mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-23 11:04:44 +08:00
7be1f6b9a1
Unlocking may take up to 1.4 seconds on some Intel flashes. So lets use a max. of 1.5 seconds (1500ms) as timeout. See "Clear Block Lock-Bits Time" on page 40 in "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual from February 2003 This patch also fixes some other problems with this timeout: - Don't use HZ in timeout "calculation"! While testing we noticed that an unlocking timeout occured with HZ=1000 and didn't occur with HZ=300. This was because the timeout parameter was calculated differently depending on the HZ value. Now a fixed value of 1500ms is used. - The last parameter of WAIT_TIMEOUT (defined to inval_cache_and_wait_for_operation) has to be passed in micro-seconds. So multiply the ms value with 1000 and not 100 to calculate this value. - Use variable name "mdelay" instead of misleading "udelay". Signed-off-by: Stefan Roese <sr@denx.de> Tested-by: Stephan Gatzka <stephan@gatzka.org> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2633 lines
73 KiB
C
2633 lines
73 KiB
C
/*
|
|
* Common Flash Interface support:
|
|
* Intel Extended Vendor Command Set (ID 0x0001)
|
|
*
|
|
* (C) 2000 Red Hat. GPL'd
|
|
*
|
|
*
|
|
* 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
|
|
* - completely revamped method functions so they are aware and
|
|
* independent of the flash geometry (buswidth, interleave, etc.)
|
|
* - scalability vs code size is completely set at compile-time
|
|
* (see include/linux/mtd/cfi.h for selection)
|
|
* - optimized write buffer method
|
|
* 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
|
|
* - reworked lock/unlock/erase support for var size flash
|
|
* 21/03/2007 Rodolfo Giometti <giometti@linux.it>
|
|
* - auto unlock sectors on resume for auto locking flash on power up
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <asm/io.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/mtd/xip.h>
|
|
#include <linux/mtd/map.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/cfi.h>
|
|
|
|
/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
|
|
/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
|
|
|
|
// debugging, turns off buffer write mode if set to 1
|
|
#define FORCE_WORD_WRITE 0
|
|
|
|
/* Intel chips */
|
|
#define I82802AB 0x00ad
|
|
#define I82802AC 0x00ac
|
|
#define PF38F4476 0x881c
|
|
/* STMicroelectronics chips */
|
|
#define M50LPW080 0x002F
|
|
#define M50FLW080A 0x0080
|
|
#define M50FLW080B 0x0081
|
|
/* Atmel chips */
|
|
#define AT49BV640D 0x02de
|
|
#define AT49BV640DT 0x02db
|
|
|
|
static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
|
static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
|
static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
|
static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
|
|
static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
|
|
static void cfi_intelext_sync (struct mtd_info *);
|
|
static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
|
|
uint64_t len);
|
|
#ifdef CONFIG_MTD_OTP
|
|
static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
|
static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
|
static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
|
static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
|
|
static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
|
|
struct otp_info *, size_t);
|
|
static int cfi_intelext_get_user_prot_info (struct mtd_info *,
|
|
struct otp_info *, size_t);
|
|
#endif
|
|
static int cfi_intelext_suspend (struct mtd_info *);
|
|
static void cfi_intelext_resume (struct mtd_info *);
|
|
static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
|
|
|
|
static void cfi_intelext_destroy(struct mtd_info *);
|
|
|
|
struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
|
|
|
|
static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
|
|
static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
|
|
|
|
static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, void **virt, resource_size_t *phys);
|
|
static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
|
|
|
|
static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
|
|
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
|
|
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
|
|
#include "fwh_lock.h"
|
|
|
|
|
|
|
|
/*
|
|
* *********** SETUP AND PROBE BITS ***********
|
|
*/
|
|
|
|
static struct mtd_chip_driver cfi_intelext_chipdrv = {
|
|
.probe = NULL, /* Not usable directly */
|
|
.destroy = cfi_intelext_destroy,
|
|
.name = "cfi_cmdset_0001",
|
|
.module = THIS_MODULE
|
|
};
|
|
|
|
/* #define DEBUG_LOCK_BITS */
|
|
/* #define DEBUG_CFI_FEATURES */
|
|
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
static void cfi_tell_features(struct cfi_pri_intelext *extp)
|
|
{
|
|
int i;
|
|
printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
|
|
printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
|
|
printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
|
|
printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
|
|
printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
|
|
printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
|
|
printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
|
|
printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
|
|
printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
|
|
printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
|
|
printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
|
|
printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
|
|
printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
|
|
for (i=11; i<32; i++) {
|
|
if (extp->FeatureSupport & (1<<i))
|
|
printk(" - Unknown Bit %X: supported\n", i);
|
|
}
|
|
|
|
printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
|
|
printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
|
|
for (i=1; i<8; i++) {
|
|
if (extp->SuspendCmdSupport & (1<<i))
|
|
printk(" - Unknown Bit %X: supported\n", i);
|
|
}
|
|
|
|
printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
|
|
printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
|
|
printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
|
|
for (i=2; i<3; i++) {
|
|
if (extp->BlkStatusRegMask & (1<<i))
|
|
printk(" - Unknown Bit %X Active: yes\n",i);
|
|
}
|
|
printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
|
|
printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
|
|
for (i=6; i<16; i++) {
|
|
if (extp->BlkStatusRegMask & (1<<i))
|
|
printk(" - Unknown Bit %X Active: yes\n",i);
|
|
}
|
|
|
|
printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
|
|
extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
|
|
if (extp->VppOptimal)
|
|
printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
|
|
extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
|
|
}
|
|
#endif
|
|
|
|
/* Atmel chips don't use the same PRI format as Intel chips */
|
|
static void fixup_convert_atmel_pri(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
|
|
struct cfi_pri_atmel atmel_pri;
|
|
uint32_t features = 0;
|
|
|
|
/* Reverse byteswapping */
|
|
extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
|
|
extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
|
|
extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
|
|
|
|
memcpy(&atmel_pri, extp, sizeof(atmel_pri));
|
|
memset((char *)extp + 5, 0, sizeof(*extp) - 5);
|
|
|
|
printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
|
|
|
|
if (atmel_pri.Features & 0x01) /* chip erase supported */
|
|
features |= (1<<0);
|
|
if (atmel_pri.Features & 0x02) /* erase suspend supported */
|
|
features |= (1<<1);
|
|
if (atmel_pri.Features & 0x04) /* program suspend supported */
|
|
features |= (1<<2);
|
|
if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
|
|
features |= (1<<9);
|
|
if (atmel_pri.Features & 0x20) /* page mode read supported */
|
|
features |= (1<<7);
|
|
if (atmel_pri.Features & 0x40) /* queued erase supported */
|
|
features |= (1<<4);
|
|
if (atmel_pri.Features & 0x80) /* Protection bits supported */
|
|
features |= (1<<6);
|
|
|
|
extp->FeatureSupport = features;
|
|
|
|
/* burst write mode not supported */
|
|
cfi->cfiq->BufWriteTimeoutTyp = 0;
|
|
cfi->cfiq->BufWriteTimeoutMax = 0;
|
|
}
|
|
|
|
static void fixup_at49bv640dx_lock(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
|
|
|
|
cfip->FeatureSupport |= (1 << 5);
|
|
mtd->flags |= MTD_POWERUP_LOCK;
|
|
}
|
|
|
|
#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
|
|
/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
|
|
static void fixup_intel_strataflash(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
|
|
|
|
printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
|
|
"erase on write disabled.\n");
|
|
extp->SuspendCmdSupport &= ~1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
|
|
static void fixup_no_write_suspend(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
|
|
|
|
if (cfip && (cfip->FeatureSupport&4)) {
|
|
cfip->FeatureSupport &= ~4;
|
|
printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void fixup_st_m28w320ct(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
|
|
cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
|
|
}
|
|
|
|
static void fixup_st_m28w320cb(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
/* Note this is done after the region info is endian swapped */
|
|
cfi->cfiq->EraseRegionInfo[1] =
|
|
(cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
|
|
};
|
|
|
|
static void fixup_use_point(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
if (!mtd->_point && map_is_linear(map)) {
|
|
mtd->_point = cfi_intelext_point;
|
|
mtd->_unpoint = cfi_intelext_unpoint;
|
|
}
|
|
}
|
|
|
|
static void fixup_use_write_buffers(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
if (cfi->cfiq->BufWriteTimeoutTyp) {
|
|
printk(KERN_INFO "Using buffer write method\n" );
|
|
mtd->_write = cfi_intelext_write_buffers;
|
|
mtd->_writev = cfi_intelext_writev;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some chips power-up with all sectors locked by default.
|
|
*/
|
|
static void fixup_unlock_powerup_lock(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
|
|
|
|
if (cfip->FeatureSupport&32) {
|
|
printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
|
|
mtd->flags |= MTD_POWERUP_LOCK;
|
|
}
|
|
}
|
|
|
|
static struct cfi_fixup cfi_fixup_table[] = {
|
|
{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
|
|
{ CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock },
|
|
{ CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock },
|
|
#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
|
|
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash },
|
|
#endif
|
|
#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
|
|
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend },
|
|
#endif
|
|
#if !FORCE_WORD_WRITE
|
|
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
|
|
#endif
|
|
{ CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct },
|
|
{ CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb },
|
|
{ CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static struct cfi_fixup jedec_fixup_table[] = {
|
|
{ CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock },
|
|
{ CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock },
|
|
{ CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock },
|
|
{ CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock },
|
|
{ CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock },
|
|
{ 0, 0, NULL }
|
|
};
|
|
static struct cfi_fixup fixup_table[] = {
|
|
/* The CFI vendor ids and the JEDEC vendor IDs appear
|
|
* to be common. It is like the devices id's are as
|
|
* well. This table is to pick all cases where
|
|
* we know that is the case.
