mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-04 09:34:12 +08:00
65090f30ab
Merge misc updates from Andrew Morton: "191 patches. Subsystems affected by this patch series: kthread, ia64, scripts, ntfs, squashfs, ocfs2, kernel/watchdog, and mm (gup, pagealloc, slab, slub, kmemleak, dax, debug, pagecache, gup, swap, memcg, pagemap, mprotect, bootmem, dma, tracing, vmalloc, kasan, initialization, pagealloc, and memory-failure)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (191 commits) mm,hwpoison: make get_hwpoison_page() call get_any_page() mm,hwpoison: send SIGBUS with error virutal address mm/page_alloc: split pcp->high across all online CPUs for cpuless nodes mm/page_alloc: allow high-order pages to be stored on the per-cpu lists mm: replace CONFIG_FLAT_NODE_MEM_MAP with CONFIG_FLATMEM mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA docs: remove description of DISCONTIGMEM arch, mm: remove stale mentions of DISCONIGMEM mm: remove CONFIG_DISCONTIGMEM m68k: remove support for DISCONTIGMEM arc: remove support for DISCONTIGMEM arc: update comment about HIGHMEM implementation alpha: remove DISCONTIGMEM and NUMA mm/page_alloc: move free_the_page mm/page_alloc: fix counting of managed_pages mm/page_alloc: improve memmap_pages dbg msg mm: drop SECTION_SHIFT in code comments mm/page_alloc: introduce vm.percpu_pagelist_high_fraction mm/page_alloc: limit the number of pages on PCP lists when reclaim is active mm/page_alloc: scale the number of pages that are batch freed ...
1215 lines
33 KiB
C
1215 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Secure pages management: Migration of pages between normal and secure
|
|
* memory of KVM guests.
|
|
*
|
|
* Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
|
|
*/
|
|
|
|
/*
|
|
* A pseries guest can be run as secure guest on Ultravisor-enabled
|
|
* POWER platforms. On such platforms, this driver will be used to manage
|
|
* the movement of guest pages between the normal memory managed by
|
|
* hypervisor (HV) and secure memory managed by Ultravisor (UV).
|
|
*
|
|
* The page-in or page-out requests from UV will come to HV as hcalls and
|
|
* HV will call back into UV via ultracalls to satisfy these page requests.
|
|
*
|
|
* Private ZONE_DEVICE memory equal to the amount of secure memory
|
|
* available in the platform for running secure guests is hotplugged.
|
|
* Whenever a page belonging to the guest becomes secure, a page from this
|
|
* private device memory is used to represent and track that secure page
|
|
* on the HV side. Some pages (like virtio buffers, VPA pages etc) are
|
|
* shared between UV and HV. However such pages aren't represented by
|
|
* device private memory and mappings to shared memory exist in both
|
|
* UV and HV page tables.
|
|
*/
|
|
|
|
/*
|
|
* Notes on locking
|
|
*
|
|
* kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
|
|
* page-in and page-out requests for the same GPA. Concurrent accesses
|
|
* can either come via UV (guest vCPUs requesting for same page)
|
|
* or when HV and guest simultaneously access the same page.
|
|
* This mutex serializes the migration of page from HV(normal) to
|
|
* UV(secure) and vice versa. So the serialization points are around
|
|
* migrate_vma routines and page-in/out routines.
|
|
*
|
|
* Per-guest mutex comes with a cost though. Mainly it serializes the
|
|
* fault path as page-out can occur when HV faults on accessing secure
|
|
* guest pages. Currently UV issues page-in requests for all the guest
|
|
* PFNs one at a time during early boot (UV_ESM uvcall), so this is
|
|
* not a cause for concern. Also currently the number of page-outs caused
|
|
* by HV touching secure pages is very very low. If an when UV supports
|
|
* overcommitting, then we might see concurrent guest driven page-outs.
|
|
*
|
|
* Locking order
|
|
*
|
|
* 1. kvm->srcu - Protects KVM memslots
|
|
* 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
|
|
* 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
|
|
* as sync-points for page-in/out
|
|
*/
|
|
|
|
/*
|
|
* Notes on page size
|
|
*
|
|
* Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
|
|
* and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
|
|
* secure GPAs at 64K page size and maintains one device PFN for each
|
|
* 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
|
|
* for 64K page at a time.
|
|
*
|
|
* HV faulting on secure pages: When HV touches any secure page, it
|
|
* faults and issues a UV_PAGE_OUT request with 64K page size. Currently
|
|
* UV splits and remaps the 2MB page if necessary and copies out the
|
|
* required 64K page contents.
|
|
*
|
|
* Shared pages: Whenever guest shares a secure page, UV will split and
|
|
* remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
|
|
*
|
|
* HV invalidating a page: When a regular page belonging to secure
|
|
* guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
|
|
* page size. Using 64K page size is correct here because any non-secure
|
|
* page will essentially be of 64K page size. Splitting by UV during sharing
|
|
* and page-out ensures this.
