst case (using ARM instructions) is
    PAGE_OFFSET - 16M (0x01000000) = 0xaf000000
    so the modules use addresses 0xaf000000 .. 0xaffffff
  - So the addresses 0xaf000000 .. 0xffffffff need to be
    covered with shadow memory. That is 0x51000000 bytes
    of memory.
  - 1/8 of that is needed for its shadow memory, so
    0x0a200000 bytes of shadow memory is needed. We
    "steal" that from the remaining lowmem.
  - The KASAN_SHADOW_START becomes 0xa4e00000, to
    KASAN_SHADOW_END at 0xaeffffff.
  - Now we can calculate the KASAN_SHADOW_OFFSET for any
    kernel address as 0xaf000000 needs to map to the first
    byte of shadow memory and 0xffffffff needs to map to
    the last byte of shadow memory. Since:
    SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET
    0xa4e00000 = (0xaf000000 >> 3) + KASAN_SHADOW_OFFSET
    KASAN_SHADOW_OFFSET = 0xa4e00000 - (0xaf000000 >> 3)
    KASAN_SHADOW_OFFSET = 0xa4e00000 - 0x15e00000
    KASAN_SHADOW_OFFSET = 0x8f000000

- The default value of 0xffffffff for KASAN_SHADOW_OFFSET
  is an error value. We should always match one of the
  above shadow offsets.

When we do this, TASK_SIZE will sometimes get a bit odd values
that will not fit into immediate mov assembly instructions.
To account for this, we need to rewrite some assembly using
TASK_SIZE like this:

-       mov     r1, #TASK_SIZE
+       ldr     r1, =TASK_SIZE

or

-       cmp     r4, #TASK_SIZE
+       ldr     r0, =TASK_SIZE
+       cmp     r4, r0

this is done to avoid the immediate #TASK_SIZE that need to
fit into a limited number of bits.

Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: kasan-dev@googlegroups.com
Cc: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org> # QEMU/KVM/mach-virt/LPAE/8G
Tested-by: Florian Fainelli <f.fainelli@gmail.com> # Brahma SoCs
Tested-by: Ahmad Fatoum <a.fatoum@pengutronix.de> # i.MX6Q
Reported-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Abbott Liu <liuwenliang@huawei.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2020-10-27 12:11:08 +00:00

