linux/drivers/net/ethernet/ti/cpsw_new.c
Lorenzo Bianconi a8225efdf3 net: ethernet: ti: fix netdevice stats for XDP
Align netdevice statistics when the device is running in XDP mode
to other upstream drivers. In particular report to user-space rx
packets even if they are not forwarded to the networking stack
(XDP_PASS) but if they are redirected (XDP_REDIRECT), dropped (XDP_DROP)
or sent back using the same interface (XDP_TX). This patch allows the
system administrator to verify the device is receiving data correctly.

Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Link: https://lore.kernel.org/r/a457cb17dd9c58c116d64ee34c354b2e89c0ff8f.1612375372.git.lorenzo@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-06 10:48:27 -08:00

2131 lines
52 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Texas Instruments Ethernet Switch Driver
*
* Copyright (C) 2019 Texas Instruments
*/
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/net_tstamp.h>
#include <linux/phy.h>
#include <linux/phy/phy.h>
#include <linux/delay.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/gpio/consumer.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_device.h>
#include <linux/if_vlan.h>
#include <linux/kmemleak.h>
#include <linux/sys_soc.h>
#include <net/page_pool.h>
#include <net/pkt_cls.h>
#include <net/devlink.h>
#include "cpsw.h"
#include "cpsw_ale.h"
#include "cpsw_priv.h"
#include "cpsw_sl.h"
#include "cpsw_switchdev.h"
#include "cpts.h"
#include "davinci_cpdma.h"
#include <net/pkt_sched.h>
static int debug_level;
static int ale_ageout = CPSW_ALE_AGEOUT_DEFAULT;
static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
struct cpsw_devlink {
struct cpsw_common *cpsw;
};
enum cpsw_devlink_param_id {
CPSW_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
CPSW_DL_PARAM_SWITCH_MODE,
CPSW_DL_PARAM_ALE_BYPASS,
};
/* struct cpsw_common is not needed, kept here for compatibility
* reasons witrh the old driver
*/
static int cpsw_slave_index_priv(struct cpsw_common *cpsw,
struct cpsw_priv *priv)
{
if (priv->emac_port == HOST_PORT_NUM)
return -1;
return priv->emac_port - 1;
}
static bool cpsw_is_switch_en(struct cpsw_common *cpsw)
{
return !cpsw->data.dual_emac;
}
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
bool enable_uni = false;
int i;
if (cpsw_is_switch_en(cpsw))
return;
/* Enabling promiscuous mode for one interface will be
* common for both the interface as the interface shares
* the same hardware resource.
*/
for (i = 0; i < cpsw->data.slaves; i++)
if (cpsw->slaves[i].ndev &&
(cpsw->slaves[i].ndev->flags & IFF_PROMISC))
enable_uni = true;
if (!enable && enable_uni) {
enable = enable_uni;
dev_dbg(cpsw->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
}
if (enable) {
/* Enable unknown unicast, reg/unreg mcast */
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
ALE_P0_UNI_FLOOD, 1);
dev_dbg(cpsw->dev, "promiscuity enabled\n");
} else {
/* Disable unknown unicast */
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
ALE_P0_UNI_FLOOD, 0);
dev_dbg(cpsw->dev, "promiscuity disabled\n");
}
}
/**
* cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
* if it's not deleted
* @ndev: device to sync
* @addr: address to be added or deleted
* @vid: vlan id, if vid < 0 set/unset address for real device
* @add: add address if the flag is set or remove otherwise
*/
static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
int vid, int add)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int mask, flags, ret, slave_no;
slave_no = cpsw_slave_index(cpsw, priv);
if (vid < 0)
vid = cpsw->slaves[slave_no].port_vlan;
mask = ALE_PORT_HOST;
flags = vid ? ALE_VLAN : 0;
if (add)
ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
else
ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
return ret;
}
static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
{
struct addr_sync_ctx *sync_ctx = ctx;
struct netdev_hw_addr *ha;
int found = 0, ret = 0;
if (!vdev || !(vdev->flags & IFF_UP))
return 0;
/* vlan address is relevant if its sync_cnt != 0 */
netdev_for_each_mc_addr(ha, vdev) {
if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
found = ha->sync_cnt;
break;
}
}
if (found)
sync_ctx->consumed++;
if (sync_ctx->flush) {
if (!found)
cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
return 0;
}
if (found)
ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);
return ret;
}
static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
struct addr_sync_ctx sync_ctx;
int ret;
sync_ctx.consumed = 0;
sync_ctx.addr = addr;
sync_ctx.ndev = ndev;
sync_ctx.flush = 0;
ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
if (sync_ctx.consumed < num && !ret)
ret = cpsw_set_mc(ndev, addr, -1, 1);
return ret;
}
static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
struct addr_sync_ctx sync_ctx;
sync_ctx.consumed = 0;
sync_ctx.addr = addr;
sync_ctx.ndev = ndev;
sync_ctx.flush = 1;
vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
if (sync_ctx.consumed == num)
cpsw_set_mc(ndev, addr, -1, 0);
return 0;
}
static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
{
struct addr_sync_ctx *sync_ctx = ctx;
struct netdev_hw_addr *ha;
int found = 0;
if (!vdev || !(vdev->flags & IFF_UP))
return 0;
/* vlan address is relevant if its sync_cnt != 0 */
netdev_for_each_mc_addr(ha, vdev) {
if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
found = ha->sync_cnt;
break;
}
}
if (!found)
return 0;
sync_ctx->consumed++;
cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
return 0;
}
static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
{
struct addr_sync_ctx sync_ctx;
sync_ctx.addr = addr;
sync_ctx.ndev = ndev;
sync_ctx.consumed = 0;
vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
if (sync_ctx.consumed < num)
cpsw_set_mc(ndev, addr, -1, 0);
return 0;
}
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
if (ndev->flags & IFF_PROMISC) {
/* Enable promiscuous mode */
cpsw_set_promiscious(ndev, true);
cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, priv->emac_port);
return;
}
/* Disable promiscuous mode */
cpsw_set_promiscious(ndev, false);
/* Restore allmulti on vlans if necessary */
cpsw_ale_set_allmulti(cpsw->ale,
ndev->flags & IFF_ALLMULTI, priv->emac_port);
/* add/remove mcast address either for real netdev or for vlan */
__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
cpsw_del_mc_addr);
}
static unsigned int cpsw_rxbuf_total_len(unsigned int len)
{
len += CPSW_HEADROOM;
len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
return SKB_DATA_ALIGN(len);
}
static void cpsw_rx_handler(void *token, int len, int status)
{
struct page *new_page, *page = token;
void *pa = page_address(page);
int headroom = CPSW_HEADROOM;
struct cpsw_meta_xdp *xmeta;
struct cpsw_common *cpsw;
struct net_device *ndev;
int port, ch, pkt_size;
struct cpsw_priv *priv;
struct page_pool *pool;
struct sk_buff *skb;
struct xdp_buff xdp;
int ret = 0;
dma_addr_t dma;
xmeta = pa + CPSW_XMETA_OFFSET;
cpsw = ndev_to_cpsw(xmeta->ndev);
ndev = xmeta->ndev;
pkt_size = cpsw->rx_packet_max;
ch = xmeta->ch;
if (status >= 0) {
port = CPDMA_RX_SOURCE_PORT(status);
if (port)
ndev = cpsw->slaves[--port].ndev;
}
priv = netdev_priv(ndev);
pool = cpsw->page_pool[ch];
if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
/* In dual emac mode check for all interfaces */
if (cpsw->usage_count && status >= 0) {
/* The packet received is for the interface which
* is already down and the other interface is up
* and running, instead of freeing which results
* in reducing of the number of rx descriptor in
* DMA engine, requeue page back to cpdma.
*/
new_page = page;
goto requeue;
}
/* the interface is going down, pages are purged */
page_pool_recycle_direct(pool, page);
return;
}
new_page = page_pool_dev_alloc_pages(pool);
if (unlikely(!new_page)) {
new_page = page;
ndev->stats.rx_dropped++;
goto requeue;
}
if (priv->xdp_prog) {
int headroom = CPSW_HEADROOM, size = len;
xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]);
if (status & CPDMA_RX_VLAN_ENCAP) {
headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE;
size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE;
}
xdp_prepare_buff(&xdp, pa, headroom, size, false);
ret = cpsw_run_xdp(priv, ch, &xdp, page, priv->emac_port, &len);
if (ret != CPSW_XDP_PASS)
goto requeue;
headroom = xdp.data - xdp.data_hard_start;
/* XDP prog can modify vlan tag, so can't use encap header */
status &= ~CPDMA_RX_VLAN_ENCAP;
}
/* pass skb to netstack if no XDP prog or returned XDP_PASS */
skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size));
if (!skb) {
ndev->stats.rx_dropped++;
page_pool_recycle_direct(pool, page);
goto requeue;
}
skb->offload_fwd_mark = priv->offload_fwd_mark;
skb_reserve(skb, headroom);
skb_put(skb, len);
skb->dev = ndev;
if (status & CPDMA_RX_VLAN_ENCAP)
cpsw_rx_vlan_encap(skb);
if (priv->rx_ts_enabled)
cpts_rx_timestamp(cpsw->cpts, skb);
skb->protocol = eth_type_trans(skb, ndev);
/* unmap page as no netstack skb page recycling */
page_pool_release_page(pool, page);
netif_receive_skb(skb);
ndev->stats.rx_bytes += len;
ndev->stats.rx_packets++;
requeue:
xmeta = page_address(new_page) + CPSW_XMETA_OFFSET;
