linux/fs/ext4/mballoc-test.c
Kemeng Shi d0b88624f8 ext4: add test_mb_mark_used_cost to estimate cost of mb_mark_used
Add test_mb_mark_used_cost to estimate cost of mb_mark_used

Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Link: https://lore.kernel.org/r/20240424061904.987525-3-shikemeng@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2024-05-03 00:12:32 -04:00

993 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* KUnit test of ext4 multiblocks allocation.
*/
#include <kunit/test.h>
#include <kunit/static_stub.h>
#include <linux/random.h>
#include "ext4.h"
struct mbt_grp_ctx {
struct buffer_head bitmap_bh;
/* desc and gd_bh are just the place holders for now */
struct ext4_group_desc desc;
struct buffer_head gd_bh;
};
struct mbt_ctx {
struct mbt_grp_ctx *grp_ctx;
};
struct mbt_ext4_super_block {
struct ext4_super_block es;
struct ext4_sb_info sbi;
struct mbt_ctx mbt_ctx;
};
#define MBT_SB(_sb) (container_of((_sb)->s_fs_info, struct mbt_ext4_super_block, sbi))
#define MBT_CTX(_sb) (&MBT_SB(_sb)->mbt_ctx)
#define MBT_GRP_CTX(_sb, _group) (&MBT_CTX(_sb)->grp_ctx[_group])
static struct inode *mbt_alloc_inode(struct super_block *sb)
{
struct ext4_inode_info *ei;
ei = kmalloc(sizeof(struct ext4_inode_info), GFP_KERNEL);
if (!ei)
return NULL;
INIT_LIST_HEAD(&ei->i_orphan);
init_rwsem(&ei->xattr_sem);
init_rwsem(&ei->i_data_sem);
inode_init_once(&ei->vfs_inode);
ext4_fc_init_inode(&ei->vfs_inode);
return &ei->vfs_inode;
}
static void mbt_free_inode(struct inode *inode)
{
kfree(EXT4_I(inode));
}
static const struct super_operations mbt_sops = {
.alloc_inode = mbt_alloc_inode,
.free_inode = mbt_free_inode,
};
static void mbt_kill_sb(struct super_block *sb)
{
generic_shutdown_super(sb);
}
static struct file_system_type mbt_fs_type = {
.name = "mballoc test",
.kill_sb = mbt_kill_sb,
};
static int mbt_mb_init(struct super_block *sb)
{
ext4_fsblk_t block;
int ret;
/* needed by ext4_mb_init->bdev_nonrot(sb->s_bdev) */
sb->s_bdev = kzalloc(sizeof(*sb->s_bdev), GFP_KERNEL);
if (sb->s_bdev == NULL)
return -ENOMEM;
sb->s_bdev->bd_queue = kzalloc(sizeof(struct request_queue), GFP_KERNEL);
if (sb->s_bdev->bd_queue == NULL) {
kfree(sb->s_bdev);
return -ENOMEM;
}
/*
* needed by ext4_mb_init->ext4_mb_init_backend-> sbi->s_buddy_cache =
* new_inode(sb);
*/
INIT_LIST_HEAD(&sb->s_inodes);
sb->s_op = &mbt_sops;
ret = ext4_mb_init(sb);
if (ret != 0)
goto err_out;
block = ext4_count_free_clusters(sb);
ret = percpu_counter_init(&EXT4_SB(sb)->s_freeclusters_counter, block,
GFP_KERNEL);
if (ret != 0)
goto err_mb_release;
ret = percpu_counter_init(&EXT4_SB(sb)->s_dirtyclusters_counter, 0,
GFP_KERNEL);
if (ret != 0)
goto err_freeclusters;
return 0;
err_freeclusters:
percpu_counter_destroy(&EXT4_SB(sb)->s_freeclusters_counter);
err_mb_release:
ext4_mb_release(sb);
err_out:
kfree(sb->s_bdev->bd_queue);
kfree(sb->s_bdev);
return ret;
}
static void mbt_mb_release(struct super_block *sb)
{
percpu_counter_destroy(&EXT4_SB(sb)->s_dirtyclusters_counter);
percpu_counter_destroy(&EXT4_SB(sb)->s_freeclusters_counter);
ext4_mb_release(sb);
kfree(sb->s_bdev->bd_queue);
kfree(sb->s_bdev);
}
static int mbt_set(struct super_block *sb, void *data)
{
return 0;
}
static struct super_block *mbt_ext4_alloc_super_block(void)