|
|
*/
|
|
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static void cfi_fixup_major_minor(struct cfi_private *cfi,
|
|
struct cfi_pri_intelext *extp)
|
|
{
|
|
if (cfi->mfr == CFI_MFR_INTEL &&
|
|
cfi->id == PF38F4476 && extp->MinorVersion == '3')
|
|
extp->MinorVersion = '1';
|
|
}
|
|
|
|
static inline struct cfi_pri_intelext *
|
|
read_pri_intelext(struct map_info *map, __u16 adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_intelext *extp;
|
|
unsigned int extra_size = 0;
|
|
unsigned int extp_size = sizeof(*extp);
|
|
|
|
again:
|
|
extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
|
|
if (!extp)
|
|
return NULL;
|
|
|
|
cfi_fixup_major_minor(cfi, extp);
|
|
|
|
if (extp->MajorVersion != '1' ||
|
|
(extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
|
|
printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
|
|
"version %c.%c.\n", extp->MajorVersion,
|
|
extp->MinorVersion);
|
|
kfree(extp);
|
|
return NULL;
|
|
}
|
|
|
|
/* Do some byteswapping if necessary */
|
|
extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
|
|
extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
|
|
extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
|
|
|
|
if (extp->MinorVersion >= '0') {
|
|
extra_size = 0;
|
|
|
|
/* Protection Register info */
|
|
extra_size += (extp->NumProtectionFields - 1) *
|
|
sizeof(struct cfi_intelext_otpinfo);
|
|
}
|
|
|
|
if (extp->MinorVersion >= '1') {
|
|
/* Burst Read info */
|
|
extra_size += 2;
|
|
if (extp_size < sizeof(*extp) + extra_size)
|
|
goto need_more;
|
|
extra_size += extp->extra[extra_size - 1];
|
|
}
|
|
|
|
if (extp->MinorVersion >= '3') {
|
|
int nb_parts, i;
|
|
|
|
/* Number of hardware-partitions */
|
|
extra_size += 1;
|
|
if (extp_size < sizeof(*extp) + extra_size)
|
|
goto need_more;
|
|
nb_parts = extp->extra[extra_size - 1];
|
|
|
|
/* skip the sizeof(partregion) field in CFI 1.4 */
|
|
if (extp->MinorVersion >= '4')
|
|
extra_size += 2;
|
|
|
|
for (i = 0; i < nb_parts; i++) {
|
|
struct cfi_intelext_regioninfo *rinfo;
|
|
rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
|
|
extra_size += sizeof(*rinfo);
|
|
if (extp_size < sizeof(*extp) + extra_size)
|
|
goto need_more;
|
|
rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
|
|
extra_size += (rinfo->NumBlockTypes - 1)
|
|
* sizeof(struct cfi_intelext_blockinfo);
|
|
}
|
|
|
|
if (extp->MinorVersion >= '4')
|
|
extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
|
|
|
|
if (extp_size < sizeof(*extp) + extra_size) {
|
|
need_more:
|
|
extp_size = sizeof(*extp) + extra_size;
|
|
kfree(extp);
|
|
if (extp_size > 4096) {
|
|
printk(KERN_ERR
|
|
"%s: cfi_pri_intelext is too fat\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
return extp;
|
|
}
|
|
|
|
struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct mtd_info *mtd;
|
|
int i;
|
|
|
|
mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
|
|
if (!mtd) {
|
|
printk(KERN_ERR "Failed to allocate memory for MTD device\n");
|
|
return NULL;
|
|
}
|
|
mtd->priv = map;
|
|
mtd->type = MTD_NORFLASH;
|
|
|
|
/* Fill in the default mtd operations */
|
|
mtd->_erase = cfi_intelext_erase_varsize;
|
|
mtd->_read = cfi_intelext_read;
|
|
mtd->_write = cfi_intelext_write_words;
|
|
mtd->_sync = cfi_intelext_sync;
|
|
mtd->_lock = cfi_intelext_lock;
|
|
mtd->_unlock = cfi_intelext_unlock;
|
|
mtd->_is_locked = cfi_intelext_is_locked;
|
|
mtd->_suspend = cfi_intelext_suspend;
|
|
mtd->_resume = cfi_intelext_resume;
|
|
mtd->flags = MTD_CAP_NORFLASH;
|
|
mtd->name = map->name;
|
|
mtd->writesize = 1;
|
|
mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
|
|
|
|
mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
|
|
|
|
if (cfi->cfi_mode == CFI_MODE_CFI) {
|
|
/*
|
|
* It's a real CFI chip, not one for which the probe
|
|
* routine faked a CFI structure. So we read the feature
|
|
* table from it.
|
|
*/
|
|
__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
|
|
struct cfi_pri_intelext *extp;
|
|
|
|
extp = read_pri_intelext(map, adr);
|
|
if (!extp) {
|
|
kfree(mtd);
|
|
return NULL;
|
|
}
|
|
|
|
/* Install our own private info structure */
|
|
cfi->cmdset_priv = extp;
|
|
|
|
cfi_fixup(mtd, cfi_fixup_table);
|
|
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
/* Tell the user about it in lots of lovely detail */
|
|
cfi_tell_features(extp);
|
|
#endif
|
|
|
|
if(extp->SuspendCmdSupport & 1) {
|
|
printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
|
|
}
|
|
}
|
|
else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
|
|
/* Apply jedec specific fixups */
|
|
cfi_fixup(mtd, jedec_fixup_table);
|
|
}
|
|
/* Apply generic fixups */
|
|
cfi_fixup(mtd, fixup_table);
|
|
|
|
for (i=0; i< cfi->numchips; i++) {
|
|
if (cfi->cfiq->WordWriteTimeoutTyp)
|
|
cfi->chips[i].word_write_time =
|
|
1<<cfi->cfiq->WordWriteTimeoutTyp;
|
|
else
|
|
cfi->chips[i].word_write_time = 50000;
|
|
|
|
if (cfi->cfiq->BufWriteTimeoutTyp)
|
|
cfi->chips[i].buffer_write_time =
|
|
1<<cfi->cfiq->BufWriteTimeoutTyp;
|
|
/* No default; if it isn't specified, we won't use it */
|
|
|
|
if (cfi->cfiq->BlockEraseTimeoutTyp)
|
|
cfi->chips[i].erase_time =
|
|
1000<<cfi->cfiq->BlockEraseTimeoutTyp;
|
|
else
|
|
cfi->chips[i].erase_time = 2000000;
|
|
|
|
if (cfi->cfiq->WordWriteTimeoutTyp &&
|
|
cfi->cfiq->WordWriteTimeoutMax)
|
|
cfi->chips[i].word_write_time_max =
|
|
1<<(cfi->cfiq->WordWriteTimeoutTyp +
|
|
cfi->cfiq->WordWriteTimeoutMax);
|
|
else
|
|
cfi->chips[i].word_write_time_max = 50000 * 8;
|
|
|
|
if (cfi->cfiq->BufWriteTimeoutTyp &&
|
|
cfi->cfiq->BufWriteTimeoutMax)
|
|
cfi->chips[i].buffer_write_time_max =
|
|
1<<(cfi->cfiq->BufWriteTimeoutTyp +
|
|
cfi->cfiq->BufWriteTimeoutMax);
|
|
|
|
if (cfi->cfiq->BlockEraseTimeoutTyp &&
|
|
cfi->cfiq->BlockEraseTimeoutMax)
|
|
cfi->chips[i].erase_time_max =
|
|
1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
|
|
cfi->cfiq->BlockEraseTimeoutMax);
|
|
else
|
|
cfi->chips[i].erase_time_max = 2000000 * 8;
|
|
|
|
cfi->chips[i].ref_point_counter = 0;
|
|
init_waitqueue_head(&(cfi->chips[i].wq));
|
|
}
|
|
|
|
map->fldrv = &cfi_intelext_chipdrv;
|
|
|
|
return cfi_intelext_setup(mtd);
|
|
}
|
|
struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
|
|
struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
|
|
EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
|
|
EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
|
|
EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
|
|
|
|
static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long offset = 0;
|
|
int i,j;
|
|
unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
|
|
|
|
//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
|
|
|
|
mtd->size = devsize * cfi->numchips;
|
|
|
|
mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
|
|
mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
|
|
* mtd->numeraseregions, GFP_KERNEL);
|
|
if (!mtd->eraseregions) {
|
|
printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
|
|
goto setup_err;
|
|
}
|
|
|
|
for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
|
|
unsigned long ernum, ersize;
|
|
ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
|
|
ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
|
|
|
|
if (mtd->erasesize < ersize) {
|
|
mtd->erasesize = ersize;
|
|
}
|
|
for (j=0; j<cfi->numchips; j++) {
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
|
|
}
|
|
offset += (ersize * ernum);
|
|
}
|
|
|
|
if (offset != devsize) {
|
|
/* Argh */
|
|
printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
|
|
goto setup_err;
|
|
}
|
|
|
|
for (i=0; i<mtd->numeraseregions;i++){
|
|
printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
|
|
i,(unsigned long long)mtd->eraseregions[i].offset,
|
|
mtd->eraseregions[i].erasesize,
|
|
mtd->eraseregions[i].numblocks);
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_OTP
|
|
mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
|
|
mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg;
|
|
mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg;
|
|
mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
|
|
mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info;
|
|
mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info;
|
|
#endif
|
|
|
|
/* This function has the potential to distort the reality
|
|
a bit and therefore should be called last. */
|
|
if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
|
|
goto setup_err;
|
|
|
|
__module_get(THIS_MODULE);
|
|
register_reboot_notifier(&mtd->reboot_notifier);
|
|
return mtd;
|
|
|
|
setup_err:
|
|
kfree(mtd->eraseregions);
|
|
kfree(mtd);
|
|
kfree(cfi->cmdset_priv);
|
|
return NULL;
|
|
}
|
|
|
|
static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
|
|
struct cfi_private **pcfi)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = *pcfi;
|
|
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
|
|
|
|
/*
|
|
* Probing of multi-partition flash chips.