xmeta->ndev = ndev;
xmeta->ch = ch;
dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM;
ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma,
pkt_size, 0);
if (ret < 0) {
WARN_ON(ret == -ENOMEM);
page_pool_recycle_direct(pool, new_page);
}
}
static int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
unsigned short vid)
{
struct cpsw_common *cpsw = priv->cpsw;
int unreg_mcast_mask = 0;
int mcast_mask;
u32 port_mask;
int ret;
port_mask = (1 << priv->emac_port) | ALE_PORT_HOST;
mcast_mask = ALE_PORT_HOST;
if (priv->ndev->flags & IFF_ALLMULTI)
unreg_mcast_mask = mcast_mask;
ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
unreg_mcast_mask);
if (ret != 0)
return ret;
ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
HOST_PORT_NUM, ALE_VLAN, vid);
if (ret != 0)
goto clean_vid;
ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
mcast_mask, ALE_VLAN, vid, 0);
if (ret != 0)
goto clean_vlan_ucast;
return 0;
clean_vlan_ucast:
cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
HOST_PORT_NUM, ALE_VLAN, vid);
clean_vid:
cpsw_ale_del_vlan(cpsw->ale, vid, 0);
return ret;
}
static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
__be16 proto, u16 vid)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int ret, i;
if (cpsw_is_switch_en(cpsw)) {
dev_dbg(cpsw->dev, ".ndo_vlan_rx_add_vid called in switch mode\n");
return 0;
}
if (vid == cpsw->data.default_vlan)
return 0;
ret = pm_runtime_get_sync(cpsw->dev);
if (ret < 0) {
pm_runtime_put_noidle(cpsw->dev);
return ret;
}
/* In dual EMAC, reserved VLAN id should not be used for
* creating VLAN interfaces as this can break the dual
* EMAC port separation
*/
for (i = 0; i < cpsw->data.slaves; i++) {
if (cpsw->slaves[i].ndev &&
vid == cpsw->slaves[i].port_vlan) {
ret = -EINVAL;
goto err;
}
}
dev_dbg(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
ret = cpsw_add_vlan_ale_entry(priv, vid);
err:
pm_runtime_put(cpsw->dev);
return ret;
}
static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
{
struct cpsw_priv *priv = arg;
if (!vdev || !vid)
return 0;
cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
return 0;
}
/* restore resources after port reset */
static void cpsw_restore(struct cpsw_priv *priv)
{
struct cpsw_common *cpsw = priv->cpsw;
/* restore vlan configurations */
vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);
/* restore MQPRIO offload */
cpsw_mqprio_resume(&cpsw->slaves[priv->emac_port - 1], priv);
/* restore CBS offload */
cpsw_cbs_resume(&cpsw->slaves[priv->emac_port - 1], priv);
}
static void cpsw_init_stp_ale_entry(struct cpsw_common *cpsw)
{
char stpa[] = {0x01, 0x80, 0xc2, 0x0, 0x0, 0x0};
cpsw_ale_add_mcast(cpsw->ale, stpa,
ALE_PORT_HOST, ALE_SUPER, 0,
ALE_MCAST_BLOCK_LEARN_FWD);
}
static void cpsw_init_host_port_switch(struct cpsw_common *cpsw)
{
int vlan = cpsw->data.default_vlan;
writel(CPSW_FIFO_NORMAL_MODE, &cpsw->host_port_regs->tx_in_ctl);
writel(vlan, &cpsw->host_port_regs->port_vlan);
cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
ALE_ALL_PORTS, ALE_ALL_PORTS,
ALE_PORT_1 | ALE_PORT_2);
cpsw_init_stp_ale_entry(cpsw);
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 1);
dev_dbg(cpsw->dev, "Set P0_UNI_FLOOD\n");
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 0);
}
static void cpsw_init_host_port_dual_mac(struct cpsw_common *cpsw)
{
int vlan = cpsw->data.default_vlan;
writel(CPSW_FIFO_DUAL_MAC_MODE, &cpsw->host_port_regs->tx_in_ctl);
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 0);
dev_dbg(cpsw->dev, "unset P0_UNI_FLOOD\n");
writel(vlan, &cpsw->host_port_regs->port_vlan);
cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
/* learning make no sense in dual_mac mode */
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 1);
}
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
struct cpsw_common *cpsw = priv->cpsw;
u32 control_reg;
/* soft reset the controller and initialize ale */
soft_reset("cpsw", &cpsw->regs->soft_reset);
cpsw_ale_start(cpsw->ale);
/* switch to vlan unaware mode */
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
CPSW_ALE_VLAN_AWARE);
control_reg = readl(&cpsw->regs->control);
control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
writel(control_reg, &cpsw->regs->control);
/* setup host port priority mapping */
writel_relaxed(CPDMA_TX_PRIORITY_MAP,
&cpsw->host_port_regs->cpdma_tx_pri_map);
writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
/* disable priority elevation */
writel_relaxed(0, &cpsw->regs->ptype);
/* enable statistics collection only on all ports */