|
|
*
|
|
* Page fault handling: When HV handles page fault of a page belonging
|
|
* to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
|
|
* Using 64K size is correct here too as UV would have split the 2MB page
|
|
* into 64k mappings and would have done page-outs earlier.
|
|
*
|
|
* In summary, the current secure pages handling code in HV assumes
|
|
* 64K page size and in fact fails any page-in/page-out requests of
|
|
* non-64K size upfront. If and when UV starts supporting multiple
|
|
* page-sizes, we need to break this assumption.
|
|
*/
|
|
|
|
#include <linux/pagemap.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/of.h>
|
|
#include <asm/ultravisor.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s_uvmem.h>
|
|
|
|
static struct dev_pagemap kvmppc_uvmem_pgmap;
|
|
static unsigned long *kvmppc_uvmem_bitmap;
|
|
static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
|
|
|
|
/*
|
|
* States of a GFN
|
|
* ---------------
|
|
* The GFN can be in one of the following states.
|
|
*
|
|
* (a) Secure - The GFN is secure. The GFN is associated with
|
|
* a Secure VM, the contents of the GFN is not accessible
|
|
* to the Hypervisor. This GFN can be backed by a secure-PFN,
|
|
* or can be backed by a normal-PFN with contents encrypted.
|
|
* The former is true when the GFN is paged-in into the
|
|
* ultravisor. The latter is true when the GFN is paged-out
|
|
* of the ultravisor.
|
|
*
|
|
* (b) Shared - The GFN is shared. The GFN is associated with a
|
|
* a secure VM. The contents of the GFN is accessible to
|
|
* Hypervisor. This GFN is backed by a normal-PFN and its
|
|
* content is un-encrypted.
|
|
*
|
|
* (c) Normal - The GFN is a normal. The GFN is associated with
|
|
* a normal VM. The contents of the GFN is accesible to
|
|
* the Hypervisor. Its content is never encrypted.
|
|
*
|
|
* States of a VM.
|
|
* ---------------
|
|
*
|
|
* Normal VM: A VM whose contents are always accessible to
|
|
* the hypervisor. All its GFNs are normal-GFNs.
|
|
*
|
|
* Secure VM: A VM whose contents are not accessible to the
|
|
* hypervisor without the VM's consent. Its GFNs are
|
|
* either Shared-GFN or Secure-GFNs.
|
|
*
|
|
* Transient VM: A Normal VM that is transitioning to secure VM.
|
|
* The transition starts on successful return of
|
|
* H_SVM_INIT_START, and ends on successful return
|
|
* of H_SVM_INIT_DONE. This transient VM, can have GFNs
|
|
* in any of the three states; i.e Secure-GFN, Shared-GFN,
|
|
* and Normal-GFN. The VM never executes in this state
|
|
* in supervisor-mode.
|
|
*
|
|
* Memory slot State.
|
|
* -----------------------------
|
|
* The state of a memory slot mirrors the state of the
|
|
* VM the memory slot is associated with.
|
|
*
|
|
* VM State transition.
|
|
* --------------------
|
|
*
|
|
* A VM always starts in Normal Mode.
|
|
*
|
|
* H_SVM_INIT_START moves the VM into transient state. During this
|
|
* time the Ultravisor may request some of its GFNs to be shared or
|
|
* secured. So its GFNs can be in one of the three GFN states.
|
|
*
|
|
* H_SVM_INIT_DONE moves the VM entirely from transient state to
|
|
* secure-state. At this point any left-over normal-GFNs are
|
|
* transitioned to Secure-GFN.
|
|
*
|
|
* H_SVM_INIT_ABORT moves the transient VM back to normal VM.
|
|
* All its GFNs are moved to Normal-GFNs.
|
|
*
|
|
* UV_TERMINATE transitions the secure-VM back to normal-VM. All
|
|
* the secure-GFN and shared-GFNs are tranistioned to normal-GFN
|
|
* Note: The contents of the normal-GFN is undefined at this point.
|
|
*
|
|
* GFN state implementation:
|
|
* -------------------------
|
|
*
|
|
* Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
|
|
* when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
|
|
* set, and contains the value of the secure-PFN.
|
|
* It is associated with a normal-PFN; also called mem_pfn, when
|
|
* the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
|
|
* The value of the normal-PFN is not tracked.
|
|
*
|
|
* Shared GFN is associated with a normal-PFN. Its pfn[] has
|
|
* KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
|
|
* is not tracked.
|
|
*
|
|
* Normal GFN is associated with normal-PFN. Its pfn[] has
|
|
* no flag set. The value of the normal-PFN is not tracked.