{
struct mbt_ext4_super_block *fsb;
struct super_block *sb;
struct ext4_sb_info *sbi;
fsb = kzalloc(sizeof(*fsb), GFP_KERNEL);
if (fsb == NULL)
return NULL;
sb = sget(&mbt_fs_type, NULL, mbt_set, 0, NULL);
if (IS_ERR(sb))
goto out;
sbi = &fsb->sbi;
sbi->s_blockgroup_lock =
kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
if (!sbi->s_blockgroup_lock)
goto out_deactivate;
bgl_lock_init(sbi->s_blockgroup_lock);
sbi->s_es = &fsb->es;
sb->s_fs_info = sbi;
up_write(&sb->s_umount);
return sb;
out_deactivate:
deactivate_locked_super(sb);
out:
kfree(fsb);
return NULL;
}
static void mbt_ext4_free_super_block(struct super_block *sb)
{
struct mbt_ext4_super_block *fsb = MBT_SB(sb);
struct ext4_sb_info *sbi = EXT4_SB(sb);
kfree(sbi->s_blockgroup_lock);
deactivate_super(sb);
kfree(fsb);
}
struct mbt_ext4_block_layout {
unsigned char blocksize_bits;
unsigned int cluster_bits;
uint32_t blocks_per_group;
ext4_group_t group_count;
uint16_t desc_size;
};
static void mbt_init_sb_layout(struct super_block *sb,
struct mbt_ext4_block_layout *layout)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
sb->s_blocksize = 1UL << layout->blocksize_bits;
sb->s_blocksize_bits = layout->blocksize_bits;
sbi->s_groups_count = layout->group_count;
sbi->s_blocks_per_group = layout->blocks_per_group;
sbi->s_cluster_bits = layout->cluster_bits;
sbi->s_cluster_ratio = 1U << layout->cluster_bits;
sbi->s_clusters_per_group = layout->blocks_per_group >>
layout->cluster_bits;
sbi->s_desc_size = layout->desc_size;
sbi->s_desc_per_block_bits =
sb->s_blocksize_bits - (fls(layout->desc_size) - 1);
sbi->s_desc_per_block = 1 << sbi->s_desc_per_block_bits;
es->s_first_data_block = cpu_to_le32(0);
es->s_blocks_count_lo = cpu_to_le32(layout->blocks_per_group *
layout->group_count);
}
static int mbt_grp_ctx_init(struct super_block *sb,
struct mbt_grp_ctx *grp_ctx)
{
ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
grp_ctx->bitmap_bh.b_data = kzalloc(EXT4_BLOCK_SIZE(sb), GFP_KERNEL);
if (grp_ctx->bitmap_bh.b_data == NULL)
return -ENOMEM;
mb_set_bits(grp_ctx->bitmap_bh.b_data, max, sb->s_blocksize * 8 - max);
ext4_free_group_clusters_set(sb, &grp_ctx->desc, max);
return 0;
}
static void mbt_grp_ctx_release(struct mbt_grp_ctx *grp_ctx)
{
kfree(grp_ctx->bitmap_bh.b_data);
grp_ctx->bitmap_bh.b_data = NULL;
}
static void mbt_ctx_mark_used(struct super_block *sb, ext4_group_t group,
unsigned int start, unsigned int len)
{
struct mbt_grp_ctx *grp_ctx = MBT_GRP_CTX(sb, group);
mb_set_bits(grp_ctx->bitmap_bh.b_data, start, len);
}
static void *mbt_ctx_bitmap(struct super_block *sb, ext4_group_t group)
{
struct mbt_grp_ctx *grp_ctx = MBT_GRP_CTX(sb, group);
return grp_ctx->bitmap_bh.b_data;
}
/* called after mbt_init_sb_layout */
static int mbt_ctx_init(struct super_block *sb)
{
struct mbt_ctx *ctx = MBT_CTX(sb);
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
ctx->grp_ctx = kcalloc(ngroups, sizeof(struct mbt_grp_ctx),
GFP_KERNEL);
if (ctx->grp_ctx == NULL)
return -ENOMEM;
for (i = 0; i < ngroups; i++)
if (mbt_grp_ctx_init(sb, &ctx->grp_ctx[i]))
goto out;
/*
* first data block(first cluster in first group) is used by
* metadata, mark it used to avoid to alloc data block at first
* block which will fail ext4_sb_block_valid check.