|
|
*
|
|
* To support multiple partitions when available, we simply arrange
|
|
* for each of them to have their own flchip structure even if they
|
|
* are on the same physical chip. This means completely recreating
|
|
* a new cfi_private structure right here which is a blatent code
|
|
* layering violation, but this is still the least intrusive
|
|
* arrangement at this point. This can be rearranged in the future
|
|
* if someone feels motivated enough. --nico
|
|
*/
|
|
if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
|
|
&& extp->FeatureSupport & (1 << 9)) {
|
|
struct cfi_private *newcfi;
|
|
struct flchip *chip;
|
|
struct flchip_shared *shared;
|
|
int offs, numregions, numparts, partshift, numvirtchips, i, j;
|
|
|
|
/* Protection Register info */
|
|
offs = (extp->NumProtectionFields - 1) *
|
|
sizeof(struct cfi_intelext_otpinfo);
|
|
|
|
/* Burst Read info */
|
|
offs += extp->extra[offs+1]+2;
|
|
|
|
/* Number of partition regions */
|
|
numregions = extp->extra[offs];
|
|
offs += 1;
|
|
|
|
/* skip the sizeof(partregion) field in CFI 1.4 */
|
|
if (extp->MinorVersion >= '4')
|
|
offs += 2;
|
|
|
|
/* Number of hardware partitions */
|
|
numparts = 0;
|
|
for (i = 0; i < numregions; i++) {
|
|
struct cfi_intelext_regioninfo *rinfo;
|
|
rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
|
|
numparts += rinfo->NumIdentPartitions;
|
|
offs += sizeof(*rinfo)
|
|
+ (rinfo->NumBlockTypes - 1) *
|
|
sizeof(struct cfi_intelext_blockinfo);
|
|
}
|
|
|
|
if (!numparts)
|
|
numparts = 1;
|
|
|
|
/* Programming Region info */
|
|
if (extp->MinorVersion >= '4') {
|
|
struct cfi_intelext_programming_regioninfo *prinfo;
|
|
prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
|
|
mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
|
|
mtd->flags &= ~MTD_BIT_WRITEABLE;
|
|
printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
|
|
map->name, mtd->writesize,
|
|
cfi->interleave * prinfo->ControlValid,
|
|
cfi->interleave * prinfo->ControlInvalid);
|
|
}
|
|
|
|
/*
|
|
* All functions below currently rely on all chips having
|
|
* the same geometry so we'll just assume that all hardware
|
|
* partitions are of the same size too.
|
|
*/
|
|
partshift = cfi->chipshift - __ffs(numparts);
|
|
|
|
if ((1 << partshift) < mtd->erasesize) {
|
|
printk( KERN_ERR
|
|
"%s: bad number of hw partitions (%d)\n",
|
|
__func__, numparts);
|
|
return -EINVAL;
|
|
}
|
|
|
|
numvirtchips = cfi->numchips * numparts;
|
|
newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
|
|
if (!newcfi)
|
|
return -ENOMEM;
|
|
shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
|
|
if (!shared) {
|
|
kfree(newcfi);
|
|
return -ENOMEM;
|
|
}
|
|
memcpy(newcfi, cfi, sizeof(struct cfi_private));
|
|
newcfi->numchips = numvirtchips;
|
|
newcfi->chipshift = partshift;
|
|
|
|
chip = &newcfi->chips[0];
|
|
for (i = 0; i < cfi->numchips; i++) {
|
|
shared[i].writing = shared[i].erasing = NULL;
|
|
mutex_init(&shared[i].lock);
|
|
for (j = 0; j < numparts; j++) {
|
|
*chip = cfi->chips[i];
|
|
chip->start += j << partshift;
|
|
chip->priv = &shared[i];
|
|
/* those should be reset too since
|
|
they create memory references. */
|
|
init_waitqueue_head(&chip->wq);
|
|
mutex_init(&chip->mutex);
|
|
chip++;
|
|
}
|
|
}
|
|
|
|
printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
|
|
"--> %d partitions of %d KiB\n",
|
|
map->name, cfi->numchips, cfi->interleave,
|
|
newcfi->numchips, 1<<(newcfi->chipshift-10));
|
|
|
|
map->fldrv_priv = newcfi;
|
|
*pcfi = newcfi;
|
|
kfree(cfi);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* *********** CHIP ACCESS FUNCTIONS ***********
|
|
*/
|
|
static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
|
|
struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
|
|
unsigned long timeo = jiffies + HZ;
|
|
|
|
/* Prevent setting state FL_SYNCING for chip in suspended state. */
|
|
if (mode == FL_SYNCING && chip->oldstate != FL_READY)
|
|
goto sleep;
|
|
|
|
switch (chip->state) {
|
|
|
|
case FL_STATUS:
|
|
for (;;) {
|
|
status = map_read(map, adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
/* At this point we're fine with write operations
|
|
in other partitions as they don't conflict. */
|
|
if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
|
|
break;
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
mutex_lock(&chip->mutex);
|
|
/* Someone else might have been playing with it. */
|
|
return -EAGAIN;
|
|
}
|
|
/* Fall through */
|
|
case FL_READY:
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
return 0;
|
|
|
|
case FL_ERASING:
|
|
if (!cfip ||
|
|
!(cfip->FeatureSupport & 2) ||
|
|
!(mode == FL_READY || mode == FL_POINT ||
|
|
(mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
|
|
goto sleep;
|
|
|
|
|
|
/* Erase suspend */
|
|
map_write(map, CMD(0xB0), adr);
|
|
|
|
/* If the flash has finished erasing, then 'erase suspend'
|
|
* appears to make some (28F320) flash devices switch to
|
|
* 'read' mode. Make sure that we switch to 'read status'
|
|
* mode so we get the right data. --rmk
|
|
*/
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->oldstate = FL_ERASING;
|
|
chip->state = FL_ERASE_SUSPENDING;
|
|
chip->erase_suspended = 1;
|
|
for (;;) {
|
|
status = map_read(map, adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
/* Urgh. Resume and pretend we weren't here.
|
|
* Make sure we're in 'read status' mode if it had finished */
|
|
put_chip(map, chip, adr);
|
|
printk(KERN_ERR "%s: Chip not ready after erase "
|
|
"suspended: status = 0x%lx\n", map->name, status.x[0]);
|
|
return -EIO;
|
|
}
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
mutex_lock(&chip->mutex);
|
|
/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
|
|
So we can just loop here. */
|
|
}
|
|
chip->state = FL_STATUS;
|
|
return 0;
|
|
|
|
case FL_XIP_WHILE_ERASING:
|
|
if (mode != FL_READY && mode != FL_POINT &&
|
|
(mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
|
|
goto sleep;
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_READY;
|
|
return 0;
|
|
|
|
case FL_SHUTDOWN:
|
|
/* The machine is rebooting now,so no one can get chip anymore */
|
|
return -EIO;
|
|
case FL_POINT:
|
|
/* Only if there's no operation suspended... */
|
|
if (mode == FL_READY && chip->oldstate == FL_READY)
|
|
return 0;
|
|
/* Fall through */
|
|
default:
|
|
sleep:
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
mutex_lock(&chip->mutex);
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
|
|
{
|
|
int ret;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
retry:
|
|
if (chip->priv &&
|
|
(mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
|
|
|| mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
|
|
/*
|
|
* OK. We have possibility for contention on the write/erase
|
|
* operations which are global to the real chip and not per
|
|
* partition. So let's fight it over in the partition which
|
|
* currently has authority on the operation.
|
|
*
|
|
* The rules are as follows:
|
|
*
|
|
* - any write operation must own shared->writing.
|
|
*
|
|
* - any erase operation must own _both_ shared->writing and
|
|
* shared->erasing.
|
|
*
|
|
* - contention arbitration is handled in the owner's context.
|
|
*
|
|
* The 'shared' struct can be read and/or written only when
|
|
* its lock is taken.
|
|
*/
|
|
struct flchip_shared *shared = chip->priv;
|
|
struct flchip *contender;
|
|
mutex_lock(&shared->lock);
|
|
contender = shared->writing;
|
|
if (contender && contender != chip) {
|
|
/*
|
|
* The engine to perform desired operation on this
|
|
* partition is already in use by someone else.