|
|
*
|
|
* Life cycle of a GFN
|
|
* --------------------
|
|
*
|
|
* --------------------------------------------------------------
|
|
* | | Share | Unshare | SVM |H_SVM_INIT_DONE|
|
|
* | |operation |operation | abort/ | |
|
|
* | | | | terminate | |
|
|
* -------------------------------------------------------------
|
|
* | | | | | |
|
|
* | Secure | Shared | Secure |Normal |Secure |
|
|
* | | | | | |
|
|
* | Shared | Shared | Secure |Normal |Shared |
|
|
* | | | | | |
|
|
* | Normal | Shared | Secure |Normal |Secure |
|
|
* --------------------------------------------------------------
|
|
*
|
|
* Life cycle of a VM
|
|
* --------------------
|
|
*
|
|
* --------------------------------------------------------------------
|
|
* | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ |
|
|
* | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE |
|
|
* | | | | | | |
|
|
* --------- ----------------------------------------------------------
|
|
* | | | | | | |
|
|
* | Normal | Normal | Transient|Error |Error |Normal |
|
|
* | | | | | | |
|
|
* | Secure | Error | Error |Error |Error |Normal |
|
|
* | | | | | | |
|
|
* |Transient| N/A | Error |Secure |Normal |Normal |
|
|
* --------------------------------------------------------------------
|
|
*/
|
|
|
|
#define KVMPPC_GFN_UVMEM_PFN (1UL << 63)
|
|
#define KVMPPC_GFN_MEM_PFN (1UL << 62)
|
|
#define KVMPPC_GFN_SHARED (1UL << 61)
|
|
#define KVMPPC_GFN_SECURE (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
|
|
#define KVMPPC_GFN_FLAG_MASK (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
|
|
#define KVMPPC_GFN_PFN_MASK (~KVMPPC_GFN_FLAG_MASK)
|
|
|
|
struct kvmppc_uvmem_slot {
|
|
struct list_head list;
|
|
unsigned long nr_pfns;
|
|
unsigned long base_pfn;
|
|
unsigned long *pfns;
|
|
};
|
|
struct kvmppc_uvmem_page_pvt {
|
|
struct kvm *kvm;
|
|
unsigned long gpa;
|
|
bool skip_page_out;
|
|
bool remove_gfn;
|
|
};
|
|
|
|
bool kvmppc_uvmem_available(void)
|
|
{
|
|
/*
|
|
* If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
|
|
* and our data structures have been initialized successfully.
|
|
*/
|
|
return !!kvmppc_uvmem_bitmap;
|
|
}
|
|
|
|
int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
|
|
{
|
|
struct kvmppc_uvmem_slot *p;
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns)));
|
|
if (!p->pfns) {
|
|
kfree(p);
|
|
return -ENOMEM;
|
|
}
|
|
p->nr_pfns = slot->npages;
|
|
p->base_pfn = slot->base_gfn;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
list_add(&p->list, &kvm->arch.uvmem_pfns);
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* All device PFNs are already released by the time we come here.
|
|
*/
|
|
void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
|
|
{
|
|
struct kvmppc_uvmem_slot *p, *next;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
|
|
if (p->base_pfn == slot->base_gfn) {
|
|
vfree(p->pfns);
|
|
list_del(&p->list);
|
|
kfree(p);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
}
|
|
|
|
static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
|
|
unsigned long flag, unsigned long uvmem_pfn)
|
|
{
|
|
struct kvmppc_uvmem_slot *p;
|
|
|
|
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
|
|
if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
|
|
unsigned long index = gfn - p->base_pfn;
|
|
|
|
if (flag == KVMPPC_GFN_UVMEM_PFN)
|
|
p->pfns[index] = uvmem_pfn | flag;
|
|
else
|
|
p->pfns[index] = flag;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
|
|
static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
|
|
unsigned long uvmem_pfn, struct kvm *kvm)
|
|
{
|
|
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
|
|
}
|
|
|
|
/* mark the GFN as secure-GFN associated with a memory-PFN. */
|
|
static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
|
|
{
|
|
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
|
|
}
|
|
|
|
/* mark the GFN as a shared GFN. */
|
|
static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
|
|
{
|
|
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
|
|
}
|
|
|
|
/* mark the GFN as a non-existent GFN. */
|
|
static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
|
|
{
|
|
kvmppc_mark_gfn(gfn, kvm, 0, 0);
|
|
}
|
|
|
|
/* return true, if the GFN is a secure-GFN backed by a secure-PFN */
|
|
static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
|
|
unsigned long *uvmem_pfn)
|
|
{
|
|
struct kvmppc_uvmem_slot *p;
|
|
|
|
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
|
|
if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
|
|
unsigned long index = gfn - p->base_pfn;
|
|
|
|
if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
|
|
if (uvmem_pfn)
|
|
*uvmem_pfn = p->pfns[index] &
|
|
KVMPPC_GFN_PFN_MASK;
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* starting from *gfn search for the next available GFN that is not yet
|
|
* transitioned to a secure GFN. return the value of that GFN in *gfn. If a
|
|
* GFN is found, return true, else return false
|
|
*
|
|
* Must be called with kvm->arch.uvmem_lock held.