*/
mb_set_bits(ctx->grp_ctx[0].bitmap_bh.b_data, 0, 1);
ext4_free_group_clusters_set(sb, &ctx->grp_ctx[0].desc,
EXT4_CLUSTERS_PER_GROUP(sb) - 1);
return 0;
out:
while (i-- > 0)
mbt_grp_ctx_release(&ctx->grp_ctx[i]);
kfree(ctx->grp_ctx);
return -ENOMEM;
}
static void mbt_ctx_release(struct super_block *sb)
{
struct mbt_ctx *ctx = MBT_CTX(sb);
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
for (i = 0; i < ngroups; i++)
mbt_grp_ctx_release(&ctx->grp_ctx[i]);
kfree(ctx->grp_ctx);
}
static struct buffer_head *
ext4_read_block_bitmap_nowait_stub(struct super_block *sb, ext4_group_t block_group,
bool ignore_locked)
{
struct mbt_grp_ctx *grp_ctx = MBT_GRP_CTX(sb, block_group);
/* paired with brelse from caller of ext4_read_block_bitmap_nowait */
get_bh(&grp_ctx->bitmap_bh);
return &grp_ctx->bitmap_bh;
}
static int ext4_wait_block_bitmap_stub(struct super_block *sb,
ext4_group_t block_group,
struct buffer_head *bh)
{
/*
* real ext4_wait_block_bitmap will set these flags and
* functions like ext4_mb_init_cache will verify the flags.
*/
set_buffer_uptodate(bh);
set_bitmap_uptodate(bh);
set_buffer_verified(bh);
return 0;
}
static struct ext4_group_desc *
ext4_get_group_desc_stub(struct super_block *sb, ext4_group_t block_group,
struct buffer_head **bh)
{
struct mbt_grp_ctx *grp_ctx = MBT_GRP_CTX(sb, block_group);
if (bh != NULL)
*bh = &grp_ctx->gd_bh;
return &grp_ctx->desc;
}
static int
ext4_mb_mark_context_stub(handle_t *handle, struct super_block *sb, bool state,
ext4_group_t group, ext4_grpblk_t blkoff,
ext4_grpblk_t len, int flags,
ext4_grpblk_t *ret_changed)
{
struct mbt_grp_ctx *grp_ctx = MBT_GRP_CTX(sb, group);
struct buffer_head *bitmap_bh = &grp_ctx->bitmap_bh;
if (state)
mb_set_bits(bitmap_bh->b_data, blkoff, len);
else
mb_clear_bits(bitmap_bh->b_data, blkoff, len);
return 0;
}
#define TEST_GOAL_GROUP 1
static int mbt_kunit_init(struct kunit *test)
{
struct mbt_ext4_block_layout *layout =
(struct mbt_ext4_block_layout *)(test->param_value);
struct super_block *sb;
int ret;
sb = mbt_ext4_alloc_super_block();
if (sb == NULL)
return -ENOMEM;
mbt_init_sb_layout(sb, layout);
ret = mbt_ctx_init(sb);
if (ret != 0) {
mbt_ext4_free_super_block(sb);
return ret;
}
test->priv = sb;
kunit_activate_static_stub(test,
ext4_read_block_bitmap_nowait,
ext4_read_block_bitmap_nowait_stub);
kunit_activate_static_stub(test,
ext4_wait_block_bitmap,
ext4_wait_block_bitmap_stub);
kunit_activate_static_stub(test,
ext4_get_group_desc,
ext4_get_group_desc_stub);
kunit_activate_static_stub(test,
ext4_mb_mark_context,
ext4_mb_mark_context_stub);
/* stub function will be called in mbt_mb_init->ext4_mb_init */
if (mbt_mb_init(sb) != 0) {
mbt_ctx_release(sb);
mbt_ext4_free_super_block(sb);
return -ENOMEM;
}
return 0;
}
static void mbt_kunit_exit(struct kunit *test)
{
struct super_block *sb = (struct super_block *)test->priv;
mbt_mb_release(sb);
mbt_ctx_release(sb);
mbt_ext4_free_super_block(sb);
}
static void test_new_blocks_simple(struct kunit *test)
{
struct super_block *sb = (struct super_block *)test->priv;
struct inode *inode;
struct ext4_allocation_request ar;
ext4_group_t i, goal_group = TEST_GOAL_GROUP;
int err = 0;
ext4_fsblk_t found;
struct ext4_sb_info *sbi = EXT4_SB(sb);
inode = kunit_kzalloc(test, sizeof(*inode), GFP_KERNEL);
