linux/arch/powerpc/boot/devtree.c
Mark A. Greer 8895ea483e [POWERPC] Add dt_xlate_addr() to bootwrapper
dt_xlate_reg() looks up the 'reg' property in the specified node
to get the address and size to translate.  Add dt_xlate_addr()
which is passed in the address and size to translate.

Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-04-30 11:02:05 +10:00

308 lines
7.0 KiB
C

/*
* devtree.c - convenience functions for device tree manipulation
* Copyright 2007 David Gibson, IBM Corporation.
* Copyright (c) 2007 Freescale Semiconductor, Inc.
*
* Authors: David Gibson <david@gibson.dropbear.id.au>
* Scott Wood <scottwood@freescale.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <stdarg.h>
#include <stddef.h>
#include "types.h"
#include "string.h"
#include "stdio.h"
#include "ops.h"
void dt_fixup_memory(u64 start, u64 size)
{
void *root, *memory;
int naddr, nsize, i;
u32 memreg[4];
root = finddevice("/");
if (getprop(root, "#address-cells", &naddr, sizeof(naddr)) < 0)
naddr = 2;
if (naddr < 1 || naddr > 2)
fatal("Can't cope with #address-cells == %d in /\n\r", naddr);
if (getprop(root, "#size-cells", &nsize, sizeof(nsize)) < 0)
nsize = 1;
if (nsize < 1 || nsize > 2)
fatal("Can't cope with #size-cells == %d in /\n\r", nsize);
i = 0;
if (naddr == 2)
memreg[i++] = start >> 32;
memreg[i++] = start & 0xffffffff;
if (nsize == 2)
memreg[i++] = size >> 32;
memreg[i++] = size & 0xffffffff;
memory = finddevice("/memory");
if (! memory) {
memory = create_node(NULL, "memory");
setprop_str(memory, "device_type", "memory");
}
printf("Memory <- <0x%x", memreg[0]);
for (i = 1; i < (naddr + nsize); i++)
printf(" 0x%x", memreg[i]);
printf("> (%ldMB)\n\r", (unsigned long)(size >> 20));
setprop(memory, "reg", memreg, (naddr + nsize)*sizeof(u32));
}
#define MHZ(x) ((x + 500000) / 1000000)
void dt_fixup_cpu_clocks(u32 cpu, u32 tb, u32 bus)
{
void *devp = NULL;
printf("CPU clock-frequency <- 0x%x (%dMHz)\n\r", cpu, MHZ(cpu));
printf("CPU timebase-frequency <- 0x%x (%dMHz)\n\r", tb, MHZ(tb));
if (bus > 0)
printf("CPU bus-frequency <- 0x%x (%dMHz)\n\r", bus, MHZ(bus));
while ((devp = find_node_by_devtype(devp, "cpu"))) {
setprop_val(devp, "clock-frequency", cpu);
setprop_val(devp, "timebase-frequency", tb);
if (bus > 0)
setprop_val(devp, "bus-frequency", bus);
}
}
void dt_fixup_clock(const char *path, u32 freq)
{
void *devp = finddevice(path);
if (devp) {
printf("%s: clock-frequency <- %x (%dMHz)\n\r", path, freq, MHZ(freq));
setprop_val(devp, "clock-frequency", freq);
}
}
void __dt_fixup_mac_addresses(u32 startindex, ...)
{
va_list ap;
u32 index = startindex;
void *devp;
const u8 *addr;
va_start(ap, startindex);
while ((addr = va_arg(ap, const u8 *))) {
devp = find_node_by_prop_value(NULL, "linux,network-index",
(void*)&index, sizeof(index));
printf("ENET%d: local-mac-address <-"
" %02x:%02x:%02x:%02x:%02x:%02x\n\r", index,
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
if (devp)
setprop(devp, "local-mac-address", addr, 6);
index++;
}
va_end(ap);
}
#define MAX_ADDR_CELLS 4
#define MAX_RANGES 8
static void get_reg_format(void *node, u32 *naddr, u32 *nsize)
{
if (getprop(node, "#address-cells", naddr, 4) != 4)
*naddr = 2;
if (getprop(node, "#size-cells", nsize, 4) != 4)
*nsize = 1;
}
static void copy_val(u32 *dest, u32 *src, int naddr)
{
int pad = MAX_ADDR_CELLS - naddr;
memset(dest, 0, pad * 4);
memcpy(dest + pad, src, naddr * 4);
}
static int sub_reg(u32 *reg, u32 *sub)
{
int i, borrow = 0;