|
|
*/
|
|
static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
|
|
struct kvm *kvm, unsigned long *gfn)
|
|
{
|
|
struct kvmppc_uvmem_slot *p;
|
|
bool ret = false;
|
|
unsigned long i;
|
|
|
|
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list)
|
|
if (*gfn >= p->base_pfn && *gfn < p->base_pfn + p->nr_pfns)
|
|
break;
|
|
if (!p)
|
|
return ret;
|
|
/*
|
|
* The code below assumes, one to one correspondence between
|
|
* kvmppc_uvmem_slot and memslot.
|
|
*/
|
|
for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
|
|
unsigned long index = i - p->base_pfn;
|
|
|
|
if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
|
|
*gfn = i;
|
|
ret = true;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int kvmppc_memslot_page_merge(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot, bool merge)
|
|
{
|
|
unsigned long gfn = memslot->base_gfn;
|
|
unsigned long end, start = gfn_to_hva(kvm, gfn);
|
|
int ret = 0;
|
|
struct vm_area_struct *vma;
|
|
int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;
|
|
|
|
if (kvm_is_error_hva(start))
|
|
return H_STATE;
|
|
|
|
end = start + (memslot->npages << PAGE_SHIFT);
|
|
|
|
mmap_write_lock(kvm->mm);
|
|
do {
|
|
vma = find_vma_intersection(kvm->mm, start, end);
|
|
if (!vma) {
|
|
ret = H_STATE;
|
|
break;
|
|
}
|
|
ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
|
|
merge_flag, &vma->vm_flags);
|
|
if (ret) {
|
|
ret = H_STATE;
|
|
break;
|
|
}
|
|
start = vma->vm_end;
|
|
} while (end > vma->vm_end);
|
|
|
|
mmap_write_unlock(kvm->mm);
|
|
return ret;
|
|
}
|
|
|
|
static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot)
|
|
{
|
|
uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
|
|
kvmppc_uvmem_slot_free(kvm, memslot);
|
|
kvmppc_memslot_page_merge(kvm, memslot, true);
|
|
}
|
|
|
|
static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot)
|
|
{
|
|
int ret = H_PARAMETER;
|
|
|
|
if (kvmppc_memslot_page_merge(kvm, memslot, false))
|
|
return ret;
|
|
|
|
if (kvmppc_uvmem_slot_init(kvm, memslot))
|
|
goto out1;
|
|
|
|
ret = uv_register_mem_slot(kvm->arch.lpid,
|
|
memslot->base_gfn << PAGE_SHIFT,
|
|
memslot->npages * PAGE_SIZE,
|
|
0, memslot->id);
|
|
if (ret < 0) {
|
|
ret = H_PARAMETER;
|
|
goto out;
|
|
}
|
|
return 0;
|
|
out:
|
|
kvmppc_uvmem_slot_free(kvm, memslot);
|
|
out1:
|
|
kvmppc_memslot_page_merge(kvm, memslot, true);
|
|
return ret;
|
|
}
|
|
|
|
unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot, *m;
|
|
int ret = H_SUCCESS;
|
|
int srcu_idx;
|
|
|
|
kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
|
|
|
|
if (!kvmppc_uvmem_bitmap)
|
|
return H_UNSUPPORTED;
|
|
|
|
/* Only radix guests can be secure guests */
|
|
if (!kvm_is_radix(kvm))
|
|
return H_UNSUPPORTED;
|
|
|
|
/* NAK the transition to secure if not enabled */
|
|
if (!kvm->arch.svm_enabled)
|
|
return H_AUTHORITY;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
/* register the memslot */
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
if (ret) {
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(m, slots) {
|
|
if (m == memslot)
|
|
break;
|
|
__kvmppc_uvmem_memslot_delete(kvm, memslot);
|
|
}
|
|
}
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Provision a new page on HV side and copy over the contents
|
|
* from secure memory using UV_PAGE_OUT uvcall.
|
|
* Caller must held kvm->arch.uvmem_lock.
|
|
*/
|
|
static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end, unsigned long page_shift,
|
|
struct kvm *kvm, unsigned long gpa)
|
|
{
|
|
unsigned long src_pfn, dst_pfn = 0;
|
|
struct migrate_vma mig;
|
|
struct page *dpage, *spage;
|
|
struct kvmppc_uvmem_page_pvt *pvt;
|
|
unsigned long pfn;
|
|
int ret = U_SUCCESS;
|
|
|
|
memset(&mig, 0, sizeof(mig));
|
|
mig.vma = vma;
|
|
mig.start = start;
|
|
mig.end = end;
|
|
mig.src = &src_pfn;
|
|
mig.dst = &dst_pfn;
|
|
mig.pgmap_owner = &kvmppc_uvmem_pgmap;
|
|
mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
|
|
|
|
/* The requested page is already paged-out, nothing to do */
|
|
if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
|
|
return ret;
|
|
|
|
ret = migrate_vma_setup(&mig);
|
|
if (ret)
|
|
return -1;
|
|
|
|
spage = migrate_pfn_to_page(*mig.src);
|
|
if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
|
|
goto out_finalize;
|
|
|
|
if (!is_zone_device_page(spage))
|
|
goto out_finalize;
|
|
|
|
dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
|
|
if (!dpage) {
|
|
ret = -1;
|
|
goto out_finalize;
|
|
}
|
|
|
|
lock_page(dpage);
|
|
pvt = spage->zone_device_data;
|
|
pfn = page_to_pfn(dpage);
|
|
|
|
/*
|
|
* This function is used in two cases:
|
|
* - When HV touches a secure page, for which we do UV_PAGE_OUT
|
|
* - When a secure page is converted to shared page, we *get*
|
|
* the page to essentially unmap the device page. In this
|
|
* case we skip page-out.