|
|
* Let's fight over it in the context of the chip
|
|
* currently using it. If it is possible to suspend,
|
|
* that other partition will do just that, otherwise
|
|
* it'll happily send us to sleep. In any case, when
|
|
* get_chip returns success we're clear to go ahead.
|
|
*/
|
|
ret = mutex_trylock(&contender->mutex);
|
|
mutex_unlock(&shared->lock);
|
|
if (!ret)
|
|
goto retry;
|
|
mutex_unlock(&chip->mutex);
|
|
ret = chip_ready(map, contender, contender->start, mode);
|
|
mutex_lock(&chip->mutex);
|
|
|
|
if (ret == -EAGAIN) {
|
|
mutex_unlock(&contender->mutex);
|
|
goto retry;
|
|
}
|
|
if (ret) {
|
|
mutex_unlock(&contender->mutex);
|
|
return ret;
|
|
}
|
|
mutex_lock(&shared->lock);
|
|
|
|
/* We should not own chip if it is already
|
|
* in FL_SYNCING state. Put contender and retry. */
|
|
if (chip->state == FL_SYNCING) {
|
|
put_chip(map, contender, contender->start);
|
|
mutex_unlock(&contender->mutex);
|
|
goto retry;
|
|
}
|
|
mutex_unlock(&contender->mutex);
|
|
}
|
|
|
|
/* Check if we already have suspended erase
|
|
* on this chip. Sleep. */
|
|
if (mode == FL_ERASING && shared->erasing
|
|
&& shared->erasing->oldstate == FL_ERASING) {
|
|
mutex_unlock(&shared->lock);
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
mutex_lock(&chip->mutex);
|
|
goto retry;
|
|
}
|
|
|
|
/* We now own it */
|
|
shared->writing = chip;
|
|
if (mode == FL_ERASING)
|
|
shared->erasing = chip;
|
|
mutex_unlock(&shared->lock);
|
|
}
|
|
ret = chip_ready(map, chip, adr, mode);
|
|
if (ret == -EAGAIN)
|
|
goto retry;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
if (chip->priv) {
|
|
struct flchip_shared *shared = chip->priv;
|
|
mutex_lock(&shared->lock);
|
|
if (shared->writing == chip && chip->oldstate == FL_READY) {
|
|
/* We own the ability to write, but we're done */
|
|
shared->writing = shared->erasing;
|
|
if (shared->writing && shared->writing != chip) {
|
|
/* give back ownership to who we loaned it from */
|
|
struct flchip *loaner = shared->writing;
|
|
mutex_lock(&loaner->mutex);
|
|
mutex_unlock(&shared->lock);
|
|
mutex_unlock(&chip->mutex);
|
|
put_chip(map, loaner, loaner->start);
|
|
mutex_lock(&chip->mutex);
|
|
mutex_unlock(&loaner->mutex);
|
|
wake_up(&chip->wq);
|
|
return;
|
|
}
|
|
shared->erasing = NULL;
|
|
shared->writing = NULL;
|
|
} else if (shared->erasing == chip && shared->writing != chip) {
|
|
/*
|
|
* We own the ability to erase without the ability
|
|
* to write, which means the erase was suspended
|
|
* and some other partition is currently writing.
|
|
* Don't let the switch below mess things up since
|
|
* we don't have ownership to resume anything.
|
|
*/
|
|
mutex_unlock(&shared->lock);
|
|
wake_up(&chip->wq);
|
|
return;
|
|
}
|
|
mutex_unlock(&shared->lock);
|
|
}
|
|
|
|
switch(chip->oldstate) {
|
|
case FL_ERASING:
|
|
/* What if one interleaved chip has finished and the
|
|
other hasn't? The old code would leave the finished
|
|
one in READY mode. That's bad, and caused -EROFS
|
|
errors to be returned from do_erase_oneblock because
|
|
that's the only bit it checked for at the time.
|
|
As the state machine appears to explicitly allow
|
|
sending the 0x70 (Read Status) command to an erasing
|
|
chip and expecting it to be ignored, that's what we
|
|
do. */
|
|
map_write(map, CMD(0xd0), adr);
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->oldstate = FL_READY;
|
|
chip->state = FL_ERASING;
|
|
break;
|
|
|
|
case FL_XIP_WHILE_ERASING:
|
|
chip->state = chip->oldstate;
|
|
chip->oldstate = FL_READY;
|
|
break;
|
|
|
|
case FL_READY:
|
|
case FL_STATUS:
|
|
case FL_JEDEC_QUERY:
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
|
|
}
|
|
wake_up(&chip->wq);
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_XIP
|
|
|
|
/*
|
|
* No interrupt what so ever can be serviced while the flash isn't in array
|
|
* mode. This is ensured by the xip_disable() and xip_enable() functions
|
|
* enclosing any code path where the flash is known not to be in array mode.
|
|
* And within a XIP disabled code path, only functions marked with __xipram
|
|
* may be called and nothing else (it's a good thing to inspect generated
|
|
* assembly to make sure inline functions were actually inlined and that gcc
|
|
* didn't emit calls to its own support functions). Also configuring MTD CFI
|
|
* support to a single buswidth and a single interleave is also recommended.
|
|
*/
|
|
|
|
static void xip_disable(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr)
|
|
{
|
|
/* TODO: chips with no XIP use should ignore and return */
|
|
(void) map_read(map, adr); /* ensure mmu mapping is up to date */
|
|
local_irq_disable();
|
|
}
|
|
|
|
static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
if (chip->state != FL_POINT && chip->state != FL_READY) {
|
|
map_write(map, CMD(0xff), adr);
|
|
chip->state = FL_READY;
|
|
}
|
|
(void) map_read(map, adr);
|
|
xip_iprefetch();
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* When a delay is required for the flash operation to complete, the
|
|
* xip_wait_for_operation() function is polling for both the given timeout
|
|
* and pending (but still masked) hardware interrupts. Whenever there is an
|
|
* interrupt pending then the flash erase or write operation is suspended,
|
|
* array mode restored and interrupts unmasked. Task scheduling might also
|
|
* happen at that point. The CPU eventually returns from the interrupt or
|
|
* the call to schedule() and the suspended flash operation is resumed for
|
|
* the remaining of the delay period.
|
|
*
|
|
* Warning: this function _will_ fool interrupt latency tracing tools.
|
|
*/
|
|
|
|
static int __xipram xip_wait_for_operation(
|
|
struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, unsigned int chip_op_time_max)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
|
|
map_word status, OK = CMD(0x80);
|
|
unsigned long usec, suspended, start, done;
|
|
flstate_t oldstate, newstate;
|
|
|
|
start = xip_currtime();
|
|
usec = chip_op_time_max;
|
|
if (usec == 0)
|
|
usec = 500000;
|
|
done = 0;
|
|
|
|
do {
|
|
cpu_relax();
|
|
if (xip_irqpending() && cfip &&
|
|
((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
|
|
(chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
|
|
(cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
|
|
/*
|
|
* Let's suspend the erase or write operation when
|
|
* supported. Note that we currently don't try to
|
|
* suspend interleaved chips if there is already
|
|
* another operation suspended (imagine what happens
|
|
* when one chip was already done with the current
|
|
* operation while another chip suspended it, then
|
|
* we resume the whole thing at once). Yes, it
|
|
* can happen!
|
|
*/
|
|
usec -= done;
|
|
map_write(map, CMD(0xb0), adr);
|
|
map_write(map, CMD(0x70), adr);
|
|
suspended = xip_currtime();
|
|
do {
|
|
if (xip_elapsed_since(suspended) > 100000) {
|
|
/*
|
|
* The chip doesn't want to suspend
|
|
* after waiting for 100 msecs.
|
|
* This is a critical error but there
|
|
* is not much we can do here.
|
|
*/
|
|
return -EIO;
|
|
}
|
|
status = map_read(map, adr);
|
|
} while (!map_word_andequal(map, status, OK, OK));
|
|
|
|
/* Suspend succeeded */
|
|
oldstate = chip->state;
|
|
if (oldstate == FL_ERASING) {
|
|
if (!map_word_bitsset(map, status, CMD(0x40)))
|
|
break;
|
|
newstate = FL_XIP_WHILE_ERASING;
|
|
chip->erase_suspended = 1;
|
|
} else {
|
|
if (!map_word_bitsset(map, status, CMD(0x04)))
|
|
break;
|
|
newstate = FL_XIP_WHILE_WRITING;
|
|
chip->write_suspended = 1;
|
|
}
|
|
chip->state = newstate;
|
|
map_write(map, CMD(0xff), adr);
|
|
(void) map_read(map, adr);
|
|
xip_iprefetch();
|
|
local_irq_enable();
|
|
mutex_unlock(&chip->mutex);
|
|
xip_iprefetch();
|
|
cond_resched();
|
|
|
|
/*
|
|
* We're back. However someone else might have
|
|
* decided to go write to the chip if we are in
|
|
* a suspended erase state. If so let's wait
|
|
* until it's done.
|
|
*/
|
|
mutex_lock(&chip->mutex);
|
|
while (chip->state != newstate) {
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
mutex_lock(&chip->mutex);
|
|
}
|
|
/* Disallow XIP again */
|
|
local_irq_disable();
|
|
|
|
/* Resume the write or erase operation */
|
|
map_write(map, CMD(0xd0), adr);
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = oldstate;
|
|
start = xip_currtime();
|
|
} else if (usec >= 1000000/HZ) {
|
|
/*
|
|
* Try to save on CPU power when waiting delay
|
|
* is at least a system timer tick period.
