mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-16 00:34:20 +08:00
b30ab0e034
On encrypt, we will re-assign the buffer_heads to point to a bounce page rather than the control_page (which is the original page to write that contains the plaintext). The block I/O occurs against the bounce page. On write completion, we re-assign the buffer_heads to the original plaintext page. On decrypt, we will attach a read completion callback to the bio struct. This read completion will decrypt the read contents in-place prior to setting the page up-to-date. The current encryption mode, AES-256-XTS, lacks cryptographic integrity. AES-256-GCM is in-plan, but we will need to devise a mechanism for handling the integrity data. Signed-off-by: Michael Halcrow <mhalcrow@google.com> Signed-off-by: Ildar Muslukhov <ildarm@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
559 lines
15 KiB
C
559 lines
15 KiB
C
/*
|
|
* linux/fs/ext4/crypto.c
|
|
*
|
|
* Copyright (C) 2015, Google, Inc.
|
|
*
|
|
* This contains encryption functions for ext4
|
|
*
|
|
* Written by Michael Halcrow, 2014.
|
|
*
|
|
* Filename encryption additions
|
|
* Uday Savagaonkar, 2014
|
|
* Encryption policy handling additions
|
|
* Ildar Muslukhov, 2014
|
|
*
|
|
* This has not yet undergone a rigorous security audit.
|
|
*
|
|
* The usage of AES-XTS should conform to recommendations in NIST
|
|
* Special Publication 800-38E and IEEE P1619/D16.
|
|
*/
|
|
|
|
#include <crypto/hash.h>
|
|
#include <crypto/sha.h>
|
|
#include <keys/user-type.h>
|
|
#include <keys/encrypted-type.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/ecryptfs.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/key.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/random.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/spinlock_types.h>
|
|
|
|
#include "ext4_extents.h"
|
|
#include "xattr.h"
|
|
|
|
/* Encryption added and removed here! (L: */
|
|
|
|
static unsigned int num_prealloc_crypto_pages = 32;
|
|
static unsigned int num_prealloc_crypto_ctxs = 128;
|
|
|
|
module_param(num_prealloc_crypto_pages, uint, 0444);
|
|
MODULE_PARM_DESC(num_prealloc_crypto_pages,
|
|
"Number of crypto pages to preallocate");
|
|
module_param(num_prealloc_crypto_ctxs, uint, 0444);
|
|
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
|
|
"Number of crypto contexts to preallocate");
|
|
|
|
static mempool_t *ext4_bounce_page_pool;
|
|
|
|
static LIST_HEAD(ext4_free_crypto_ctxs);
|
|
static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
|
|
|
|
/**
|
|
* ext4_release_crypto_ctx() - Releases an encryption context
|
|
* @ctx: The encryption context to release.
|
|
*
|
|
* If the encryption context was allocated from the pre-allocated pool, returns
|
|
* it to that pool. Else, frees it.
|
|
*
|
|
* If there's a bounce page in the context, this frees that.
|
|
*/
|
|
void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (ctx->bounce_page) {
|
|
if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
|
|
__free_page(ctx->bounce_page);
|
|
else
|
|
mempool_free(ctx->bounce_page, ext4_bounce_page_pool);
|
|
ctx->bounce_page = NULL;
|
|
}
|
|
ctx->control_page = NULL;
|
|
if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
|
|
if (ctx->tfm)
|
|
crypto_free_tfm(ctx->tfm);
|
|
kfree(ctx);
|
|
} else {
|
|
spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
|
|
list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
|
|
spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context
|
|
* @mask: The allocation mask.
|
|
*
|
|
* Return: An allocated and initialized encryption context on success. An error
|
|
* value or NULL otherwise.
|
|
*/
|
|
static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(gfp_t mask)
|
|
{
|
|
struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx),
|
|
mask);
|
|
|
|
if (!ctx)
|
|
return ERR_PTR(-ENOMEM);
|
|
return ctx;
|
|
}
|
|
|
|
/**
|
|
* ext4_get_crypto_ctx() - Gets an encryption context
|
|
* @inode: The inode for which we are doing the crypto
|
|
*
|
|
* Allocates and initializes an encryption context.
|
|
*
|
|
* Return: An allocated and initialized encryption context on success; error
|
|
* value or NULL otherwise.
|
|
*/
|
|
struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
|
|
{
|
|
struct ext4_crypto_ctx *ctx = NULL;
|
|
int res = 0;
|
|
unsigned long flags;
|
|
struct ext4_encryption_key *key = &EXT4_I(inode)->i_encryption_key;
|
|
|
|
if (!ext4_read_workqueue)
|
|
ext4_init_crypto();
|
|
|
|
/*
|
|
* We first try getting the ctx from a free list because in
|
|
* the common case the ctx will have an allocated and
|
|
* initialized crypto tfm, so it's probably a worthwhile
|
|
* optimization. For the bounce page, we first try getting it
|
|
* from the kernel allocator because that's just about as fast
|
|
* as getting it from a list and because a cache of free pages
|
|
* should generally be a "last resort" option for a filesystem
|
|
* to be able to do its job.