writel_relaxed(0x7, &cpsw->regs->stat_port_en);
/* Enable internal fifo flow control */
writel(0x7, &cpsw->regs->flow_control);
if (cpsw_is_switch_en(cpsw))
cpsw_init_host_port_switch(cpsw);
else
cpsw_init_host_port_dual_mac(cpsw);
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
}
static void cpsw_port_add_dual_emac_def_ale_entries(struct cpsw_priv *priv,
struct cpsw_slave *slave)
{
u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST;
struct cpsw_common *cpsw = priv->cpsw;
u32 reg;
reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
CPSW2_PORT_VLAN;
slave_write(slave, slave->port_vlan, reg);
cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
port_mask, port_mask, 0);
cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
ALE_PORT_HOST, ALE_VLAN, slave->port_vlan,
ALE_MCAST_FWD);
cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
HOST_PORT_NUM, ALE_VLAN |
ALE_SECURE, slave->port_vlan);
cpsw_ale_control_set(cpsw->ale, priv->emac_port,
ALE_PORT_DROP_UNKNOWN_VLAN, 1);
/* learning make no sense in dual_mac mode */
cpsw_ale_control_set(cpsw->ale, priv->emac_port,
ALE_PORT_NOLEARN, 1);
}
static void cpsw_port_add_switch_def_ale_entries(struct cpsw_priv *priv,
struct cpsw_slave *slave)
{
u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST;
struct cpsw_common *cpsw = priv->cpsw;
u32 reg;
cpsw_ale_control_set(cpsw->ale, priv->emac_port,
ALE_PORT_DROP_UNKNOWN_VLAN, 0);
cpsw_ale_control_set(cpsw->ale, priv->emac_port,
ALE_PORT_NOLEARN, 0);
/* disabling SA_UPDATE required to make stp work, without this setting
* Host MAC addresses will jump between ports.
* As per TRM MAC address can be defined as unicast supervisory (super)
* by setting both (ALE_BLOCKED | ALE_SECURE) which should prevent
* SA_UPDATE, but HW seems works incorrectly and setting ALE_SECURE
* causes STP packets to be dropped due to ingress filter
* if (source address found) and (secure) and
* (receive port number != port_number))
* then discard the packet
*/
cpsw_ale_control_set(cpsw->ale, priv->emac_port,
ALE_PORT_NO_SA_UPDATE, 1);
cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
port_mask, ALE_VLAN, slave->port_vlan,
ALE_MCAST_FWD_2);
cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
HOST_PORT_NUM, ALE_VLAN, slave->port_vlan);
reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
CPSW2_PORT_VLAN;
slave_write(slave, slave->port_vlan, reg);
}
static void cpsw_adjust_link(struct net_device *ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_slave *slave;
struct phy_device *phy;
u32 mac_control = 0;
slave = &cpsw->slaves[priv->emac_port - 1];
phy = slave->phy;
if (!phy)
return;
if (phy->link) {
mac_control = CPSW_SL_CTL_GMII_EN;
if (phy->speed == 1000)
mac_control |= CPSW_SL_CTL_GIG;
if (phy->duplex)
mac_control |= CPSW_SL_CTL_FULLDUPLEX;
/* set speed_in input in case RMII mode is used in 100Mbps */
if (phy->speed == 100)
mac_control |= CPSW_SL_CTL_IFCTL_A;
/* in band mode only works in 10Mbps RGMII mode */
else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
if (priv->rx_pause)
mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
if (priv->tx_pause)
mac_control |= CPSW_SL_CTL_TX_FLOW_EN;
if (mac_control != slave->mac_control)
cpsw_sl_ctl_set(slave->mac_sl, mac_control);
/* enable forwarding */
cpsw_ale_control_set(cpsw->ale, priv->emac_port,
ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
netif_tx_wake_all_queues(ndev);
if (priv->shp_cfg_speed &&
priv->shp_cfg_speed != slave->phy->speed &&
!cpsw_shp_is_off(priv))
dev_warn(priv->dev, "Speed was changed, CBS shaper speeds are changed!");
} else {
netif_tx_stop_all_queues(ndev);
mac_control = 0;
/* disable forwarding */
cpsw_ale_control_set(cpsw->ale, priv->emac_port,
ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
cpsw_sl_wait_for_idle(slave->mac_sl, 100);
cpsw_sl_ctl_reset(slave->mac_sl);
}
if (mac_control != slave->mac_control)
phy_print_status(phy);
slave->mac_control = mac_control;
if (phy->link && cpsw_need_resplit(cpsw))
cpsw_split_res(cpsw);
}
static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
struct cpsw_common *cpsw = priv->cpsw;
struct phy_device *phy;
cpsw_sl_reset(slave->mac_sl, 100);
cpsw_sl_ctl_reset(slave->mac_sl);
/* setup priority mapping */
cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
RX_PRIORITY_MAPPING);
switch (cpsw->version) {
case CPSW_VERSION_1:
slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
/* Increase RX FIFO size to 5 for supporting fullduplex
* flow control mode
*/
slave_write(slave,
(CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
break;
case CPSW_VERSION_2:
case CPSW_VERSION_3:
case CPSW_VERSION_4:
slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
/* Increase RX FIFO size to 5 for supporting fullduplex
* flow control mode
*/
slave_write(slave,
(CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
break;
}
/* setup max packet size, and mac address */
cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
cpsw->rx_packet_max);
cpsw_set_slave_mac(slave, priv);
slave->mac_control = 0; /* no link yet */
if (cpsw_is_switch_en(cpsw))
cpsw_port_add_switch_def_ale_entries(priv, slave);
else
cpsw_port_add_dual_emac_def_ale_entries(priv, slave);
if (!slave->data->phy_node)
dev_err(priv->dev, "no phy found on slave %d\n",
slave->slave_num);
phy = of_phy_connect(priv->ndev, slave->data->phy_node,
&cpsw_adjust_link, 0, slave->data->phy_if);
if (!phy) {
dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
slave->data->phy_node,
slave->slave_num);
return;
}
slave->phy = phy;
phy_attached_info(slave->phy);
phy_start(slave->phy);
/* Configure GMII_SEL register */
phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
slave->data->phy_if);
}
static int cpsw_ndo_stop(struct net_device *ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_slave *slave;
cpsw_info(priv, ifdown, "shutting down ndev\n");
slave = &cpsw->slaves[priv->emac_port - 1];
if (slave->phy)
phy_stop(slave->phy);
netif_tx_stop_all_queues(priv->ndev);
if (slave->phy) {
phy_disconnect(slave->phy);
slave->phy = NULL;
}
__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
if (cpsw->usage_count <= 1) {
napi_disable(&cpsw->napi_rx);
napi_disable(&cpsw->napi_tx);
cpts_unregister(cpsw->cpts);
cpsw_intr_disable(cpsw);
cpdma_ctlr_stop(cpsw->dma);
cpsw_ale_stop(cpsw->ale);
cpsw_destroy_xdp_rxqs(cpsw);
}
if (cpsw_need_resplit(cpsw))
cpsw_split_res(cpsw);
cpsw->usage_count--;
pm_runtime_put_sync(cpsw->dev);
return 0;
}
static int cpsw_ndo_open(struct net_device *ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int ret;
dev_info(priv->dev, "starting ndev. mode: %s\n",
cpsw_is_switch_en(cpsw) ? "switch" : "dual_mac");
ret = pm_runtime_get_sync(cpsw->dev);
if (ret < 0) {
pm_runtime_put_noidle(cpsw->dev);
return ret;
}
/* Notify the stack of the actual queue counts. */
ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
if (ret) {
dev_err(priv->dev, "cannot set real number of tx queues\n");
goto pm_cleanup;
}
ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
if (ret) {
dev_err(priv->dev, "cannot set real number of rx queues\n");
goto pm_cleanup;
}
/* Initialize host and slave ports */
if (!cpsw->usage_count)
cpsw_init_host_port(priv);
cpsw_slave_open(&cpsw->slaves[priv->emac_port - 1], priv);
/* initialize shared resources for every ndev */
if (!cpsw->usage_count) {
/* create rxqs for both infs in dual mac as they use same pool
* and must be destroyed together when no users.
*/
ret = cpsw_create_xdp_rxqs(cpsw);
if (ret < 0)
goto err_cleanup;
ret = cpsw_fill_rx_channels(priv);
if (ret < 0)
goto err_cleanup;
if (cpsw->cpts) {
if (cpts_register(cpsw->cpts))
dev_err(priv->dev, "error registering cpts device\n");
else
writel(0x10, &cpsw->wr_regs->misc_en);
}
napi_enable(&cpsw->napi_rx);
napi_enable(&cpsw->napi_tx);
if (cpsw->tx_irq_disabled) {
cpsw->tx_irq_disabled = false;
enable_irq(cpsw->irqs_table[1]);
}
if (cpsw->rx_irq_disabled) {
cpsw->rx_irq_disabled = false;
enable_irq(cpsw->irqs_table[0]);
}
}
cpsw_restore(priv);
/* Enable Interrupt pacing if configured */
if (cpsw->coal_intvl != 0) {
struct ethtool_coalesce coal;
coal.rx_coalesce_usecs = cpsw->coal_intvl;
cpsw_set_coalesce(ndev, &coal);
}
cpdma_ctlr_start(cpsw->dma);
cpsw_intr_enable(cpsw);
cpsw->usage_count++;
return 0;
err_cleanup:
cpsw_ndo_stop(ndev);
pm_cleanup:
pm_runtime_put_sync(cpsw->dev);
return ret;
}
static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
struct cpts *cpts = cpsw->cpts;
struct netdev_queue *txq;
struct cpdma_chan *txch;
int ret, q_idx;
if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
cpsw_err(priv, tx_err, "packet pad failed\n");
ndev->stats.tx_dropped++;
return NET_XMIT_DROP;
}
if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
q_idx = skb_get_queue_mapping(skb);
if (q_idx >= cpsw->tx_ch_num)
q_idx = q_idx % cpsw->tx_ch_num;
txch = cpsw->txv[q_idx].ch;
txq = netdev_get_tx_queue(ndev, q_idx);
skb_tx_timestamp(skb);
ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
priv->emac_port);
if (unlikely(ret != 0)) {
cpsw_err(priv, tx_err, "desc submit failed\n");
goto fail;
}
/* If there is no more tx desc left free then we need to
* tell the kernel to stop sending us tx frames.