|
|
* No need to be extremely accurate here.
|
|
*/
|
|
xip_cpu_idle();
|
|
}
|
|
status = map_read(map, adr);
|
|
done = xip_elapsed_since(start);
|
|
} while (!map_word_andequal(map, status, OK, OK)
|
|
&& done < usec);
|
|
|
|
return (done >= usec) ? -ETIME : 0;
|
|
}
|
|
|
|
/*
|
|
* The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
|
|
* the flash is actively programming or erasing since we have to poll for
|
|
* the operation to complete anyway. We can't do that in a generic way with
|
|
* a XIP setup so do it before the actual flash operation in this case
|
|
* and stub it out from INVAL_CACHE_AND_WAIT.
|
|
*/
|
|
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
|
|
INVALIDATE_CACHED_RANGE(map, from, size)
|
|
|
|
#define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
|
|
xip_wait_for_operation(map, chip, cmd_adr, usec_max)
|
|
|
|
#else
|
|
|
|
#define xip_disable(map, chip, adr)
|
|
#define xip_enable(map, chip, adr)
|
|
#define XIP_INVAL_CACHED_RANGE(x...)
|
|
#define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
|
|
|
|
static int inval_cache_and_wait_for_operation(
|
|
struct map_info *map, struct flchip *chip,
|
|
unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
|
|
unsigned int chip_op_time, unsigned int chip_op_time_max)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
map_word status, status_OK = CMD(0x80);
|
|
int chip_state = chip->state;
|
|
unsigned int timeo, sleep_time, reset_timeo;
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
if (inval_len)
|
|
INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
|
|
mutex_lock(&chip->mutex);
|
|
|
|
timeo = chip_op_time_max;
|
|
if (!timeo)
|
|
timeo = 500000;
|
|
reset_timeo = timeo;
|
|
sleep_time = chip_op_time / 2;
|
|
|
|
for (;;) {
|
|
if (chip->state != chip_state) {
|
|
/* Someone's suspended the operation: sleep */
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
mutex_lock(&chip->mutex);
|
|
continue;
|
|
}
|
|
|
|
status = map_read(map, cmd_adr);
|
|
if (map_word_andequal(map, status, status_OK, status_OK))
|
|
break;
|
|
|
|
if (chip->erase_suspended && chip_state == FL_ERASING) {
|
|
/* Erase suspend occurred while sleep: reset timeout */
|
|
timeo = reset_timeo;
|
|
chip->erase_suspended = 0;
|
|
}
|
|
if (chip->write_suspended && chip_state == FL_WRITING) {
|
|
/* Write suspend occurred while sleep: reset timeout */
|
|
timeo = reset_timeo;
|
|
chip->write_suspended = 0;
|
|
}
|
|
if (!timeo) {
|
|
map_write(map, CMD(0x70), cmd_adr);
|
|
chip->state = FL_STATUS;
|
|
return -ETIME;
|
|
}
|
|
|
|
/* OK Still waiting. Drop the lock, wait a while and retry. */
|
|
mutex_unlock(&chip->mutex);
|
|
if (sleep_time >= 1000000/HZ) {
|
|
/*
|
|
* Half of the normal delay still remaining
|
|
* can be performed with a sleeping delay instead
|
|
* of busy waiting.
|
|
*/
|
|
msleep(sleep_time/1000);
|
|
timeo -= sleep_time;
|
|
sleep_time = 1000000/HZ;
|
|
} else {
|
|
udelay(1);
|
|
cond_resched();
|
|
timeo--;
|
|
}
|
|
mutex_lock(&chip->mutex);
|
|
}
|
|
|
|
/* Done and happy. */
|
|
chip->state = FL_STATUS;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
|
|
INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
|
|
|
|
|
|
static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
|
|
{
|
|
unsigned long cmd_addr;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ret = 0;
|
|
|
|
adr += chip->start;
|
|
|
|
/* Ensure cmd read/writes are aligned. */
|
|
cmd_addr = adr & ~(map_bankwidth(map)-1);
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
ret = get_chip(map, chip, cmd_addr, FL_POINT);
|
|
|
|
if (!ret) {
|
|
if (chip->state != FL_POINT && chip->state != FL_READY)
|
|
map_write(map, CMD(0xff), cmd_addr);
|
|
|
|
chip->state = FL_POINT;
|
|
chip->ref_point_counter++;
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, void **virt, resource_size_t *phys)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long ofs, last_end = 0;
|
|
int chipnum;
|
|
int ret = 0;
|
|
|
|
if (!map->virt)
|
|
return -EINVAL;
|
|
|
|
/* Now lock the chip(s) to POINT state */
|
|
|
|
/* ofs: offset within the first chip that the first read should start */
|
|
chipnum = (from >> cfi->chipshift);
|
|
ofs = from - (chipnum << cfi->chipshift);
|
|
|
|
*virt = map->virt + cfi->chips[chipnum].start + ofs;
|
|
if (phys)
|
|
*phys = map->phys + cfi->chips[chipnum].start + ofs;
|
|
|
|
while (len) {
|
|
unsigned long thislen;
|
|
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
|
|
/* We cannot point across chips that are virtually disjoint */
|
|
if (!last_end)
|
|
last_end = cfi->chips[chipnum].start;
|
|
else if (cfi->chips[chipnum].start != last_end)
|
|
break;
|
|
|
|
if ((len + ofs -1) >> cfi->chipshift)
|
|
thislen = (1<<cfi->chipshift) - ofs;
|
|
else
|
|
thislen = len;
|
|
|
|
ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
|
|
if (ret)
|
|
break;
|
|
|
|
*retlen += thislen;
|
|
len -= thislen;
|
|
|
|
ofs = 0;
|
|
last_end += 1 << cfi->chipshift;
|
|
chipnum++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long ofs;
|
|
int chipnum, err = 0;
|
|
|
|
/* Now unlock the chip(s) POINT state */
|
|
|
|
/* ofs: offset within the first chip that the first read should start */
|
|
chipnum = (from >> cfi->chipshift);
|
|
ofs = from - (chipnum << cfi->chipshift);
|
|
|
|
while (len && !err) {
|
|
unsigned long thislen;
|
|
struct flchip *chip;
|
|
|
|
chip = &cfi->chips[chipnum];
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
|
|
if ((len + ofs -1) >> cfi->chipshift)
|
|
thislen = (1<<cfi->chipshift) - ofs;
|
|
else
|
|
thislen = len;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
if (chip->state == FL_POINT) {
|
|
chip->ref_point_counter--;
|
|
if(chip->ref_point_counter == 0)
|
|
chip->state = FL_READY;
|
|
} else {
|
|
printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
put_chip(map, chip, chip->start);
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
len -= thislen;
|
|
ofs = 0;
|
|
chipnum++;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
|
|
{
|
|
unsigned long cmd_addr;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ret;
|
|
|
|
adr += chip->start;
|
|
|
|
/* Ensure cmd read/writes are aligned. */
|
|
cmd_addr = adr & ~(map_bankwidth(map)-1);
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, cmd_addr, FL_READY);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
if (chip->state != FL_POINT && chip->state != FL_READY) {
|
|
map_write(map, CMD(0xff), cmd_addr);
|
|
|
|
chip->state = FL_READY;
|
|
}
|
|
|
|
map_copy_from(map, buf, adr, len);
|
|
|
|
put_chip(map, chip, cmd_addr);
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long ofs;
|
|
int chipnum;
|
|
int ret = 0;
|
|
|
|
/* ofs: offset within the first chip that the first read should start */
|
|
chipnum = (from >> cfi->chipshift);
|
|
ofs = from - (chipnum << cfi->chipshift);
|
|
|
|
while (len) {
|
|
unsigned long thislen;
|
|
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
|
|
if ((len + ofs -1) >> cfi->chipshift)
|
|
thislen = (1<<cfi->chipshift) - ofs;
|
|
else
|
|
thislen = len;
|
|
|
|
ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
|
|
if (ret)
|
|
break;
|
|
|
|
*retlen += thislen;
|
|
len -= thislen;
|
|
buf += thislen;
|
|
|
|
ofs = 0;
|
|
chipnum++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, map_word datum, int mode)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
map_word status, write_cmd;
|
|
int ret=0;
|
|
|
|
adr += chip->start;
|
|
|
|
switch (mode) {
|
|
case FL_WRITING:
|
|
write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41);
|
|
break;
|
|
case FL_OTP_WRITE:
|
|
write_cmd = CMD(0xc0);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, adr, mode);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, adr);
|
|
map_write(map, write_cmd, adr);
|
|
map_write(map, datum, adr);
|
|
chip->state = mode;
|
|
|
|
ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
|
|
adr, map_bankwidth(map),
|
|
chip->word_write_time,
|
|
chip->word_write_time_max);
|
|
if (ret) {
|
|
xip_enable(map, chip, adr);
|
|
printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
|
|
goto out;
|
|
}
|
|
|
|
/* check for errors */
|
|
status = map_read(map, adr);
|
|
if (map_word_bitsset(map, status, CMD(0x1a))) {
|
|
unsigned long chipstatus = MERGESTATUS(status);
|
|
|
|
/* reset status */
|
|
map_write(map, CMD(0x50), adr);
|
|
map_write(map, CMD(0x70), adr);
|
|
xip_enable(map, chip, adr);
|
|
|
|
if (chipstatus & 0x02) {
|
|
ret = -EROFS;
|
|
} else if (chipstatus & 0x08) {
|
|
printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
|
|
ret = -EIO;
|
|
} else {
|
|
printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
xip_enable(map, chip, adr);
|
|
out: DISABLE_VPP(map);
|
|
put_chip(map, chip, adr);
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ret = 0;
|
|
int chipnum;
|
|
unsigned long ofs;
|
|
|
|
chipnum = to >> cfi->chipshift;
|
|
ofs = to - (chipnum << cfi->chipshift);
|
|
|
|
/* If it's not bus-aligned, do the first byte write */
|
|
if (ofs & (map_bankwidth(map)-1)) {
|
|
unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
|
|
int gap = ofs - bus_ofs;
|
|
int n;
|
|
map_word datum;
|
|
|
|
n = min_t(int, len, map_bankwidth(map)-gap);
|
|
datum = map_word_ff(map);
|
|
datum = map_word_load_partial(map, datum, buf, gap, n);
|
|
|
|
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
|
bus_ofs, datum, FL_WRITING);
|
|
if (ret)
|
|
return ret;
|
|
|
|
len -= n;
|
|
ofs += n;
|
|
buf += n;
|
|
(*retlen) += n;
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
while(len >= map_bankwidth(map)) {
|
|
map_word datum = map_word_load(map, buf);
|
|
|
|
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
|
ofs, datum, FL_WRITING);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ofs += map_bankwidth(map);
|
|
buf += map_bankwidth(map);
|
|
(*retlen) += map_bankwidth(map);
|
|
len -= map_bankwidth(map);
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (len & (map_bankwidth(map)-1)) {
|
|
map_word datum;
|
|
|
|
datum = map_word_ff(map);
|
|
datum = map_word_load_partial(map, datum, buf, 0, len);
|
|
|
|
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
|
ofs, datum, FL_WRITING);
|
|
if (ret)
|
|
return ret;
|
|
|
|
(*retlen) += len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, const struct kvec **pvec,
|
|
unsigned long *pvec_seek, int len)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
map_word status, write_cmd, datum;
|
|
unsigned long cmd_adr;
|
|
int ret, wbufsize, word_gap, words;
|
|
const struct kvec *vec;
|
|
unsigned long vec_seek;
|
|
unsigned long initial_adr;
|
|
int initial_len = len;
|
|
|
|
wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
|
|
adr += chip->start;
|
|
initial_adr = adr;
|
|
cmd_adr = adr & ~(wbufsize-1);
|
|
|
|
/* Let's determine this according to the interleave only once */
|
|
write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9);
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, cmd_adr, FL_WRITING);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, cmd_adr);
|
|
|
|
/* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
|
|
[...], the device will not accept any more Write to Buffer commands".