464 lines
11 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* linux/arch/arm/kernel/entry-common.S
*
* Copyright (C) 2000 Russell King
*/
#include <asm/assembler.h>
#include <asm/unistd.h>
#include <asm/ftrace.h>
#include <asm/unwind.h>
#include <asm/memory.h>
#ifdef CONFIG_AEABI
#include <asm/unistd-oabi.h>
#endif
.equ NR_syscalls, __NR_syscalls
#ifdef CONFIG_NEED_RET_TO_USER
#include <mach/entry-macro.S>
#else
.macro arch_ret_to_user, tmp1, tmp2
.endm
#endif
#include "entry-header.S"
saved_psr .req r8
#if defined(CONFIG_TRACE_IRQFLAGS) || defined(CONFIG_CONTEXT_TRACKING)
saved_pc .req r9
#define TRACE(x...) x
#else
saved_pc .req lr
#define TRACE(x...)
#endif
.section .entry.text,"ax",%progbits
.align 5
#if !(IS_ENABLED(CONFIG_TRACE_IRQFLAGS) || IS_ENABLED(CONFIG_CONTEXT_TRACKING) || \
IS_ENABLED(CONFIG_DEBUG_RSEQ))
/*
* This is the fast syscall return path. We do as little as possible here,
* such as avoiding writing r0 to the stack. We only use this path if we
* have tracing, context tracking and rseq debug disabled - the overheads
* from those features make this path too inefficient.
*/
ret_fast_syscall:
__ret_fast_syscall:
UNWIND(.fnstart )
UNWIND(.cantunwind )
disable_irq_notrace @ disable interrupts
ldr r2, [tsk, #TI_ADDR_LIMIT]
ldr r1, =TASK_SIZE
cmp r2, r1
blne addr_limit_check_failed
ldr r1, [tsk, #TI_FLAGS] @ re-check for syscall tracing
tst r1, #_TIF_SYSCALL_WORK | _TIF_WORK_MASK
bne fast_work_pending
/* perform architecture specific actions before user return */
arch_ret_to_user r1, lr
restore_user_regs fast = 1, offset = S_OFF
UNWIND(.fnend )
ENDPROC(ret_fast_syscall)
/* Ok, we need to do extra processing, enter the slow path. */
fast_work_pending:
str r0, [sp, #S_R0+S_OFF]! @ returned r0
/* fall through to work_pending */
#else
/*
* The "replacement" ret_fast_syscall for when tracing, context tracking,
* or rseq debug is enabled. As we will need to call out to some C functions,
* we save r0 first to avoid needing to save registers around each C function
* call.
*/
ret_fast_syscall:
__ret_fast_syscall:
UNWIND(.fnstart )
UNWIND(.cantunwind )
str r0, [sp, #S_R0 + S_OFF]! @ save returned r0
#if IS_ENABLED(CONFIG_DEBUG_RSEQ)
/* do_rseq_syscall needs interrupts enabled. */
mov r0, sp @ 'regs'
bl do_rseq_syscall
#endif
disable_irq_notrace @ disable interrupts
ldr r2, [tsk, #TI_ADDR_LIMIT]
ldr r1, =TASK_SIZE
cmp r2, r1
blne addr_limit_check_failed
ldr r1, [tsk, #TI_FLAGS] @ re-check for syscall tracing
tst r1, #_TIF_SYSCALL_WORK | _TIF_WORK_MASK
beq no_work_pending
UNWIND(.fnend )
ENDPROC(ret_fast_syscall)
/* Slower path - fall through to work_pending */
#endif
tst r1, #_TIF_SYSCALL_WORK
bne __sys_trace_return_nosave
slow_work_pending:
mov r0, sp @ 'regs'
mov r2, why @ 'syscall'
bl do_work_pending
cmp r0, #0
beq no_work_pending
movlt scno, #(__NR_restart_syscall - __NR_SYSCALL_BASE)
ldmia sp, {r0 - r6} @ have to reload r0 - r6
b local_restart @ ... and off we go
ENDPROC(ret_fast_syscall)
/*
* "slow" syscall return path. "why" tells us if this was a real syscall.
* IRQs may be enabled here, so always disable them. Note that we use the
* "notrace" version to avoid calling into the tracing code unnecessarily.
* do_work_pending() will update this state if necessary.
*/
ENTRY(ret_to_user)
ret_slow_syscall:
#if IS_ENABLED(CONFIG_DEBUG_RSEQ)
/* do_rseq_syscall needs interrupts enabled. */
enable_irq_notrace @ enable interrupts
mov r0, sp @ 'regs'
bl do_rseq_syscall
#endif
disable_irq_notrace @ disable interrupts
ENTRY(ret_to_user_from_irq)
ldr r2, [tsk, #TI_ADDR_LIMIT]
ldr r1, =TASK_SIZE
cmp r2, r1
blne addr_limit_check_failed
ldr r1, [tsk, #TI_FLAGS]
tst r1, #_TIF_WORK_MASK