if (!inode)
return;
inode->i_sb = sb;
ar.inode = inode;
/* get block at goal */
ar.goal = ext4_group_first_block_no(sb, goal_group);
found = ext4_mb_new_blocks_simple(&ar, &err);
KUNIT_ASSERT_EQ_MSG(test, ar.goal, found,
"failed to alloc block at goal, expected %llu found %llu",
ar.goal, found);
/* get block after goal in goal group */
ar.goal = ext4_group_first_block_no(sb, goal_group);
found = ext4_mb_new_blocks_simple(&ar, &err);
KUNIT_ASSERT_EQ_MSG(test, ar.goal + EXT4_C2B(sbi, 1), found,
"failed to alloc block after goal in goal group, expected %llu found %llu",
ar.goal + 1, found);
/* get block after goal group */
mbt_ctx_mark_used(sb, goal_group, 0, EXT4_CLUSTERS_PER_GROUP(sb));
ar.goal = ext4_group_first_block_no(sb, goal_group);
found = ext4_mb_new_blocks_simple(&ar, &err);
KUNIT_ASSERT_EQ_MSG(test,
ext4_group_first_block_no(sb, goal_group + 1), found,
"failed to alloc block after goal group, expected %llu found %llu",
ext4_group_first_block_no(sb, goal_group + 1), found);
/* get block before goal group */
for (i = goal_group; i < ext4_get_groups_count(sb); i++)
mbt_ctx_mark_used(sb, i, 0, EXT4_CLUSTERS_PER_GROUP(sb));
ar.goal = ext4_group_first_block_no(sb, goal_group);
found = ext4_mb_new_blocks_simple(&ar, &err);
KUNIT_ASSERT_EQ_MSG(test,
ext4_group_first_block_no(sb, 0) + EXT4_C2B(sbi, 1), found,
"failed to alloc block before goal group, expected %llu found %llu",
ext4_group_first_block_no(sb, 0 + EXT4_C2B(sbi, 1)), found);
/* no block available, fail to allocate block */
for (i = 0; i < ext4_get_groups_count(sb); i++)
mbt_ctx_mark_used(sb, i, 0, EXT4_CLUSTERS_PER_GROUP(sb));
ar.goal = ext4_group_first_block_no(sb, goal_group);
found = ext4_mb_new_blocks_simple(&ar, &err);
KUNIT_ASSERT_NE_MSG(test, err, 0,
"unexpectedly get block when no block is available");
}
#define TEST_RANGE_COUNT 8
struct test_range {
ext4_grpblk_t start;
ext4_grpblk_t len;
};
static void
mbt_generate_test_ranges(struct super_block *sb, struct test_range *ranges,
int count)
{
ext4_grpblk_t start, len, max;
int i;
max = EXT4_CLUSTERS_PER_GROUP(sb) / count;
for (i = 0; i < count; i++) {
start = get_random_u32() % max;
len = get_random_u32() % max;
len = min(len, max - start);
ranges[i].start = start + i * max;
ranges[i].len = len;
}
}
static void
validate_free_blocks_simple(struct kunit *test, struct super_block *sb,
ext4_group_t goal_group, ext4_grpblk_t start,
ext4_grpblk_t len)
{
void *bitmap;
ext4_grpblk_t bit, max = EXT4_CLUSTERS_PER_GROUP(sb);
ext4_group_t i;
for (i = 0; i < ext4_get_groups_count(sb); i++) {
if (i == goal_group)
continue;
bitmap = mbt_ctx_bitmap(sb, i);
bit = mb_find_next_zero_bit(bitmap, max, 0);
KUNIT_ASSERT_EQ_MSG(test, bit, max,
"free block on unexpected group %d", i);
}
bitmap = mbt_ctx_bitmap(sb, goal_group);
bit = mb_find_next_zero_bit(bitmap, max, 0);
KUNIT_ASSERT_EQ(test, bit, start);
bit = mb_find_next_bit(bitmap, max, bit + 1);
KUNIT_ASSERT_EQ(test, bit, start + len);
}
static void
test_free_blocks_simple_range(struct kunit *test, ext4_group_t goal_group,
ext4_grpblk_t start, ext4_grpblk_t len)
{
struct super_block *sb = (struct super_block *)test->priv;
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct inode *inode;
ext4_fsblk_t block;
inode = kunit_kzalloc(test, sizeof(*inode), GFP_KERNEL);