|
|
*/
|
|
spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
|
|
ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
|
|
struct ext4_crypto_ctx, free_list);
|
|
if (ctx)
|
|
list_del(&ctx->free_list);
|
|
spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
|
|
if (!ctx) {
|
|
ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS);
|
|
if (IS_ERR(ctx)) {
|
|
res = PTR_ERR(ctx);
|
|
goto out;
|
|
}
|
|
ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
} else {
|
|
ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
}
|
|
|
|
/* Allocate a new Crypto API context if we don't already have
|
|
* one or if it isn't the right mode. */
|
|
BUG_ON(key->mode == EXT4_ENCRYPTION_MODE_INVALID);
|
|
if (ctx->tfm && (ctx->mode != key->mode)) {
|
|
crypto_free_tfm(ctx->tfm);
|
|
ctx->tfm = NULL;
|
|
ctx->mode = EXT4_ENCRYPTION_MODE_INVALID;
|
|
}
|
|
if (!ctx->tfm) {
|
|
switch (key->mode) {
|
|
case EXT4_ENCRYPTION_MODE_AES_256_XTS:
|
|
ctx->tfm = crypto_ablkcipher_tfm(
|
|
crypto_alloc_ablkcipher("xts(aes)", 0, 0));
|
|
break;
|
|
case EXT4_ENCRYPTION_MODE_AES_256_GCM:
|
|
/* TODO(mhalcrow): AEAD w/ gcm(aes);
|
|
* crypto_aead_setauthsize() */
|
|
ctx->tfm = ERR_PTR(-ENOTSUPP);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
if (IS_ERR_OR_NULL(ctx->tfm)) {
|
|
res = PTR_ERR(ctx->tfm);
|
|
ctx->tfm = NULL;
|
|
goto out;
|
|
}
|
|
ctx->mode = key->mode;
|
|
}
|
|
BUG_ON(key->size != ext4_encryption_key_size(key->mode));
|
|
|
|
/* There shouldn't be a bounce page attached to the crypto
|
|
* context at this point. */
|
|
BUG_ON(ctx->bounce_page);
|
|
|
|
out:
|
|
if (res) {
|
|
if (!IS_ERR_OR_NULL(ctx))
|
|
ext4_release_crypto_ctx(ctx);
|
|
ctx = ERR_PTR(res);
|
|
}
|
|
return ctx;
|
|
}
|
|
|
|
struct workqueue_struct *ext4_read_workqueue;
|
|
static DEFINE_MUTEX(crypto_init);
|
|
|
|
/**
|
|
* ext4_exit_crypto() - Shutdown the ext4 encryption system
|
|
*/
|
|
void ext4_exit_crypto(void)
|
|
{
|
|
struct ext4_crypto_ctx *pos, *n;
|
|
|
|
list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) {
|
|
if (pos->bounce_page) {
|
|
if (pos->flags &
|
|
EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) {
|
|
__free_page(pos->bounce_page);
|
|
} else {
|
|
mempool_free(pos->bounce_page,
|
|
ext4_bounce_page_pool);
|
|
}
|
|
}
|
|
if (pos->tfm)
|
|
crypto_free_tfm(pos->tfm);
|
|
kfree(pos);
|
|
}
|
|
INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
|
|
if (ext4_bounce_page_pool)
|
|
mempool_destroy(ext4_bounce_page_pool);
|
|
ext4_bounce_page_pool = NULL;
|
|
if (ext4_read_workqueue)
|
|
destroy_workqueue(ext4_read_workqueue);
|
|
ext4_read_workqueue = NULL;
|
|
}
|
|
|
|
/**
|
|
* ext4_init_crypto() - Set up for ext4 encryption.
|
|
*
|
|
* We only call this when we start accessing encrypted files, since it
|
|
* results in memory getting allocated that wouldn't otherwise be used.
|
|
*
|
|
* Return: Zero on success, non-zero otherwise.