|
|
*/
|
|
if (!pvt->skip_page_out)
|
|
ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
|
|
gpa, 0, page_shift);
|
|
|
|
if (ret == U_SUCCESS)
|
|
*mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED;
|
|
else {
|
|
unlock_page(dpage);
|
|
__free_page(dpage);
|
|
goto out_finalize;
|
|
}
|
|
|
|
migrate_vma_pages(&mig);
|
|
|
|
out_finalize:
|
|
migrate_vma_finalize(&mig);
|
|
return ret;
|
|
}
|
|
|
|
static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long page_shift,
|
|
struct kvm *kvm, unsigned long gpa)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa);
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Drop device pages that we maintain for the secure guest
|
|
*
|
|
* We first mark the pages to be skipped from UV_PAGE_OUT when there
|
|
* is HV side fault on these pages. Next we *get* these pages, forcing
|
|
* fault on them, do fault time migration to replace the device PTEs in
|
|
* QEMU page table with normal PTEs from newly allocated pages.
|
|
*/
|
|
void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
|
|
struct kvm *kvm, bool skip_page_out)
|
|
{
|
|
int i;
|
|
struct kvmppc_uvmem_page_pvt *pvt;
|
|
struct page *uvmem_page;
|
|
struct vm_area_struct *vma = NULL;
|
|
unsigned long uvmem_pfn, gfn;
|
|
unsigned long addr;
|
|
|
|
mmap_read_lock(kvm->mm);
|
|
|
|
addr = slot->userspace_addr;
|
|
|
|
gfn = slot->base_gfn;
|
|
for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {
|
|
|
|
/* Fetch the VMA if addr is not in the latest fetched one */
|
|
if (!vma || addr >= vma->vm_end) {
|
|
vma = vma_lookup(kvm->mm, addr);
|
|
if (!vma) {
|
|
pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
|
|
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
|
|
uvmem_page = pfn_to_page(uvmem_pfn);
|
|
pvt = uvmem_page->zone_device_data;
|
|
pvt->skip_page_out = skip_page_out;
|
|
pvt->remove_gfn = true;
|
|
|
|
if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
|
|
PAGE_SHIFT, kvm, pvt->gpa))
|
|
pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
|
|
pvt->gpa, addr);
|
|
} else {
|
|
/* Remove the shared flag if any */
|
|
kvmppc_gfn_remove(gfn, kvm);
|
|
}
|
|
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
}
|
|
|
|
mmap_read_unlock(kvm->mm);
|
|
}
|
|
|
|
unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
|
|
{
|
|
int srcu_idx;
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
/*
|
|
* Expect to be called only after INIT_START and before INIT_DONE.
|
|
* If INIT_DONE was completed, use normal VM termination sequence.
|
|
*/
|
|
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
|
|
return H_UNSUPPORTED;
|
|
|
|
if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
|
|
return H_STATE;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
kvm_for_each_memslot(memslot, kvm_memslots(kvm))
|
|
kvmppc_uvmem_drop_pages(memslot, kvm, false);
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
kvm->arch.secure_guest = 0;
|
|
uv_svm_terminate(kvm->arch.lpid);
|
|
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/*
|
|
* Get a free device PFN from the pool
|
|
*
|
|
* Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
|
|
* PFN will be used to keep track of the secure page on HV side.