bne slow_work_pending
no_work_pending:
asm_trace_hardirqs_on save = 0
/* perform architecture specific actions before user return */
arch_ret_to_user r1, lr
ct_user_enter save = 0
restore_user_regs fast = 0, offset = 0
ENDPROC(ret_to_user_from_irq)
ENDPROC(ret_to_user)
/*
* This is how we return from a fork.
*/
ENTRY(ret_from_fork)
bl schedule_tail
cmp r5, #0
movne r0, r4
badrne lr, 1f
retne r5
1: get_thread_info tsk
b ret_slow_syscall
ENDPROC(ret_from_fork)
/*=============================================================================
* SWI handler
*-----------------------------------------------------------------------------
*/
.align 5
ENTRY(vector_swi)
#ifdef CONFIG_CPU_V7M
v7m_exception_entry
#else
sub sp, sp, #PT_REGS_SIZE
stmia sp, {r0 - r12} @ Calling r0 - r12
ARM( add r8, sp, #S_PC )
ARM( stmdb r8, {sp, lr}^ ) @ Calling sp, lr
THUMB( mov r8, sp )
THUMB( store_user_sp_lr r8, r10, S_SP ) @ calling sp, lr
mrs saved_psr, spsr @ called from non-FIQ mode, so ok.
TRACE( mov saved_pc, lr )
str saved_pc, [sp, #S_PC] @ Save calling PC
str saved_psr, [sp, #S_PSR] @ Save CPSR
str r0, [sp, #S_OLD_R0] @ Save OLD_R0
#endif
zero_fp
alignment_trap r10, ip, __cr_alignment
asm_trace_hardirqs_on save=0
enable_irq_notrace
ct_user_exit save=0
/*
* Get the system call number.
*/
#if defined(CONFIG_OABI_COMPAT)
/*
* If we have CONFIG_OABI_COMPAT then we need to look at the swi
* value to determine if it is an EABI or an old ABI call.
*/
#ifdef CONFIG_ARM_THUMB
tst saved_psr, #PSR_T_BIT
movne r10, #0 @ no thumb OABI emulation
USER( ldreq r10, [saved_pc, #-4] ) @ get SWI instruction
#else
USER( ldr r10, [saved_pc, #-4] ) @ get SWI instruction
#endif
ARM_BE8(rev r10, r10) @ little endian instruction
#elif defined(CONFIG_AEABI)
/*
* Pure EABI user space always put syscall number into scno (r7).
*/
#elif defined(CONFIG_ARM_THUMB)
/* Legacy ABI only, possibly thumb mode. */
tst saved_psr, #PSR_T_BIT @ this is SPSR from save_user_regs
addne scno, r7, #__NR_SYSCALL_BASE @ put OS number in
USER( ldreq scno, [saved_pc, #-4] )
#else
/* Legacy ABI only. */
USER( ldr scno, [saved_pc, #-4] ) @ get SWI instruction
#endif
/* saved_psr and saved_pc are now dead */
uaccess_disable tbl
adr tbl, sys_call_table @ load syscall table pointer
#if defined(CONFIG_OABI_COMPAT)
/*
* If the swi argument is zero, this is an EABI call and we do nothing.
*
* If this is an old ABI call, get the syscall number into scno and
* get the old ABI syscall table address.
*/
bics r10, r10, #0xff000000
eorne scno, r10, #__NR_OABI_SYSCALL_BASE
ldrne tbl, =sys_oabi_call_table
#elif !defined(CONFIG_AEABI)
bic scno, scno, #0xff000000 @ mask off SWI op-code
eor scno, scno, #__NR_SYSCALL_BASE @ check OS number
#endif
get_thread_info tsk
/*
* Reload the registers that may have been corrupted on entry to
* the syscall assembly (by tracing or context tracking.)
*/
TRACE( ldmia sp, {r0 - r3} )
local_restart:
ldr r10, [tsk, #TI_FLAGS] @ check for syscall tracing
stmdb sp!, {r4, r5} @ push fifth and sixth args
tst r10, #_TIF_SYSCALL_WORK @ are we tracing syscalls?
bne __sys_trace
invoke_syscall tbl, scno, r10, __ret_fast_syscall
add r1, sp, #S_OFF
2: cmp scno, #(__ARM_NR_BASE - __NR_SYSCALL_BASE)
eor r0, scno, #__NR_SYSCALL_BASE @ put OS number back
bcs arm_syscall
mov why, #0 @ no longer a real syscall
b sys_ni_syscall @ not private func
#if defined(CONFIG_OABI_COMPAT) || !defined(CONFIG_AEABI)
/*
* We failed to handle a fault trying to access the page
* containing the swi instruction, but we're not really in a
* position to return -EFAULT. Instead, return back to the
* instruction and re-enter the user fault handling path trying