|
|
*/
|
|
int ext4_init_crypto(void)
|
|
{
|
|
int i, res;
|
|
|
|
mutex_lock(&crypto_init);
|
|
if (ext4_read_workqueue)
|
|
goto already_initialized;
|
|
ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
|
|
if (!ext4_read_workqueue) {
|
|
res = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
|
|
struct ext4_crypto_ctx *ctx;
|
|
|
|
ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL);
|
|
if (IS_ERR(ctx)) {
|
|
res = PTR_ERR(ctx);
|
|
goto fail;
|
|
}
|
|
list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
|
|
}
|
|
|
|
ext4_bounce_page_pool =
|
|
mempool_create_page_pool(num_prealloc_crypto_pages, 0);
|
|
if (!ext4_bounce_page_pool) {
|
|
res = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
already_initialized:
|
|
mutex_unlock(&crypto_init);
|
|
return 0;
|
|
fail:
|
|
ext4_exit_crypto();
|
|
mutex_unlock(&crypto_init);
|
|
return res;
|
|
}
|
|
|
|
void ext4_restore_control_page(struct page *data_page)
|
|
{
|
|
struct ext4_crypto_ctx *ctx =
|
|
(struct ext4_crypto_ctx *)page_private(data_page);
|
|
|
|
set_page_private(data_page, (unsigned long)NULL);
|
|
ClearPagePrivate(data_page);
|
|
unlock_page(data_page);
|
|
ext4_release_crypto_ctx(ctx);
|
|
}
|
|
|
|
/**
|
|
* ext4_crypt_complete() - The completion callback for page encryption
|
|
* @req: The asynchronous encryption request context
|
|
* @res: The result of the encryption operation
|
|
*/
|
|
static void ext4_crypt_complete(struct crypto_async_request *req, int res)
|
|
{
|
|
struct ext4_completion_result *ecr = req->data;
|
|
|
|
if (res == -EINPROGRESS)
|
|
return;
|
|
ecr->res = res;
|
|
complete(&ecr->completion);
|
|
}
|
|
|
|
typedef enum {
|
|
EXT4_DECRYPT = 0,
|
|
EXT4_ENCRYPT,
|
|
} ext4_direction_t;
|
|
|
|
static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
|
|
struct inode *inode,
|
|
ext4_direction_t rw,
|
|
pgoff_t index,
|
|
struct page *src_page,
|
|
struct page *dest_page)
|
|
|
|
{
|
|
u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
|
|
struct ablkcipher_request *req = NULL;
|
|
DECLARE_EXT4_COMPLETION_RESULT(ecr);
|
|
struct scatterlist dst, src;
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
|
|
int res = 0;
|
|
|
|
BUG_ON(!ctx->tfm);
|
|
BUG_ON(ctx->mode != ei->i_encryption_key.mode);
|
|
|
|
if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: unsupported crypto algorithm: %d\n",
|
|
__func__, ctx->mode);
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
crypto_ablkcipher_clear_flags(atfm, ~0);
|
|
crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
|
|
|
|
res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw,
|
|
ei->i_encryption_key.size);
|
|
if (res) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: crypto_ablkcipher_setkey() failed\n",
|
|
__func__);
|
|
return res;
|
|
}
|
|
req = ablkcipher_request_alloc(atfm, GFP_NOFS);
|
|
if (!req) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: crypto_request_alloc() failed\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
ablkcipher_request_set_callback(
|
|
req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
ext4_crypt_complete, &ecr);
|
|
|
|
BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
|
|
memcpy(xts_tweak, &index, sizeof(index));
|
|
memset(&xts_tweak[sizeof(index)], 0,
|
|
EXT4_XTS_TWEAK_SIZE - sizeof(index));
|
|
|
|
sg_init_table(&dst, 1);
|
|
sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
|
|
sg_init_table(&src, 1);
|
|
sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
|
|
ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
|
|
xts_tweak);
|
|
if (rw == EXT4_DECRYPT)
|
|
res = crypto_ablkcipher_decrypt(req);
|
|
else
|
|
res = crypto_ablkcipher_encrypt(req);
|
|
if (res == -EINPROGRESS || res == -EBUSY) {
|
|
BUG_ON(req->base.data != &ecr);
|
|
wait_for_completion(&ecr.completion);
|
|
res = ecr.res;
|
|
}
|
|
ablkcipher_request_free(req);
|
|
if (res) {
|
|
printk_ratelimited(
|
|
KERN_ERR
|
|
"%s: crypto_ablkcipher_encrypt() returned %d\n",
|
|
__func__, res);
|
|
return res;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ext4_encrypt() - Encrypts a page
|
|
* @inode: The inode for which the encryption should take place
|
|
* @plaintext_page: The page to encrypt. Must be locked.
|
|
*
|
|
* Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
|
|
* encryption context.
|
|
*
|
|
* Called on the page write path. The caller must call
|
|
* ext4_restore_control_page() on the returned ciphertext page to
|
|
* release the bounce buffer and the encryption context.
|
|
*
|
|
* Return: An allocated page with the encrypted content on success. Else, an
|
|
* error value or NULL.