|
|
*
|
|
* Called with kvm->arch.uvmem_lock held
|
|
*/
|
|
static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
|
|
{
|
|
struct page *dpage = NULL;
|
|
unsigned long bit, uvmem_pfn;
|
|
struct kvmppc_uvmem_page_pvt *pvt;
|
|
unsigned long pfn_last, pfn_first;
|
|
|
|
pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT;
|
|
pfn_last = pfn_first +
|
|
(range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT);
|
|
|
|
spin_lock(&kvmppc_uvmem_bitmap_lock);
|
|
bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
|
|
pfn_last - pfn_first);
|
|
if (bit >= (pfn_last - pfn_first))
|
|
goto out;
|
|
bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
|
|
spin_unlock(&kvmppc_uvmem_bitmap_lock);
|
|
|
|
pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
|
|
if (!pvt)
|
|
goto out_clear;
|
|
|
|
uvmem_pfn = bit + pfn_first;
|
|
kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
|
|
|
|
pvt->gpa = gpa;
|
|
pvt->kvm = kvm;
|
|
|
|
dpage = pfn_to_page(uvmem_pfn);
|
|
dpage->zone_device_data = pvt;
|
|
get_page(dpage);
|
|
lock_page(dpage);
|
|
return dpage;
|
|
out_clear:
|
|
spin_lock(&kvmppc_uvmem_bitmap_lock);
|
|
bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
|
|
out:
|
|
spin_unlock(&kvmppc_uvmem_bitmap_lock);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Alloc a PFN from private device memory pool. If @pagein is true,
|
|
* copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
|
|
*/
|
|
static int kvmppc_svm_page_in(struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end, unsigned long gpa, struct kvm *kvm,
|
|
unsigned long page_shift,
|
|
bool pagein)
|
|
{
|
|
unsigned long src_pfn, dst_pfn = 0;
|
|
struct migrate_vma mig;
|
|
struct page *spage;
|
|
unsigned long pfn;
|
|
struct page *dpage;
|
|
int ret = 0;
|
|
|
|
memset(&mig, 0, sizeof(mig));
|
|
mig.vma = vma;
|
|
mig.start = start;
|
|
mig.end = end;
|
|
mig.src = &src_pfn;
|
|
mig.dst = &dst_pfn;
|
|
mig.flags = MIGRATE_VMA_SELECT_SYSTEM;
|
|
|
|
ret = migrate_vma_setup(&mig);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
|
|
ret = -1;
|
|
goto out_finalize;
|
|
}
|
|
|
|
dpage = kvmppc_uvmem_get_page(gpa, kvm);
|
|
if (!dpage) {
|
|
ret = -1;
|
|
goto out_finalize;
|
|
}
|
|
|
|
if (pagein) {
|
|
pfn = *mig.src >> MIGRATE_PFN_SHIFT;
|
|
spage = migrate_pfn_to_page(*mig.src);
|
|
if (spage) {
|
|
ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
|
|
gpa, 0, page_shift);
|
|
if (ret)
|
|
goto out_finalize;
|
|
}
|
|
}
|
|
|
|
*mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
|
|
migrate_vma_pages(&mig);
|
|
out_finalize:
|
|
migrate_vma_finalize(&mig);
|
|
return ret;
|
|
}
|
|
|
|
static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot)
|
|
{
|
|
unsigned long gfn = memslot->base_gfn;
|
|
struct vm_area_struct *vma;
|
|
unsigned long start, end;
|
|
int ret = 0;
|
|
|
|
mmap_read_lock(kvm->mm);
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
|
|
ret = H_STATE;
|
|
start = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(start))
|
|
break;
|
|
|
|
end = start + (1UL << PAGE_SHIFT);
|
|
vma = find_vma_intersection(kvm->mm, start, end);
|
|
if (!vma || vma->vm_start > start || vma->vm_end < end)
|
|
break;
|
|
|
|
ret = kvmppc_svm_page_in(vma, start, end,
|
|
(gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
|
|
if (ret) {
|
|
ret = H_STATE;
|
|
break;
|
|
}
|
|
|
|
/* relinquish the cpu if needed */
|
|
cond_resched();
|
|
}
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
mmap_read_unlock(kvm->mm);
|
|
return ret;
|
|
}
|
|
|
|
unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int srcu_idx;
|
|
long ret = H_SUCCESS;
|
|
|
|
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
|
|
return H_UNSUPPORTED;
|
|
|
|
/* migrate any unmoved normal pfn to device pfns*/
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
|
|
if (ret) {
|
|
/*
|
|
* The pages will remain transitioned.
|
|
* Its the callers responsibility to
|
|
* terminate the VM, which will undo
|
|
* all state of the VM. Till then
|
|
* this VM is in a erroneous state.
|
|
* Its KVMPPC_SECURE_INIT_DONE will
|
|
* remain unset.
|
|
*/
|
|
ret = H_STATE;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
|
|
pr_info("LPID %d went secure\n", kvm->arch.lpid);
|
|
|
|
out:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Shares the page with HV, thus making it a normal page.
|
|
*
|
|
* - If the page is already secure, then provision a new page and share
|
|
* - If the page is a normal page, share the existing page
|
|
*
|
|
* In the former case, uses dev_pagemap_ops.migrate_to_ram handler
|
|
* to unmap the device page from QEMU's page tables.
|
|
*/
|
|
static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
|
|
unsigned long page_shift)
|
|
{
|
|
|
|
int ret = H_PARAMETER;
|
|
struct page *uvmem_page;
|
|
struct kvmppc_uvmem_page_pvt *pvt;
|
|
unsigned long pfn;
|
|
unsigned long gfn = gpa >> page_shift;
|
|
int srcu_idx;
|
|
unsigned long uvmem_pfn;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
|
|
uvmem_page = pfn_to_page(uvmem_pfn);
|
|
pvt = uvmem_page->zone_device_data;
|
|
pvt->skip_page_out = true;
|
|
/*
|
|
* do not drop the GFN. It is a valid GFN
|
|
* that is transitioned to a shared GFN.