if (!inode)
return;
inode->i_sb = sb;
if (len == 0)
return;
block = ext4_group_first_block_no(sb, goal_group) +
EXT4_C2B(sbi, start);
ext4_free_blocks_simple(inode, block, len);
validate_free_blocks_simple(test, sb, goal_group, start, len);
mbt_ctx_mark_used(sb, goal_group, 0, EXT4_CLUSTERS_PER_GROUP(sb));
}
static void test_free_blocks_simple(struct kunit *test)
{
struct super_block *sb = (struct super_block *)test->priv;
ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
ext4_group_t i;
struct test_range ranges[TEST_RANGE_COUNT];
for (i = 0; i < ext4_get_groups_count(sb); i++)
mbt_ctx_mark_used(sb, i, 0, max);
mbt_generate_test_ranges(sb, ranges, TEST_RANGE_COUNT);
for (i = 0; i < TEST_RANGE_COUNT; i++)
test_free_blocks_simple_range(test, TEST_GOAL_GROUP,
ranges[i].start, ranges[i].len);
}
static void
test_mark_diskspace_used_range(struct kunit *test,
struct ext4_allocation_context *ac,
ext4_grpblk_t start,
ext4_grpblk_t len)
{
struct super_block *sb = (struct super_block *)test->priv;
int ret;
void *bitmap;
ext4_grpblk_t i, max;
/* ext4_mb_mark_diskspace_used will BUG if len is 0 */
if (len == 0)
return;
ac->ac_b_ex.fe_group = TEST_GOAL_GROUP;
ac->ac_b_ex.fe_start = start;
ac->ac_b_ex.fe_len = len;
bitmap = mbt_ctx_bitmap(sb, TEST_GOAL_GROUP);
memset(bitmap, 0, sb->s_blocksize);
ret = ext4_mb_mark_diskspace_used(ac, NULL, 0);
KUNIT_ASSERT_EQ(test, ret, 0);
max = EXT4_CLUSTERS_PER_GROUP(sb);
i = mb_find_next_bit(bitmap, max, 0);
KUNIT_ASSERT_EQ(test, i, start);
i = mb_find_next_zero_bit(bitmap, max, i + 1);
KUNIT_ASSERT_EQ(test, i, start + len);
i = mb_find_next_bit(bitmap, max, i + 1);
KUNIT_ASSERT_EQ(test, max, i);
}
static void test_mark_diskspace_used(struct kunit *test)
{
struct super_block *sb = (struct super_block *)test->priv;
struct inode *inode;
struct ext4_allocation_context ac;
struct test_range ranges[TEST_RANGE_COUNT];
int i;
mbt_generate_test_ranges(sb, ranges, TEST_RANGE_COUNT);
inode = kunit_kzalloc(test, sizeof(*inode), GFP_KERNEL);
if (!inode)
return;
inode->i_sb = sb;
ac.ac_status = AC_STATUS_FOUND;
ac.ac_sb = sb;
ac.ac_inode = inode;
for (i = 0; i < TEST_RANGE_COUNT; i++)
test_mark_diskspace_used_range(test, &ac, ranges[i].start,
ranges[i].len);
}
static void mbt_generate_buddy(struct super_block *sb, void *buddy,
void *bitmap, struct ext4_group_info *grp)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
uint32_t order, off;
void *bb, *bb_h;
int max;
memset(buddy, 0xff, sb->s_blocksize);
memset(grp, 0, offsetof(struct ext4_group_info,
bb_counters[MB_NUM_ORDERS(sb)]));
bb = bitmap;
max = EXT4_CLUSTERS_PER_GROUP(sb);
bb_h = buddy + sbi->s_mb_offsets[1];
off = mb_find_next_zero_bit(bb, max, 0);
grp->bb_first_free = off;
while (off < max) {
grp->bb_counters[0]++;
grp->bb_free++;
if (!(off & 1) && !mb_test_bit(off + 1, bb)) {
grp->bb_free++;
grp->bb_counters[0]--;
mb_clear_bit(off >> 1, bb_h);
grp->bb_counters[1]++;
grp->bb_largest_free_order = 1;
off++;
}
off = mb_find_next_zero_bit(bb, max, off + 1);
}
for (order = 1; order < MB_NUM_ORDERS(sb) - 1; order++) {
bb = buddy + sbi->s_mb_offsets[order];
bb_h = buddy + sbi->s_mb_offsets[order + 1];
max = max >> 1;
off = mb_find_next_zero_bit(bb, max, 0);
while (off < max) {
if (!(off & 1) && !mb_test_bit(off + 1, bb)) {