for (i = MAX_ADDR_CELLS - 1; i >= 0; i--) {
int prev_borrow = borrow;
borrow = reg[i] < sub[i] + prev_borrow;
reg[i] -= sub[i] + prev_borrow;
}
return !borrow;
}
static int add_reg(u32 *reg, u32 *add, int naddr)
{
int i, carry = 0;
for (i = MAX_ADDR_CELLS - 1; i >= MAX_ADDR_CELLS - naddr; i--) {
u64 tmp = (u64)reg[i] + add[i] + carry;
carry = tmp >> 32;
reg[i] = (u32)tmp;
}
return !carry;
}
/* It is assumed that if the first byte of reg fits in a
* range, then the whole reg block fits.
*/
static int compare_reg(u32 *reg, u32 *range, u32 *rangesize)
{
int i;
u32 end;
for (i = 0; i < MAX_ADDR_CELLS; i++) {
if (reg[i] < range[i])
return 0;
if (reg[i] > range[i])
break;
}
for (i = 0; i < MAX_ADDR_CELLS; i++) {
end = range[i] + rangesize[i];
if (reg[i] < end)
break;
if (reg[i] > end)
return 0;
}
return reg[i] != end;
}
/* reg must be MAX_ADDR_CELLS */
static int find_range(u32 *reg, u32 *ranges, int nregaddr,
int naddr, int nsize, int buflen)
{
int nrange = nregaddr + naddr + nsize;
int i;
for (i = 0; i + nrange <= buflen; i += nrange) {
u32 range_addr[MAX_ADDR_CELLS];
u32 range_size[MAX_ADDR_CELLS];
copy_val(range_addr, ranges + i, naddr);
copy_val(range_size, ranges + i + nregaddr + naddr, nsize);
if (compare_reg(reg, range_addr, range_size))
return i;
}
return -1;
}
/* Currently only generic buses without special encodings are supported.
* In particular, PCI is not supported. Also, only the beginning of the
* reg block is tracked; size is ignored except in ranges.
*/
static u32 dt_xlate_buf[MAX_ADDR_CELLS * MAX_RANGES * 3];
static int dt_xlate(void *node, int res, int reglen, unsigned long *addr,
unsigned long *size)
{
u32 last_addr[MAX_ADDR_CELLS];
u32 this_addr[MAX_ADDR_CELLS];
void *parent;
u64 ret_addr, ret_size;
u32 naddr, nsize, prev_naddr;
int buflen, offset;
parent = get_parent(node);
if (!parent)
return 0;
get_reg_format(parent, &naddr, &nsize);
if (nsize > 2)
return 0;
offset = (naddr + nsize) * res;
if (reglen < offset + naddr + nsize ||
sizeof(dt_xlate_buf) < offset + naddr + nsize)
return 0;
copy_val(last_addr, dt_xlate_buf + offset, naddr);
ret_size = dt_xlate_buf[offset + naddr];
if (nsize == 2) {
ret_size <<= 32;
ret_size |= dt_xlate_buf[offset + naddr + 1];
}
while ((node = get_parent(node))) {
prev_naddr = naddr;
get_reg_format(node, &naddr, &nsize);
buflen = getprop(node, "ranges", dt_xlate_buf,
sizeof(dt_xlate_buf));
if (buflen < 0)
continue;
if (buflen > sizeof(dt_xlate_buf))
return 0;
offset = find_range(last_addr, dt_xlate_buf, prev_naddr,
naddr, nsize, buflen / 4);
if (offset < 0)
return 0;
copy_val(this_addr, dt_xlate_buf + offset, prev_naddr);
if (!sub_reg(last_addr, this_addr))
return 0;
copy_val(this_addr, dt_xlate_buf + offset + prev_naddr, naddr);
if (!add_reg(last_addr, this_addr, naddr))
return 0;
}
if (naddr > 2)
return 0;
ret_addr = ((u64)last_addr[2] << 32) | last_addr[3];
if (sizeof(void *) == 4 &&
(ret_addr >= 0x100000000ULL || ret_size > 0x100000000ULL ||
ret_addr + ret_size > 0x100000000ULL))
return 0;
*addr = ret_addr;
if (size)
*size = ret_size;
return 1;
}
int dt_xlate_reg(void *node, int res, unsigned long *addr, unsigned long *size)
{
int reglen;
reglen = getprop(node, "reg", dt_xlate_buf, sizeof(dt_xlate_buf)) / 4;
return dt_xlate(node, res, reglen, addr, size);
}
int dt_xlate_addr(void *node, u32 *buf, int buflen, unsigned long *xlated_addr)
{
if (buflen > sizeof(dt_xlate_buf))
return 0;
memcpy(dt_xlate_buf, buf, buflen);
return dt_xlate(node, 0, buflen / 4, xlated_addr, NULL);
}