|
|
So we must check here and reset those bits if they're set. Otherwise
|
|
we're just pissing in the wind */
|
|
if (chip->state != FL_STATUS) {
|
|
map_write(map, CMD(0x70), cmd_adr);
|
|
chip->state = FL_STATUS;
|
|
}
|
|
status = map_read(map, cmd_adr);
|
|
if (map_word_bitsset(map, status, CMD(0x30))) {
|
|
xip_enable(map, chip, cmd_adr);
|
|
printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
|
|
xip_disable(map, chip, cmd_adr);
|
|
map_write(map, CMD(0x50), cmd_adr);
|
|
map_write(map, CMD(0x70), cmd_adr);
|
|
}
|
|
|
|
chip->state = FL_WRITING_TO_BUFFER;
|
|
map_write(map, write_cmd, cmd_adr);
|
|
ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
|
|
if (ret) {
|
|
/* Argh. Not ready for write to buffer */
|
|
map_word Xstatus = map_read(map, cmd_adr);
|
|
map_write(map, CMD(0x70), cmd_adr);
|
|
chip->state = FL_STATUS;
|
|
status = map_read(map, cmd_adr);
|
|
map_write(map, CMD(0x50), cmd_adr);
|
|
map_write(map, CMD(0x70), cmd_adr);
|
|
xip_enable(map, chip, cmd_adr);
|
|
printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
|
|
map->name, Xstatus.x[0], status.x[0]);
|
|
goto out;
|
|
}
|
|
|
|
/* Figure out the number of words to write */
|
|
word_gap = (-adr & (map_bankwidth(map)-1));
|
|
words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
|
|
if (!word_gap) {
|
|
words--;
|
|
} else {
|
|
word_gap = map_bankwidth(map) - word_gap;
|
|
adr -= word_gap;
|
|
datum = map_word_ff(map);
|
|
}
|
|
|
|
/* Write length of data to come */
|
|
map_write(map, CMD(words), cmd_adr );
|
|
|
|
/* Write data */
|
|
vec = *pvec;
|
|
vec_seek = *pvec_seek;
|
|
do {
|
|
int n = map_bankwidth(map) - word_gap;
|
|
if (n > vec->iov_len - vec_seek)
|
|
n = vec->iov_len - vec_seek;
|
|
if (n > len)
|
|
n = len;
|
|
|
|
if (!word_gap && len < map_bankwidth(map))
|
|
datum = map_word_ff(map);
|
|
|
|
datum = map_word_load_partial(map, datum,
|
|
vec->iov_base + vec_seek,
|
|
word_gap, n);
|
|
|
|
len -= n;
|
|
word_gap += n;
|
|
if (!len || word_gap == map_bankwidth(map)) {
|
|
map_write(map, datum, adr);
|
|
adr += map_bankwidth(map);
|
|
word_gap = 0;
|
|
}
|
|
|
|
vec_seek += n;
|
|
if (vec_seek == vec->iov_len) {
|
|
vec++;
|
|
vec_seek = 0;
|
|
}
|
|
} while (len);
|
|
*pvec = vec;
|
|
*pvec_seek = vec_seek;
|
|
|
|
/* GO GO GO */
|
|
map_write(map, CMD(0xd0), cmd_adr);
|
|
chip->state = FL_WRITING;
|
|
|
|
ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
|
|
initial_adr, initial_len,
|
|
chip->buffer_write_time,
|
|
chip->buffer_write_time_max);
|
|
if (ret) {
|
|
map_write(map, CMD(0x70), cmd_adr);
|
|
chip->state = FL_STATUS;
|
|
xip_enable(map, chip, cmd_adr);
|
|
printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
|
|
goto out;
|
|
}
|
|
|
|
/* check for errors */
|
|
status = map_read(map, cmd_adr);
|
|
if (map_word_bitsset(map, status, CMD(0x1a))) {
|
|
unsigned long chipstatus = MERGESTATUS(status);
|
|
|
|
/* reset status */
|
|
map_write(map, CMD(0x50), cmd_adr);
|
|
map_write(map, CMD(0x70), cmd_adr);
|
|
xip_enable(map, chip, cmd_adr);
|
|
|
|
if (chipstatus & 0x02) {
|
|
ret = -EROFS;
|
|
} else if (chipstatus & 0x08) {
|
|
printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
|
|
ret = -EIO;
|
|
} else {
|
|
printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
xip_enable(map, chip, cmd_adr);
|
|
out: DISABLE_VPP(map);
|
|
put_chip(map, chip, cmd_adr);
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
|
|
unsigned long count, loff_t to, size_t *retlen)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
|
|
int ret = 0;
|
|
int chipnum;
|
|
unsigned long ofs, vec_seek, i;
|
|
size_t len = 0;
|
|
|
|
for (i = 0; i < count; i++)
|
|
len += vecs[i].iov_len;
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
chipnum = to >> cfi->chipshift;
|
|
ofs = to - (chipnum << cfi->chipshift);
|
|
vec_seek = 0;
|
|
|
|
do {
|
|
/* We must not cross write block boundaries */
|
|
int size = wbufsize - (ofs & (wbufsize-1));
|
|
|
|
if (size > len)
|
|
size = len;
|
|
ret = do_write_buffer(map, &cfi->chips[chipnum],
|
|
ofs, &vecs, &vec_seek, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ofs += size;
|
|
(*retlen) += size;
|
|
len -= size;
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
}
|
|
|
|
/* Be nice and reschedule with the chip in a usable state for other
|
|
processes. */
|
|
cond_resched();
|
|
|
|
} while (len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
|
|
size_t len, size_t *retlen, const u_char *buf)
|
|
{
|
|
struct kvec vec;
|
|
|
|
vec.iov_base = (void *) buf;
|
|
vec.iov_len = len;
|
|
|
|
return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
|
|
}
|
|
|
|
static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, int len, void *thunk)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
map_word status;
|
|
int retries = 3;
|
|
int ret;
|
|
|
|
adr += chip->start;
|
|
|
|
retry:
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, adr, FL_ERASING);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
XIP_INVAL_CACHED_RANGE(map, adr, len);
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, adr);
|
|
|
|
/* Clear the status register first */
|
|
map_write(map, CMD(0x50), adr);
|
|
|
|
/* Now erase */
|
|
map_write(map, CMD(0x20), adr);
|
|
map_write(map, CMD(0xD0), adr);
|
|
chip->state = FL_ERASING;
|
|
chip->erase_suspended = 0;
|
|
|
|
ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
|
|
adr, len,
|
|
chip->erase_time,
|
|
chip->erase_time_max);
|
|
if (ret) {
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = FL_STATUS;
|
|
xip_enable(map, chip, adr);
|
|
printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
|
|
goto out;
|
|
}
|
|
|
|
/* We've broken this before. It doesn't hurt to be safe */
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = FL_STATUS;
|
|
status = map_read(map, adr);
|
|
|
|
/* check for errors */
|
|
if (map_word_bitsset(map, status, CMD(0x3a))) {
|
|
unsigned long chipstatus = MERGESTATUS(status);
|
|
|
|
/* Reset the error bits */
|
|
map_write(map, CMD(0x50), adr);
|
|
map_write(map, CMD(0x70), adr);
|
|
xip_enable(map, chip, adr);
|
|
|
|
if ((chipstatus & 0x30) == 0x30) {
|
|
printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
|
|
ret = -EINVAL;
|
|
} else if (chipstatus & 0x02) {
|
|
/* Protection bit set */
|
|
ret = -EROFS;
|
|
} else if (chipstatus & 0x8) {
|
|
/* Voltage */
|
|
printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
|
|
ret = -EIO;
|
|
} else if (chipstatus & 0x20 && retries--) {
|
|
printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
|
|
DISABLE_VPP(map);
|
|
put_chip(map, chip, adr);
|
|
mutex_unlock(&chip->mutex);
|
|
goto retry;
|
|
} else {
|
|
printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
|
|
ret = -EIO;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
xip_enable(map, chip, adr);
|
|
out: DISABLE_VPP(map);
|
|
put_chip(map, chip, adr);
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
unsigned long ofs, len;
|
|
int ret;
|
|
|
|
ofs = instr->addr;
|
|
len = instr->len;
|
|
|
|
ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cfi_intelext_sync (struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
int ret = 0;
|
|
|
|
for (i=0; !ret && i<cfi->numchips; i++) {
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, chip->start, FL_SYNCING);
|
|
|
|
if (!ret) {
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_SYNCING;
|
|
/* No need to wake_up() on this state change -
|
|
* as the whole point is that nobody can do anything
|
|
* with the chip now anyway.