|
|
*/
|
|
pvt->remove_gfn = false;
|
|
}
|
|
|
|
retry:
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
pfn = gfn_to_pfn(kvm, gfn);
|
|
if (is_error_noslot_pfn(pfn))
|
|
goto out;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
|
|
uvmem_page = pfn_to_page(uvmem_pfn);
|
|
pvt = uvmem_page->zone_device_data;
|
|
pvt->skip_page_out = true;
|
|
pvt->remove_gfn = false; /* it continues to be a valid GFN */
|
|
kvm_release_pfn_clean(pfn);
|
|
goto retry;
|
|
}
|
|
|
|
if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
|
|
page_shift)) {
|
|
kvmppc_gfn_shared(gfn, kvm);
|
|
ret = H_SUCCESS;
|
|
}
|
|
kvm_release_pfn_clean(pfn);
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
out:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* H_SVM_PAGE_IN: Move page from normal memory to secure memory.
|
|
*
|
|
* H_PAGE_IN_SHARED flag makes the page shared which means that the same
|
|
* memory in is visible from both UV and HV.
|
|
*/
|
|
unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
|
|
unsigned long flags,
|
|
unsigned long page_shift)
|
|
{
|
|
unsigned long start, end;
|
|
struct vm_area_struct *vma;
|
|
int srcu_idx;
|
|
unsigned long gfn = gpa >> page_shift;
|
|
int ret;
|
|
|
|
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
|
|
return H_UNSUPPORTED;
|
|
|
|
if (page_shift != PAGE_SHIFT)
|
|
return H_P3;
|
|
|
|
if (flags & ~H_PAGE_IN_SHARED)
|
|
return H_P2;
|
|
|
|
if (flags & H_PAGE_IN_SHARED)
|
|
return kvmppc_share_page(kvm, gpa, page_shift);
|
|
|
|
ret = H_PARAMETER;
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
mmap_read_lock(kvm->mm);
|
|
|
|
start = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(start))
|
|
goto out;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
/* Fail the page-in request of an already paged-in page */
|
|
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
|
|
goto out_unlock;
|
|
|
|
end = start + (1UL << page_shift);
|
|
vma = find_vma_intersection(kvm->mm, start, end);
|
|
if (!vma || vma->vm_start > start || vma->vm_end < end)
|
|
goto out_unlock;
|
|
|
|
if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
|
|
true))
|
|
goto out_unlock;
|
|
|
|
ret = H_SUCCESS;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
out:
|
|
mmap_read_unlock(kvm->mm);
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Fault handler callback that gets called when HV touches any page that
|
|
* has been moved to secure memory, we ask UV to give back the page by
|
|
* issuing UV_PAGE_OUT uvcall.
|
|
*
|
|
* This eventually results in dropping of device PFN and the newly
|
|
* provisioned page/PFN gets populated in QEMU page tables.
|
|
*/
|
|
static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
|
|
{
|
|
struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
|
|
|
|
if (kvmppc_svm_page_out(vmf->vma, vmf->address,
|
|
vmf->address + PAGE_SIZE, PAGE_SHIFT,
|
|
pvt->kvm, pvt->gpa))
|
|
return VM_FAULT_SIGBUS;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Release the device PFN back to the pool
|
|
*
|
|
* Gets called when secure GFN tranistions from a secure-PFN
|
|
* to a normal PFN during H_SVM_PAGE_OUT.
|
|
* Gets called with kvm->arch.uvmem_lock held.