*/
if (unlikely(!cpdma_check_free_tx_desc(txch))) {
netif_tx_stop_queue(txq);
/* Barrier, so that stop_queue visible to other cpus */
smp_mb__after_atomic();
if (cpdma_check_free_tx_desc(txch))
netif_tx_wake_queue(txq);
}
return NETDEV_TX_OK;
fail:
ndev->stats.tx_dropped++;
netif_tx_stop_queue(txq);
/* Barrier, so that stop_queue visible to other cpus */
smp_mb__after_atomic();
if (cpdma_check_free_tx_desc(txch))
netif_tx_wake_queue(txq);
return NETDEV_TX_BUSY;
}
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
struct sockaddr *addr = (struct sockaddr *)p;
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int ret, slave_no;
int flags = 0;
u16 vid = 0;
slave_no = cpsw_slave_index(cpsw, priv);
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
ret = pm_runtime_get_sync(cpsw->dev);
if (ret < 0) {
pm_runtime_put_noidle(cpsw->dev);
return ret;
}
vid = cpsw->slaves[slave_no].port_vlan;
flags = ALE_VLAN | ALE_SECURE;
cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
flags, vid);
cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
flags, vid);
ether_addr_copy(priv->mac_addr, addr->sa_data);
ether_addr_copy(ndev->dev_addr, priv->mac_addr);
cpsw_set_slave_mac(&cpsw->slaves[slave_no], priv);
pm_runtime_put(cpsw->dev);
return 0;
}
static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
__be16 proto, u16 vid)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int ret;
int i;
if (cpsw_is_switch_en(cpsw)) {
dev_dbg(cpsw->dev, "ndo del vlan is called in switch mode\n");
return 0;
}
if (vid == cpsw->data.default_vlan)
return 0;
ret = pm_runtime_get_sync(cpsw->dev);
if (ret < 0) {
pm_runtime_put_noidle(cpsw->dev);
return ret;
}
/* reset the return code as pm_runtime_get_sync() can return
* non zero values as well.
*/
ret = 0;
for (i = 0; i < cpsw->data.slaves; i++) {
if (cpsw->slaves[i].ndev &&
vid == cpsw->slaves[i].port_vlan) {
ret = -EINVAL;
goto err;
}
}
dev_dbg(priv->dev, "removing vlanid %d from vlan filter\n", vid);
ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
if (ret)
dev_err(priv->dev, "cpsw_ale_del_vlan() failed: ret %d\n", ret);
ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
HOST_PORT_NUM, ALE_VLAN, vid);
if (ret)
dev_err(priv->dev, "cpsw_ale_del_ucast() failed: ret %d\n",
ret);
ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
0, ALE_VLAN, vid);
if (ret)
dev_err(priv->dev, "cpsw_ale_del_mcast failed. ret %d\n",
ret);
cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid);
ret = 0;
err:
pm_runtime_put(cpsw->dev);
return ret;
}
static int cpsw_ndo_get_phys_port_name(struct net_device *ndev, char *name,
size_t len)
{
struct cpsw_priv *priv = netdev_priv(ndev);
int err;
err = snprintf(name, len, "p%d", priv->emac_port);
if (err >= len)
return -EINVAL;
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
cpsw_intr_disable(cpsw);
cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
cpsw_intr_enable(cpsw);
}
#endif
static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n,
struct xdp_frame **frames, u32 flags)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct xdp_frame *xdpf;
int i, drops = 0;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
for (i = 0; i < n; i++) {
xdpf = frames[i];
if (xdpf->len < CPSW_MIN_PACKET_SIZE) {
xdp_return_frame_rx_napi(xdpf);
drops++;
continue;
}
if (cpsw_xdp_tx_frame(priv, xdpf, NULL, priv->emac_port))
drops++;
}
return n - drops;
}
static int cpsw_get_port_parent_id(struct net_device *ndev,
struct netdev_phys_item_id *ppid)
{
struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
ppid->id_len = sizeof(cpsw->base_mac);
memcpy(&ppid->id, &cpsw->base_mac, ppid->id_len);