mb_set_bits(bb, off, 2);
grp->bb_counters[order] -= 2;
mb_clear_bit(off >> 1, bb_h);
grp->bb_counters[order + 1]++;
grp->bb_largest_free_order = order + 1;
off++;
}
off = mb_find_next_zero_bit(bb, max, off + 1);
}
}
max = EXT4_CLUSTERS_PER_GROUP(sb);
off = mb_find_next_zero_bit(bitmap, max, 0);
while (off < max) {
grp->bb_fragments++;
off = mb_find_next_bit(bitmap, max, off + 1);
if (off + 1 >= max)
break;
off = mb_find_next_zero_bit(bitmap, max, off + 1);
}
}
static void
mbt_validate_group_info(struct kunit *test, struct ext4_group_info *grp1,
struct ext4_group_info *grp2)
{
struct super_block *sb = (struct super_block *)test->priv;
int i;
KUNIT_ASSERT_EQ(test, grp1->bb_first_free,
grp2->bb_first_free);
KUNIT_ASSERT_EQ(test, grp1->bb_fragments,
grp2->bb_fragments);
KUNIT_ASSERT_EQ(test, grp1->bb_free, grp2->bb_free);
KUNIT_ASSERT_EQ(test, grp1->bb_largest_free_order,
grp2->bb_largest_free_order);
for (i = 1; i < MB_NUM_ORDERS(sb); i++) {
KUNIT_ASSERT_EQ_MSG(test, grp1->bb_counters[i],
grp2->bb_counters[i],
"bb_counters[%d] diffs, expected %d, generated %d",
i, grp1->bb_counters[i],
grp2->bb_counters[i]);
}
}
static void
do_test_generate_buddy(struct kunit *test, struct super_block *sb, void *bitmap,
void *mbt_buddy, struct ext4_group_info *mbt_grp,
void *ext4_buddy, struct ext4_group_info *ext4_grp)
{
int i;
mbt_generate_buddy(sb, mbt_buddy, bitmap, mbt_grp);
for (i = 0; i < MB_NUM_ORDERS(sb); i++)
ext4_grp->bb_counters[i] = 0;
/* needed by validation in ext4_mb_generate_buddy */
ext4_grp->bb_free = mbt_grp->bb_free;
memset(ext4_buddy, 0xff, sb->s_blocksize);
ext4_mb_generate_buddy(sb, ext4_buddy, bitmap, TEST_GOAL_GROUP,
ext4_grp);
KUNIT_ASSERT_EQ(test, memcmp(mbt_buddy, ext4_buddy, sb->s_blocksize),
0);
mbt_validate_group_info(test, mbt_grp, ext4_grp);
}
static void test_mb_generate_buddy(struct kunit *test)
{
struct super_block *sb = (struct super_block *)test->priv;
void *bitmap, *expected_bb, *generate_bb;
struct ext4_group_info *expected_grp, *generate_grp;
struct test_range ranges[TEST_RANGE_COUNT];
int i;
bitmap = kunit_kzalloc(test, sb->s_blocksize, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bitmap);
expected_bb = kunit_kzalloc(test, sb->s_blocksize, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, expected_bb);
generate_bb = kunit_kzalloc(test, sb->s_blocksize, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, generate_bb);
expected_grp = kunit_kzalloc(test, offsetof(struct ext4_group_info,
bb_counters[MB_NUM_ORDERS(sb)]), GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, expected_grp);
generate_grp = ext4_get_group_info(sb, TEST_GOAL_GROUP);
KUNIT_ASSERT_NOT_NULL(test, generate_grp);
mbt_generate_test_ranges(sb, ranges, TEST_RANGE_COUNT);
for (i = 0; i < TEST_RANGE_COUNT; i++) {
mb_set_bits(bitmap, ranges[i].start, ranges[i].len);
do_test_generate_buddy(test, sb, bitmap, expected_bb,
expected_grp, generate_bb, generate_grp);
}
}
static void
test_mb_mark_used_range(struct kunit *test, struct ext4_buddy *e4b,
ext4_grpblk_t start, ext4_grpblk_t len, void *bitmap,
void *buddy, struct ext4_group_info *grp)
{
struct super_block *sb = (struct super_block *)test->priv;
struct ext4_free_extent ex;
int i;
/* mb_mark_used only accepts non-zero len */
if (len == 0)