|
|
*/
|
|
static void kvmppc_uvmem_page_free(struct page *page)
|
|
{
|
|
unsigned long pfn = page_to_pfn(page) -
|
|
(kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT);
|
|
struct kvmppc_uvmem_page_pvt *pvt;
|
|
|
|
spin_lock(&kvmppc_uvmem_bitmap_lock);
|
|
bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
|
|
spin_unlock(&kvmppc_uvmem_bitmap_lock);
|
|
|
|
pvt = page->zone_device_data;
|
|
page->zone_device_data = NULL;
|
|
if (pvt->remove_gfn)
|
|
kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
|
|
else
|
|
kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
|
|
kfree(pvt);
|
|
}
|
|
|
|
static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
|
|
.page_free = kvmppc_uvmem_page_free,
|
|
.migrate_to_ram = kvmppc_uvmem_migrate_to_ram,
|
|
};
|
|
|
|
/*
|
|
* H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
|
|
*/
|
|
unsigned long
|
|
kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
|
|
unsigned long flags, unsigned long page_shift)
|
|
{
|
|
unsigned long gfn = gpa >> page_shift;
|
|
unsigned long start, end;
|
|
struct vm_area_struct *vma;
|
|
int srcu_idx;
|
|
int ret;
|
|
|
|
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
|
|
return H_UNSUPPORTED;
|
|
|
|
if (page_shift != PAGE_SHIFT)
|
|
return H_P3;
|
|
|
|
if (flags)
|
|
return H_P2;
|
|
|
|
ret = H_PARAMETER;
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
mmap_read_lock(kvm->mm);
|
|
start = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(start))
|
|
goto out;
|
|
|
|
end = start + (1UL << page_shift);
|
|
vma = find_vma_intersection(kvm->mm, start, end);
|
|
if (!vma || vma->vm_start > start || vma->vm_end < end)
|
|
goto out;
|
|
|
|
if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa))
|
|
ret = H_SUCCESS;
|
|
out:
|
|
mmap_read_unlock(kvm->mm);
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return ret;
|
|
}
|
|
|
|
int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
|
|
{
|
|
unsigned long pfn;
|
|
int ret = U_SUCCESS;
|
|
|
|
pfn = gfn_to_pfn(kvm, gfn);
|
|
if (is_error_noslot_pfn(pfn))
|
|
return -EFAULT;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
|
|
goto out;
|
|
|
|
ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
|
|
0, PAGE_SHIFT);
|
|
out:
|
|
kvm_release_pfn_clean(pfn);
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
|
|
}
|
|
|
|
int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
|
|
{
|
|
int ret = __kvmppc_uvmem_memslot_create(kvm, new);
|
|
|
|
if (!ret)
|
|
ret = kvmppc_uv_migrate_mem_slot(kvm, new);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
|
|
{
|
|
__kvmppc_uvmem_memslot_delete(kvm, old);
|
|
}
|
|
|
|
static u64 kvmppc_get_secmem_size(void)
|
|
{
|
|
struct device_node *np;
|
|
int i, len;
|
|
const __be32 *prop;
|
|
u64 size = 0;
|
|
|
|
/*
|
|
* First try the new ibm,secure-memory nodes which supersede the
|
|
* secure-memory-ranges property.
|
|
* If we found some, no need to read the deprecated ones.
|
|
*/
|
|
for_each_compatible_node(np, NULL, "ibm,secure-memory") {
|
|
prop = of_get_property(np, "reg", &len);
|
|
if (!prop)
|
|
continue;
|
|
size += of_read_number(prop + 2, 2);
|
|
}
|
|
if (size)
|
|
return size;
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
|
|
if (!np)
|
|
goto out;
|
|
|
|
prop = of_get_property(np, "secure-memory-ranges", &len);
|
|
if (!prop)
|
|
goto out_put;
|
|
|
|
for (i = 0; i < len / (sizeof(*prop) * 4); i++)
|
|
size += of_read_number(prop + (i * 4) + 2, 2);
|
|
|
|
out_put:
|
|
of_node_put(np);
|
|
out:
|
|
return size;
|
|
}
|
|
|
|
int kvmppc_uvmem_init(void)
|
|
{
|
|
int ret = 0;
|
|
unsigned long size;
|
|
struct resource *res;
|
|
void *addr;
|
|
unsigned long pfn_last, pfn_first;
|
|
|
|
size = kvmppc_get_secmem_size();
|
|
if (!size) {
|
|
/*
|
|
* Don't fail the initialization of kvm-hv module if
|
|
* the platform doesn't export ibm,uv-firmware node.
|
|
* Let normal guests run on such PEF-disabled platform.
|
|
*/
|
|
pr_info("KVMPPC-UVMEM: No support for secure guests\n");
|
|
goto out;
|
|
}
|
|
|
|
res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
|
|
if (IS_ERR(res)) {
|
|
ret = PTR_ERR(res);
|
|
goto out;
|
|
}
|
|
|
|
kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
|
|
kvmppc_uvmem_pgmap.range.start = res->start;
|
|
kvmppc_uvmem_pgmap.range.end = res->end;
|
|
kvmppc_uvmem_pgmap.nr_range = 1;
|
|
kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
|
|
/* just one global instance: */
|
|
kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
|
|
addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
|
|
if (IS_ERR(addr)) {
|
|
ret = PTR_ERR(addr);
|
|
goto out_free_region;
|
|
}
|
|
|
|
pfn_first = res->start >> PAGE_SHIFT;
|
|
pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
|
|
kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
|
|
sizeof(unsigned long), GFP_KERNEL);
|
|
if (!kvmppc_uvmem_bitmap) {
|
|
ret = -ENOMEM;
|
|
goto out_unmap;
|
|
}
|
|
|
|
pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
|
|
return ret;
|
|
out_unmap:
|
|
memunmap_pages(&kvmppc_uvmem_pgmap);
|
|
out_free_region:
|
|
release_mem_region(res->start, size);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void kvmppc_uvmem_free(void)
|
|
{
|
|
if (!kvmppc_uvmem_bitmap)
|
|
return;
|
|
|
|
memunmap_pages(&kvmppc_uvmem_pgmap);
|
|
release_mem_region(kvmppc_uvmem_pgmap.range.start,
|
|
range_len(&kvmppc_uvmem_pgmap.range));
|
|
kfree(kvmppc_uvmem_bitmap);
|
|
}
|