* to page it in. This will likely result in sending SEGV to the
* current task.
*/
9001:
sub lr, saved_pc, #4
str lr, [sp, #S_PC]
get_thread_info tsk
b ret_fast_syscall
#endif
ENDPROC(vector_swi)
/*
* This is the really slow path. We're going to be doing
* context switches, and waiting for our parent to respond.
*/
__sys_trace:
mov r1, scno
add r0, sp, #S_OFF
bl syscall_trace_enter
mov scno, r0
invoke_syscall tbl, scno, r10, __sys_trace_return, reload=1
cmp scno, #-1 @ skip the syscall?
bne 2b
add sp, sp, #S_OFF @ restore stack
__sys_trace_return_nosave:
enable_irq_notrace
mov r0, sp
bl syscall_trace_exit
b ret_slow_syscall
__sys_trace_return:
str r0, [sp, #S_R0 + S_OFF]! @ save returned r0
mov r0, sp
bl syscall_trace_exit
b ret_slow_syscall
.align 5
#ifdef CONFIG_ALIGNMENT_TRAP
.type __cr_alignment, #object
__cr_alignment:
.word cr_alignment
#endif
.ltorg
.macro syscall_table_start, sym
.equ __sys_nr, 0
.type \sym, #object
ENTRY(\sym)
.endm
.macro syscall, nr, func
.ifgt __sys_nr - \nr
.error "Duplicated/unorded system call entry"
.endif
.rept \nr - __sys_nr
.long sys_ni_syscall
.endr
.long \func
.equ __sys_nr, \nr + 1
.endm
.macro syscall_table_end, sym
.ifgt __sys_nr - __NR_syscalls
.error "System call table too big"
.endif
.rept __NR_syscalls - __sys_nr
.long sys_ni_syscall
.endr
.size \sym, . - \sym
.endm
#define NATIVE(nr, func) syscall nr, func
/*
* This is the syscall table declaration for native ABI syscalls.
* With EABI a couple syscalls are obsolete and defined as sys_ni_syscall.
*/
syscall_table_start sys_call_table
#define COMPAT(nr, native, compat) syscall nr, native
#ifdef CONFIG_AEABI
#include <calls-eabi.S>
#else
#include <calls-oabi.S>
#endif
#undef COMPAT
syscall_table_end sys_call_table
/*============================================================================
* Special system call wrappers
*/
@ r0 = syscall number
@ r8 = syscall table
sys_syscall:
bic scno, r0, #__NR_OABI_SYSCALL_BASE
cmp scno, #__NR_syscall - __NR_SYSCALL_BASE
cmpne scno, #NR_syscalls @ check range
#ifdef CONFIG_CPU_SPECTRE
movhs scno, #0
csdb
#endif
stmialo sp, {r5, r6} @ shuffle args
movlo r0, r1
movlo r1, r2
movlo r2, r3
movlo r3, r4
ldrlo pc, [tbl, scno, lsl #2]
b sys_ni_syscall
ENDPROC(sys_syscall)
sys_sigreturn_wrapper:
add r0, sp, #S_OFF
mov why, #0 @ prevent syscall restart handling
b sys_sigreturn
ENDPROC(sys_sigreturn_wrapper)
sys_rt_sigreturn_wrapper:
add r0, sp, #S_OFF
mov why, #0 @ prevent syscall restart handling
b sys_rt_sigreturn
ENDPROC(sys_rt_sigreturn_wrapper)
sys_statfs64_wrapper:
teq r1, #88
moveq r1, #84
b sys_statfs64
ENDPROC(sys_statfs64_wrapper)
sys_fstatfs64_wrapper:
teq r1, #88
moveq r1, #84
b sys_fstatfs64
ENDPROC(sys_fstatfs64_wrapper)
/*
* Note: off_4k (r5) is always units of 4K. If we can't do the requested
* offset, we return EINVAL.
*/
sys_mmap2:
str r5, [sp, #4]
b sys_mmap_pgoff
ENDPROC(sys_mmap2)
#ifdef CONFIG_OABI_COMPAT
/*
* These are syscalls with argument register differences
*/
sys_oabi_pread64:
stmia sp, {r3, r4}
b sys_pread64
ENDPROC(sys_oabi_pread64)
sys_oabi_pwrite64:
stmia sp, {r3, r4}
b sys_pwrite64
ENDPROC(sys_oabi_pwrite64)
sys_oabi_truncate64:
mov r3, r2
mov r2, r1
b sys_truncate64
ENDPROC(sys_oabi_truncate64)
sys_oabi_ftruncate64:
mov r3, r2
mov r2, r1
b sys_ftruncate64
ENDPROC(sys_oabi_ftruncate64)
sys_oabi_readahead:
str r3, [sp]
mov r3, r2
mov r2, r1
b sys_readahead
ENDPROC(sys_oabi_readahead)
/*
* Let's declare a second syscall table for old ABI binaries
* using the compatibility syscall entries.
*/
syscall_table_start sys_oabi_call_table
#define COMPAT(nr, native, compat) syscall nr, compat
#include <calls-oabi.S>
syscall_table_end sys_oabi_call_table
#endif