return;
ex.fe_start = start;
ex.fe_len = len;
ex.fe_group = TEST_GOAL_GROUP;
ext4_lock_group(sb, TEST_GOAL_GROUP);
mb_mark_used(e4b, &ex);
ext4_unlock_group(sb, TEST_GOAL_GROUP);
mb_set_bits(bitmap, start, len);
/* bypass bb_free validatoin in ext4_mb_generate_buddy */
grp->bb_free -= len;
memset(buddy, 0xff, sb->s_blocksize);
for (i = 0; i < MB_NUM_ORDERS(sb); i++)
grp->bb_counters[i] = 0;
ext4_mb_generate_buddy(sb, buddy, bitmap, 0, grp);
KUNIT_ASSERT_EQ(test, memcmp(buddy, e4b->bd_buddy, sb->s_blocksize),
0);
mbt_validate_group_info(test, grp, e4b->bd_info);
}
static void test_mb_mark_used(struct kunit *test)
{
struct ext4_buddy e4b;
struct super_block *sb = (struct super_block *)test->priv;
void *bitmap, *buddy;
struct ext4_group_info *grp;
int ret;
struct test_range ranges[TEST_RANGE_COUNT];
int i;
/* buddy cache assumes that each page contains at least one block */
if (sb->s_blocksize > PAGE_SIZE)
kunit_skip(test, "blocksize exceeds pagesize");
bitmap = kunit_kzalloc(test, sb->s_blocksize, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bitmap);
buddy = kunit_kzalloc(test, sb->s_blocksize, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buddy);
grp = kunit_kzalloc(test, offsetof(struct ext4_group_info,
bb_counters[MB_NUM_ORDERS(sb)]), GFP_KERNEL);
ret = ext4_mb_load_buddy(sb, TEST_GOAL_GROUP, &e4b);
KUNIT_ASSERT_EQ(test, ret, 0);
grp->bb_free = EXT4_CLUSTERS_PER_GROUP(sb);
mbt_generate_test_ranges(sb, ranges, TEST_RANGE_COUNT);
for (i = 0; i < TEST_RANGE_COUNT; i++)
test_mb_mark_used_range(test, &e4b, ranges[i].start,
ranges[i].len, bitmap, buddy, grp);
ext4_mb_unload_buddy(&e4b);
}
static void
test_mb_free_blocks_range(struct kunit *test, struct ext4_buddy *e4b,
ext4_grpblk_t start, ext4_grpblk_t len, void *bitmap,
void *buddy, struct ext4_group_info *grp)
{
struct super_block *sb = (struct super_block *)test->priv;
int i;
/* mb_free_blocks will WARN if len is 0 */
if (len == 0)
return;
ext4_lock_group(sb, e4b->bd_group);
mb_free_blocks(NULL, e4b, start, len);
ext4_unlock_group(sb, e4b->bd_group);
mb_clear_bits(bitmap, start, len);
/* bypass bb_free validatoin in ext4_mb_generate_buddy */
grp->bb_free += len;
memset(buddy, 0xff, sb->s_blocksize);
for (i = 0; i < MB_NUM_ORDERS(sb); i++)
grp->bb_counters[i] = 0;
ext4_mb_generate_buddy(sb, buddy, bitmap, 0, grp);
KUNIT_ASSERT_EQ(test, memcmp(buddy, e4b->bd_buddy, sb->s_blocksize),
0);
mbt_validate_group_info(test, grp, e4b->bd_info);
}
static void test_mb_free_blocks(struct kunit *test)
{
struct ext4_buddy e4b;
struct super_block *sb = (struct super_block *)test->priv;
void *bitmap, *buddy;
struct ext4_group_info *grp;
struct ext4_free_extent ex;
int ret;
int i;
struct test_range ranges[TEST_RANGE_COUNT];
/* buddy cache assumes that each page contains at least one block */
if (sb->s_blocksize > PAGE_SIZE)
kunit_skip(test, "blocksize exceeds pagesize");
bitmap = kunit_kzalloc(test, sb->s_blocksize, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bitmap);
buddy = kunit_kzalloc(test, sb->s_blocksize, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buddy);
grp = kunit_kzalloc(test, offsetof(struct ext4_group_info,
bb_counters[MB_NUM_ORDERS(sb)]), GFP_KERNEL);
ret = ext4_mb_load_buddy(sb, TEST_GOAL_GROUP, &e4b);
KUNIT_ASSERT_EQ(test, ret, 0);