return 0;
}
static const struct net_device_ops cpsw_netdev_ops = {
.ndo_open = cpsw_ndo_open,
.ndo_stop = cpsw_ndo_stop,
.ndo_start_xmit = cpsw_ndo_start_xmit,
.ndo_set_mac_address = cpsw_ndo_set_mac_address,
.ndo_do_ioctl = cpsw_ndo_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = cpsw_ndo_tx_timeout,
.ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
.ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = cpsw_ndo_poll_controller,
#endif
.ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
.ndo_setup_tc = cpsw_ndo_setup_tc,
.ndo_get_phys_port_name = cpsw_ndo_get_phys_port_name,
.ndo_bpf = cpsw_ndo_bpf,
.ndo_xdp_xmit = cpsw_ndo_xdp_xmit,
.ndo_get_port_parent_id = cpsw_get_port_parent_id,
};
static void cpsw_get_drvinfo(struct net_device *ndev,
struct ethtool_drvinfo *info)
{
struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
struct platform_device *pdev;
pdev = to_platform_device(cpsw->dev);
strlcpy(info->driver, "cpsw-switch", sizeof(info->driver));
strlcpy(info->version, "2.0", sizeof(info->version));
strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
}
static int cpsw_set_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause)
{
struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
struct cpsw_priv *priv = netdev_priv(ndev);
int slave_no;
slave_no = cpsw_slave_index(cpsw, priv);
if (!cpsw->slaves[slave_no].phy)
return -EINVAL;
if (!phy_validate_pause(cpsw->slaves[slave_no].phy, pause))
return -EINVAL;
priv->rx_pause = pause->rx_pause ? true : false;
priv->tx_pause = pause->tx_pause ? true : false;
phy_set_asym_pause(cpsw->slaves[slave_no].phy,
priv->rx_pause, priv->tx_pause);
return 0;
}
static int cpsw_set_channels(struct net_device *ndev,
struct ethtool_channels *chs)
{
return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
}
static const struct ethtool_ops cpsw_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
.get_drvinfo = cpsw_get_drvinfo,
.get_msglevel = cpsw_get_msglevel,
.set_msglevel = cpsw_set_msglevel,
.get_link = ethtool_op_get_link,
.get_ts_info = cpsw_get_ts_info,
.get_coalesce = cpsw_get_coalesce,
.set_coalesce = cpsw_set_coalesce,
.get_sset_count = cpsw_get_sset_count,
.get_strings = cpsw_get_strings,
.get_ethtool_stats = cpsw_get_ethtool_stats,
.get_pauseparam = cpsw_get_pauseparam,
.set_pauseparam = cpsw_set_pauseparam,
.get_wol = cpsw_get_wol,
.set_wol = cpsw_set_wol,
.get_regs_len = cpsw_get_regs_len,
.get_regs = cpsw_get_regs,
.begin = cpsw_ethtool_op_begin,
.complete = cpsw_ethtool_op_complete,
.get_channels = cpsw_get_channels,
.set_channels = cpsw_set_channels,
.get_link_ksettings = cpsw_get_link_ksettings,
.set_link_ksettings = cpsw_set_link_ksettings,
.get_eee = cpsw_get_eee,
.set_eee = cpsw_set_eee,
.nway_reset = cpsw_nway_reset,
.get_ringparam = cpsw_get_ringparam,
.set_ringparam = cpsw_set_ringparam,
};
static int cpsw_probe_dt(struct cpsw_common *cpsw)
{
struct device_node *node = cpsw->dev->of_node, *tmp_node, *port_np;
struct cpsw_platform_data *data = &cpsw->data;
struct device *dev = cpsw->dev;
int ret;
u32 prop;
if (!node)
return -EINVAL;
tmp_node = of_get_child_by_name(node, "ethernet-ports");
if (!tmp_node)
return -ENOENT;
data->slaves = of_get_child_count(tmp_node);
if (data->slaves != CPSW_SLAVE_PORTS_NUM) {
of_node_put(tmp_node);
return -ENOENT;
}
data->active_slave = 0;
data->channels = CPSW_MAX_QUEUES;
data->dual_emac = true;
data->bd_ram_size = CPSW_BD_RAM_SIZE;
data->mac_control = 0;
data->slave_data = devm_kcalloc(dev, CPSW_SLAVE_PORTS_NUM,
sizeof(struct cpsw_slave_data),
GFP_KERNEL);
if (!data->slave_data)
return -ENOMEM;
/* Populate all the child nodes here...