|
|
*/
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
|
|
/* Unlock the chips again */
|
|
|
|
for (i--; i >=0; i--) {
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
if (chip->state == FL_SYNCING) {
|
|
chip->state = chip->oldstate;
|
|
chip->oldstate = FL_READY;
|
|
wake_up(&chip->wq);
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
}
|
|
|
|
static int __xipram do_getlockstatus_oneblock(struct map_info *map,
|
|
struct flchip *chip,
|
|
unsigned long adr,
|
|
int len, void *thunk)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int status, ofs_factor = cfi->interleave * cfi->device_type;
|
|
|
|
adr += chip->start;
|
|
xip_disable(map, chip, adr+(2*ofs_factor));
|
|
map_write(map, CMD(0x90), adr+(2*ofs_factor));
|
|
chip->state = FL_JEDEC_QUERY;
|
|
status = cfi_read_query(map, adr+(2*ofs_factor));
|
|
xip_enable(map, chip, 0);
|
|
return status;
|
|
}
|
|
|
|
#ifdef DEBUG_LOCK_BITS
|
|
static int __xipram do_printlockstatus_oneblock(struct map_info *map,
|
|
struct flchip *chip,
|
|
unsigned long adr,
|
|
int len, void *thunk)
|
|
{
|
|
printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
|
|
adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
|
|
#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
|
|
|
|
static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, int len, void *thunk)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
|
|
int mdelay;
|
|
int ret;
|
|
|
|
adr += chip->start;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, adr, FL_LOCKING);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, adr);
|
|
|
|
map_write(map, CMD(0x60), adr);
|
|
if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
|
|
map_write(map, CMD(0x01), adr);
|
|
chip->state = FL_LOCKING;
|
|
} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
|
|
map_write(map, CMD(0xD0), adr);
|
|
chip->state = FL_UNLOCKING;
|
|
} else
|
|
BUG();
|
|
|
|
/*
|
|
* If Instant Individual Block Locking supported then no need
|
|
* to delay.
|
|
*/
|
|
/*
|
|
* Unlocking may take up to 1.4 seconds on some Intel flashes. So
|
|
* lets use a max of 1.5 seconds (1500ms) as timeout.
|
|
*
|
|
* See "Clear Block Lock-Bits Time" on page 40 in
|
|
* "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual
|
|
* from February 2003
|
|
*/
|
|
mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0;
|
|
|
|
ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000);
|
|
if (ret) {
|
|
map_write(map, CMD(0x70), adr);
|
|
chip->state = FL_STATUS;
|
|
xip_enable(map, chip, adr);
|
|
printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
|
|
goto out;
|
|
}
|
|
|
|
xip_enable(map, chip, adr);
|
|
out: DISABLE_VPP(map);
|
|
put_chip(map, chip, adr);
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
int ret;
|
|
|
|
#ifdef DEBUG_LOCK_BITS
|
|
printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
|
|
__func__, ofs, len);
|
|
cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
|
|
ofs, len, NULL);
|
|
#endif
|
|
|
|
ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
|
|
ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
|
|
|
|
#ifdef DEBUG_LOCK_BITS
|
|
printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
|
|
__func__, ret);
|
|
cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
|
|
ofs, len, NULL);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
int ret;
|
|
|
|
#ifdef DEBUG_LOCK_BITS
|
|
printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
|
|
__func__, ofs, len);
|
|
cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
|
|
ofs, len, NULL);
|
|
#endif
|
|
|
|
ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
|
|
ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
|
|
|
|
#ifdef DEBUG_LOCK_BITS
|
|
printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
|
|
__func__, ret);
|
|
cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
|
|
ofs, len, NULL);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
|
|
uint64_t len)
|
|
{
|
|
return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
|
|
ofs, len, NULL) ? 1 : 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_OTP
|
|
|
|
typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
|
|
u_long data_offset, u_char *buf, u_int size,
|
|
u_long prot_offset, u_int groupno, u_int groupsize);
|
|
|
|
static int __xipram
|
|
do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
|
|
u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ret;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
/* let's ensure we're not reading back cached data from array mode */
|
|
INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
|
|
|
|
xip_disable(map, chip, chip->start);
|
|
if (chip->state != FL_JEDEC_QUERY) {
|
|
map_write(map, CMD(0x90), chip->start);
|
|
chip->state = FL_JEDEC_QUERY;
|
|
}
|
|
map_copy_from(map, buf, chip->start + offset, size);
|
|
xip_enable(map, chip, chip->start);
|
|
|
|
/* then ensure we don't keep OTP data in the cache */
|
|
INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
|
|
|
|
put_chip(map, chip, chip->start);
|
|
mutex_unlock(&chip->mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
|
|
u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
|
|
{
|
|
int ret;
|
|
|
|
while (size) {
|
|
unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
|
|
int gap = offset - bus_ofs;
|
|
int n = min_t(int, size, map_bankwidth(map)-gap);
|
|
map_word datum = map_word_ff(map);
|
|
|
|
datum = map_word_load_partial(map, datum, buf, gap, n);
|
|
ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
offset += n;
|
|
buf += n;
|
|
size -= n;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
|
|
u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
map_word datum;
|
|
|
|
/* make sure area matches group boundaries */
|
|
if (size != grpsz)
|
|
return -EXDEV;
|
|
|
|
datum = map_word_ff(map);
|
|
datum = map_word_clr(map, datum, CMD(1 << grpno));
|
|
return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
|
|
}
|
|
|
|
static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf,
|
|
otp_op_t action, int user_regs)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
|
|
struct flchip *chip;
|
|
struct cfi_intelext_otpinfo *otp;
|
|
u_long devsize, reg_prot_offset, data_offset;
|
|
u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
|
|
u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
|
|
int ret;
|
|
|
|
*retlen = 0;
|
|
|
|
/* Check that we actually have some OTP registers */
|
|
if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
|
|
return -ENODATA;
|
|
|
|
/* we need real chips here not virtual ones */
|
|
devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
|
|
chip_step = devsize >> cfi->chipshift;
|
|
chip_num = 0;
|
|
|
|
/* Some chips have OTP located in the _top_ partition only.
|
|
For example: Intel 28F256L18T (T means top-parameter device) */
|
|
if (cfi->mfr == CFI_MFR_INTEL) {
|
|
switch (cfi->id) {
|
|
case 0x880b:
|
|
case 0x880c:
|
|
case 0x880d:
|
|
chip_num = chip_step - 1;
|
|
}
|
|
}
|
|
|
|
for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
|
|
chip = &cfi->chips[chip_num];
|
|
otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
|
|
|
|
/* first OTP region */
|
|
field = 0;
|
|
reg_prot_offset = extp->ProtRegAddr;
|
|
reg_fact_groups = 1;
|
|
reg_fact_size = 1 << extp->FactProtRegSize;
|
|
reg_user_groups = 1;
|
|
reg_user_size = 1 << extp->UserProtRegSize;
|
|
|
|
while (len > 0) {
|
|
/* flash geometry fixup */
|
|
data_offset = reg_prot_offset + 1;
|
|
data_offset *= cfi->interleave * cfi->device_type;
|
|
reg_prot_offset *= cfi->interleave * cfi->device_type;
|
|
reg_fact_size *= cfi->interleave;
|
|
reg_user_size *= cfi->interleave;
|
|
|
|
if (user_regs) {
|
|
groups = reg_user_groups;
|
|
groupsize = reg_user_size;
|
|
/* skip over factory reg area */
|
|
groupno = reg_fact_groups;
|
|
data_offset += reg_fact_groups * reg_fact_size;
|
|
} else {
|
|
groups = reg_fact_groups;
|
|
groupsize = reg_fact_size;
|
|
groupno = 0;
|
|
}
|
|
|
|
while (len > 0 && groups > 0) {
|
|
if (!action) {
|
|
/*
|
|
* Special case: if action is NULL
|
|
* we fill buf with otp_info records.