ex.fe_start = 0;
ex.fe_len = EXT4_CLUSTERS_PER_GROUP(sb);
ex.fe_group = TEST_GOAL_GROUP;
ext4_lock_group(sb, TEST_GOAL_GROUP);
mb_mark_used(&e4b, &ex);
ext4_unlock_group(sb, TEST_GOAL_GROUP);
grp->bb_free = 0;
memset(bitmap, 0xff, sb->s_blocksize);
mbt_generate_test_ranges(sb, ranges, TEST_RANGE_COUNT);
for (i = 0; i < TEST_RANGE_COUNT; i++)
test_mb_free_blocks_range(test, &e4b, ranges[i].start,
ranges[i].len, bitmap, buddy, grp);
ext4_mb_unload_buddy(&e4b);
}
#define COUNT_FOR_ESTIMATE 100000
static void test_mb_mark_used_cost(struct kunit *test)
{
struct ext4_buddy e4b;
struct super_block *sb = (struct super_block *)test->priv;
struct ext4_free_extent ex;
int ret;
struct test_range ranges[TEST_RANGE_COUNT];
int i, j;
unsigned long start, end, all = 0;
/* buddy cache assumes that each page contains at least one block */
if (sb->s_blocksize > PAGE_SIZE)
kunit_skip(test, "blocksize exceeds pagesize");
ret = ext4_mb_load_buddy(sb, TEST_GOAL_GROUP, &e4b);
KUNIT_ASSERT_EQ(test, ret, 0);
ex.fe_group = TEST_GOAL_GROUP;
for (j = 0; j < COUNT_FOR_ESTIMATE; j++) {
mbt_generate_test_ranges(sb, ranges, TEST_RANGE_COUNT);
start = jiffies;
for (i = 0; i < TEST_RANGE_COUNT; i++) {
if (ranges[i].len == 0)
continue;
ex.fe_start = ranges[i].start;
ex.fe_len = ranges[i].len;
ext4_lock_group(sb, TEST_GOAL_GROUP);
mb_mark_used(&e4b, &ex);
ext4_unlock_group(sb, TEST_GOAL_GROUP);
}
end = jiffies;
all += (end - start);
for (i = 0; i < TEST_RANGE_COUNT; i++) {
if (ranges[i].len == 0)
continue;
ext4_lock_group(sb, TEST_GOAL_GROUP);
mb_free_blocks(NULL, &e4b, ranges[i].start,
ranges[i].len);
ext4_unlock_group(sb, TEST_GOAL_GROUP);
}
}
kunit_info(test, "costed jiffies %lu\n", all);
ext4_mb_unload_buddy(&e4b);
}
static const struct mbt_ext4_block_layout mbt_test_layouts[] = {
{
.blocksize_bits = 10,
.cluster_bits = 3,
.blocks_per_group = 8192,
.group_count = 4,
.desc_size = 64,
},
{
.blocksize_bits = 12,
.cluster_bits = 3,
.blocks_per_group = 8192,
.group_count = 4,
.desc_size = 64,
},
{
.blocksize_bits = 16,
.cluster_bits = 3,
.blocks_per_group = 8192,
.group_count = 4,
.desc_size = 64,
},
};
static void mbt_show_layout(const struct mbt_ext4_block_layout *layout,
char *desc)
{
snprintf(desc, KUNIT_PARAM_DESC_SIZE, "block_bits=%d cluster_bits=%d "
"blocks_per_group=%d group_count=%d desc_size=%d\n",
layout->blocksize_bits, layout->cluster_bits,
layout->blocks_per_group, layout->group_count,
layout->desc_size);
}
KUNIT_ARRAY_PARAM(mbt_layouts, mbt_test_layouts, mbt_show_layout);
static struct kunit_case mbt_test_cases[] = {
KUNIT_CASE_PARAM(test_new_blocks_simple, mbt_layouts_gen_params),
KUNIT_CASE_PARAM(test_free_blocks_simple, mbt_layouts_gen_params),
KUNIT_CASE_PARAM(test_mb_generate_buddy, mbt_layouts_gen_params),
KUNIT_CASE_PARAM(test_mb_mark_used, mbt_layouts_gen_params),
KUNIT_CASE_PARAM(test_mb_free_blocks, mbt_layouts_gen_params),
KUNIT_CASE_PARAM(test_mark_diskspace_used, mbt_layouts_gen_params),
KUNIT_CASE_PARAM_ATTR(test_mb_mark_used_cost, mbt_layouts_gen_params,
{ .speed = KUNIT_SPEED_SLOW }),
{}
};
static struct kunit_suite mbt_test_suite = {
.name = "ext4_mballoc_test",
.init = mbt_kunit_init,
.exit = mbt_kunit_exit,
.test_cases = mbt_test_cases,
};
kunit_test_suites(&mbt_test_suite);
MODULE_LICENSE("GPL");