|
|
*/
|
|
struct page *ext4_encrypt(struct inode *inode,
|
|
struct page *plaintext_page)
|
|
{
|
|
struct ext4_crypto_ctx *ctx;
|
|
struct page *ciphertext_page = NULL;
|
|
int err;
|
|
|
|
BUG_ON(!PageLocked(plaintext_page));
|
|
|
|
ctx = ext4_get_crypto_ctx(inode);
|
|
if (IS_ERR(ctx))
|
|
return (struct page *) ctx;
|
|
|
|
/* The encryption operation will require a bounce page. */
|
|
ciphertext_page = alloc_page(GFP_NOFS);
|
|
if (!ciphertext_page) {
|
|
/* This is a potential bottleneck, but at least we'll have
|
|
* forward progress. */
|
|
ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
GFP_NOFS);
|
|
if (WARN_ON_ONCE(!ciphertext_page)) {
|
|
ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
GFP_NOFS | __GFP_WAIT);
|
|
}
|
|
ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
} else {
|
|
ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
}
|
|
ctx->bounce_page = ciphertext_page;
|
|
ctx->control_page = plaintext_page;
|
|
err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
|
|
plaintext_page, ciphertext_page);
|
|
if (err) {
|
|
ext4_release_crypto_ctx(ctx);
|
|
return ERR_PTR(err);
|
|
}
|
|
SetPagePrivate(ciphertext_page);
|
|
set_page_private(ciphertext_page, (unsigned long)ctx);
|
|
lock_page(ciphertext_page);
|
|
return ciphertext_page;
|
|
}
|
|
|
|
/**
|
|
* ext4_decrypt() - Decrypts a page in-place
|
|
* @ctx: The encryption context.
|
|
* @page: The page to decrypt. Must be locked.
|
|
*
|
|
* Decrypts page in-place using the ctx encryption context.
|
|
*
|
|
* Called from the read completion callback.
|
|
*
|
|
* Return: Zero on success, non-zero otherwise.
|
|
*/
|
|
int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
|
|
{
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
return ext4_page_crypto(ctx, page->mapping->host,
|
|
EXT4_DECRYPT, page->index, page, page);
|
|
}
|
|
|
|
/*
|
|
* Convenience function which takes care of allocating and
|
|
* deallocating the encryption context
|
|
*/
|
|
int ext4_decrypt_one(struct inode *inode, struct page *page)
|
|
{
|
|
int ret;
|
|
|
|
struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
|
|
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
ret = ext4_decrypt(ctx, page);
|
|
ext4_release_crypto_ctx(ctx);
|
|
return ret;
|
|
}
|
|
|
|
int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
|
|
{
|
|
struct ext4_crypto_ctx *ctx;
|
|
struct page *ciphertext_page = NULL;
|
|
struct bio *bio;
|
|
ext4_lblk_t lblk = ex->ee_block;
|
|
ext4_fsblk_t pblk = ext4_ext_pblock(ex);
|
|
unsigned int len = ext4_ext_get_actual_len(ex);
|
|
int err = 0;
|
|
|
|
BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
|
|
|
|
ctx = ext4_get_crypto_ctx(inode);
|
|
if (IS_ERR(ctx))
|
|
return PTR_ERR(ctx);
|
|
|
|
ciphertext_page = alloc_page(GFP_NOFS);
|
|
if (!ciphertext_page) {
|
|
/* This is a potential bottleneck, but at least we'll have
|
|
* forward progress. */
|
|
ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
GFP_NOFS);
|
|
if (WARN_ON_ONCE(!ciphertext_page)) {
|
|
ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
GFP_NOFS | __GFP_WAIT);
|
|
}
|
|
ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
} else {
|
|
ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
}
|
|
ctx->bounce_page = ciphertext_page;
|
|
|
|
while (len--) {
|
|
err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
|
|
ZERO_PAGE(0), ciphertext_page);
|
|
if (err)
|
|
goto errout;
|
|
|
|
bio = bio_alloc(GFP_KERNEL, 1);
|
|
if (!bio) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
bio->bi_bdev = inode->i_sb->s_bdev;
|
|
bio->bi_iter.bi_sector = pblk;
|
|
err = bio_add_page(bio, ciphertext_page,
|
|
inode->i_sb->s_blocksize, 0);
|
|
if (err) {
|
|
bio_put(bio);
|
|
goto errout;
|
|
}
|
|
err = submit_bio_wait(WRITE, bio);
|
|
if (err)
|
|
goto errout;
|
|
}
|
|
err = 0;
|
|
errout:
|
|
ext4_release_crypto_ctx(ctx);
|
|
return err;
|
|
}
|
|
|
|
bool ext4_valid_contents_enc_mode(uint32_t mode)
|
|
{
|
|
return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
|
|
}
|
|
|
|
/**
|
|
* ext4_validate_encryption_key_size() - Validate the encryption key size
|
|
* @mode: The key mode.
|
|
* @size: The key size to validate.
|
|
*
|
|
* Return: The validated key size for @mode. Zero if invalid.
|
|
*/
|
|
uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
|
|
{
|
|
if (size == ext4_encryption_key_size(mode))
|
|
return size;
|
|
return 0;
|
|
}
|