|
|
*/
|
|
struct otp_info *otpinfo;
|
|
map_word lockword;
|
|
len -= sizeof(struct otp_info);
|
|
if (len <= 0)
|
|
return -ENOSPC;
|
|
ret = do_otp_read(map, chip,
|
|
reg_prot_offset,
|
|
(u_char *)&lockword,
|
|
map_bankwidth(map),
|
|
0, 0, 0);
|
|
if (ret)
|
|
return ret;
|
|
otpinfo = (struct otp_info *)buf;
|
|
otpinfo->start = from;
|
|
otpinfo->length = groupsize;
|
|
otpinfo->locked =
|
|
!map_word_bitsset(map, lockword,
|
|
CMD(1 << groupno));
|
|
from += groupsize;
|
|
buf += sizeof(*otpinfo);
|
|
*retlen += sizeof(*otpinfo);
|
|
} else if (from >= groupsize) {
|
|
from -= groupsize;
|
|
data_offset += groupsize;
|
|
} else {
|
|
int size = groupsize;
|
|
data_offset += from;
|
|
size -= from;
|
|
from = 0;
|
|
if (size > len)
|
|
size = len;
|
|
ret = action(map, chip, data_offset,
|
|
buf, size, reg_prot_offset,
|
|
groupno, groupsize);
|
|
if (ret < 0)
|
|
return ret;
|
|
buf += size;
|
|
len -= size;
|
|
*retlen += size;
|
|
data_offset += size;
|
|
}
|
|
groupno++;
|
|
groups--;
|
|
}
|
|
|
|
/* next OTP region */
|
|
if (++field == extp->NumProtectionFields)
|
|
break;
|
|
reg_prot_offset = otp->ProtRegAddr;
|
|
reg_fact_groups = otp->FactGroups;
|
|
reg_fact_size = 1 << otp->FactProtRegSize;
|
|
reg_user_groups = otp->UserGroups;
|
|
reg_user_size = 1 << otp->UserProtRegSize;
|
|
otp++;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
|
|
size_t len, size_t *retlen,
|
|
u_char *buf)
|
|
{
|
|
return cfi_intelext_otp_walk(mtd, from, len, retlen,
|
|
buf, do_otp_read, 0);
|
|
}
|
|
|
|
static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
|
|
size_t len, size_t *retlen,
|
|
u_char *buf)
|
|
{
|
|
return cfi_intelext_otp_walk(mtd, from, len, retlen,
|
|
buf, do_otp_read, 1);
|
|
}
|
|
|
|
static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
|
|
size_t len, size_t *retlen,
|
|
u_char *buf)
|
|
{
|
|
return cfi_intelext_otp_walk(mtd, from, len, retlen,
|
|
buf, do_otp_write, 1);
|
|
}
|
|
|
|
static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
|
|
loff_t from, size_t len)
|
|
{
|
|
size_t retlen;
|
|
return cfi_intelext_otp_walk(mtd, from, len, &retlen,
|
|
NULL, do_otp_lock, 1);
|
|
}
|
|
|
|
static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
|
|
struct otp_info *buf, size_t len)
|
|
{
|
|
size_t retlen;
|
|
int ret;
|
|
|
|
ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
|
|
return ret ? : retlen;
|
|
}
|
|
|
|
static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
|
|
struct otp_info *buf, size_t len)
|
|
{
|
|
size_t retlen;
|
|
int ret;
|
|
|
|
ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
|
|
return ret ? : retlen;
|
|
}
|
|
|
|
#endif
|
|
|
|
static void cfi_intelext_save_locks(struct mtd_info *mtd)
|
|
{
|
|
struct mtd_erase_region_info *region;
|
|
int block, status, i;
|
|
unsigned long adr;
|
|
size_t len;
|
|
|
|
for (i = 0; i < mtd->numeraseregions; i++) {
|
|
region = &mtd->eraseregions[i];
|
|
if (!region->lockmap)
|
|
continue;
|
|
|
|
for (block = 0; block < region->numblocks; block++){
|
|
len = region->erasesize;
|
|
adr = region->offset + block * len;
|
|
|
|
status = cfi_varsize_frob(mtd,
|
|
do_getlockstatus_oneblock, adr, len, NULL);
|
|
if (status)
|
|
set_bit(block, region->lockmap);
|
|
else
|
|
clear_bit(block, region->lockmap);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int cfi_intelext_suspend(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
int ret = 0;
|
|
|
|
if ((mtd->flags & MTD_POWERUP_LOCK)
|
|
&& extp && (extp->FeatureSupport & (1 << 5)))
|
|
cfi_intelext_save_locks(mtd);
|
|
|
|
for (i=0; !ret && i<cfi->numchips; i++) {
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
switch (chip->state) {
|
|
case FL_READY:
|
|
case FL_STATUS:
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
if (chip->oldstate == FL_READY) {
|
|
/* place the chip in a known state before suspend */
|
|
map_write(map, CMD(0xFF), cfi->chips[i].start);
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_PM_SUSPENDED;
|
|
/* No need to wake_up() on this state change -
|
|
* as the whole point is that nobody can do anything
|
|
* with the chip now anyway.
|
|
*/
|
|
} else {
|
|
/* There seems to be an operation pending. We must wait for it. */
|
|
printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
|
|
ret = -EAGAIN;
|
|
}
|
|
break;
|
|
default:
|
|
/* Should we actually wait? Once upon a time these routines weren't
|
|
allowed to. Or should we return -EAGAIN, because the upper layers
|
|
ought to have already shut down anything which was using the device
|
|
anyway? The latter for now. */
|
|
printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state);
|
|
ret = -EAGAIN;
|
|
case FL_PM_SUSPENDED:
|
|
break;
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
|
|
/* Unlock the chips again */
|
|
|
|
if (ret) {
|
|
for (i--; i >=0; i--) {
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
if (chip->state == FL_PM_SUSPENDED) {
|
|
/* No need to force it into a known state here,
|
|
because we're returning failure, and it didn't
|
|
get power cycled */
|
|
chip->state = chip->oldstate;
|
|
chip->oldstate = FL_READY;
|
|
wake_up(&chip->wq);
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void cfi_intelext_restore_locks(struct mtd_info *mtd)
|
|
{
|
|
struct mtd_erase_region_info *region;
|
|
int block, i;
|
|
unsigned long adr;
|
|
size_t len;
|
|
|
|
for (i = 0; i < mtd->numeraseregions; i++) {
|
|
region = &mtd->eraseregions[i];
|
|
if (!region->lockmap)
|
|
continue;
|
|
|
|
for_each_clear_bit(block, region->lockmap, region->numblocks) {
|
|
len = region->erasesize;
|
|
adr = region->offset + block * len;
|
|
cfi_intelext_unlock(mtd, adr, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cfi_intelext_resume(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
|
|
for (i=0; i<cfi->numchips; i++) {
|
|
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
/* Go to known state. Chip may have been power cycled */
|
|
if (chip->state == FL_PM_SUSPENDED) {
|
|
map_write(map, CMD(0xFF), cfi->chips[i].start);
|
|
chip->oldstate = chip->state = FL_READY;
|
|
wake_up(&chip->wq);
|
|
}
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
|
|
if ((mtd->flags & MTD_POWERUP_LOCK)
|
|
&& extp && (extp->FeatureSupport & (1 << 5)))
|
|
cfi_intelext_restore_locks(mtd);
|
|
}
|
|
|
|
static int cfi_intelext_reset(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i, ret;
|
|
|
|
for (i=0; i < cfi->numchips; i++) {
|
|
struct flchip *chip = &cfi->chips[i];
|
|
|
|
/* force the completion of any ongoing operation
|
|
and switch to array mode so any bootloader in
|
|
flash is accessible for soft reboot. */
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
|
|
if (!ret) {
|
|
map_write(map, CMD(0xff), chip->start);
|
|
chip->state = FL_SHUTDOWN;
|
|
put_chip(map, chip, chip->start);
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
|
|
void *v)
|
|
{
|
|
struct mtd_info *mtd;
|
|
|
|
mtd = container_of(nb, struct mtd_info, reboot_notifier);
|
|
cfi_intelext_reset(mtd);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static void cfi_intelext_destroy(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct mtd_erase_region_info *region;
|
|
int i;
|
|
cfi_intelext_reset(mtd);
|
|
unregister_reboot_notifier(&mtd->reboot_notifier);
|
|
kfree(cfi->cmdset_priv);
|
|
kfree(cfi->cfiq);
|
|
kfree(cfi->chips[0].priv);
|
|
kfree(cfi);
|
|
for (i = 0; i < mtd->numeraseregions; i++) {
|
|
region = &mtd->eraseregions[i];
|
|
if (region->lockmap)
|
|
kfree(region->lockmap);
|
|
}
|
|
kfree(mtd->eraseregions);
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
|
|
MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
|
|
MODULE_ALIAS("cfi_cmdset_0003");
|
|
MODULE_ALIAS("cfi_cmdset_0200");
|