*/
ret = devm_of_platform_populate(dev);
/* We do not want to force this, as in some cases may not have child */
if (ret)
dev_warn(dev, "Doesn't have any child node\n");
for_each_child_of_node(tmp_node, port_np) {
struct cpsw_slave_data *slave_data;
const void *mac_addr;
u32 port_id;
ret = of_property_read_u32(port_np, "reg", &port_id);
if (ret < 0) {
dev_err(dev, "%pOF error reading port_id %d\n",
port_np, ret);
goto err_node_put;
}
if (!port_id || port_id > CPSW_SLAVE_PORTS_NUM) {
dev_err(dev, "%pOF has invalid port_id %u\n",
port_np, port_id);
ret = -EINVAL;
goto err_node_put;
}
slave_data = &data->slave_data[port_id - 1];
slave_data->disabled = !of_device_is_available(port_np);
if (slave_data->disabled)
continue;
slave_data->slave_node = port_np;
slave_data->ifphy = devm_of_phy_get(dev, port_np, NULL);
if (IS_ERR(slave_data->ifphy)) {
ret = PTR_ERR(slave_data->ifphy);
dev_err(dev, "%pOF: Error retrieving port phy: %d\n",
port_np, ret);
goto err_node_put;
}
if (of_phy_is_fixed_link(port_np)) {
ret = of_phy_register_fixed_link(port_np);
if (ret) {
if (ret != -EPROBE_DEFER)
dev_err(dev, "%pOF failed to register fixed-link phy: %d\n",
port_np, ret);
goto err_node_put;
}
slave_data->phy_node = of_node_get(port_np);
} else {
slave_data->phy_node =
of_parse_phandle(port_np, "phy-handle", 0);
}
if (!slave_data->phy_node) {
dev_err(dev, "%pOF no phy found\n", port_np);
ret = -ENODEV;
goto err_node_put;
}
ret = of_get_phy_mode(port_np, &slave_data->phy_if);
if (ret) {
dev_err(dev, "%pOF read phy-mode err %d\n",
port_np, ret);
goto err_node_put;
}
mac_addr = of_get_mac_address(port_np);
if (!IS_ERR(mac_addr)) {
ether_addr_copy(slave_data->mac_addr, mac_addr);
} else {
ret = ti_cm_get_macid(dev, port_id - 1,
slave_data->mac_addr);
if (ret)
goto err_node_put;
}
if (of_property_read_u32(port_np, "ti,dual-emac-pvid",
&prop)) {
dev_err(dev, "%pOF Missing dual_emac_res_vlan in DT.\n",
port_np);
slave_data->dual_emac_res_vlan = port_id;
dev_err(dev, "%pOF Using %d as Reserved VLAN\n",
port_np, slave_data->dual_emac_res_vlan);
} else {
slave_data->dual_emac_res_vlan = prop;
}
}
of_node_put(tmp_node);
return 0;
err_node_put:
of_node_put(port_np);
return ret;
}
static void cpsw_remove_dt(struct cpsw_common *cpsw)
{
struct cpsw_platform_data *data = &cpsw->data;
int i = 0;
for (i = 0; i < cpsw->data.slaves; i++) {
struct cpsw_slave_data *slave_data = &data->slave_data[i];
struct device_node *port_np = slave_data->phy_node;
if (port_np) {
if (of_phy_is_fixed_link(port_np))
of_phy_deregister_fixed_link(port_np);
of_node_put(port_np);
}
}
}
static int cpsw_create_ports(struct cpsw_common *cpsw)
{
struct cpsw_platform_data *data = &cpsw->data;
struct net_device *ndev, *napi_ndev = NULL;
struct device *dev = cpsw->dev;
struct cpsw_priv *priv;
int ret = 0, i = 0;
for (i = 0; i < cpsw->data.slaves; i++) {
struct cpsw_slave_data *slave_data = &data->slave_data[i];
if (slave_data->disabled)
continue;
ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
CPSW_MAX_QUEUES,
CPSW_MAX_QUEUES);
if (!ndev) {
dev_err(dev, "error allocating net_device\n");
return -ENOMEM;
}
priv = netdev_priv(ndev);
priv->cpsw = cpsw;
priv->ndev = ndev;
priv->dev = dev;
priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
priv->emac_port = i + 1;
if (is_valid_ether_addr(slave_data->mac_addr)) {
ether_addr_copy(priv->mac_addr, slave_data->mac_addr);
dev_info(cpsw->dev, "Detected MACID = %pM\n",
priv->mac_addr);
} else {
eth_random_addr(slave_data->mac_addr);
dev_info(cpsw->dev, "Random MACID = %pM\n",
priv->mac_addr);
}
ether_addr_copy(ndev->dev_addr, slave_data->mac_addr);
ether_addr_copy(priv->mac_addr, slave_data->mac_addr);
cpsw->slaves[i].ndev = ndev;
ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_NETNS_LOCAL;
ndev->netdev_ops = &cpsw_netdev_ops;
ndev->ethtool_ops = &cpsw_ethtool_ops;
SET_NETDEV_DEV(ndev, dev);
if (!napi_ndev) {
/* CPSW Host port CPDMA interface is shared between
* ports and there is only one TX and one RX IRQs
* available for all possible TX and RX channels
* accordingly.
*/
netif_napi_add(ndev, &cpsw->napi_rx,
cpsw->quirk_irq ?
cpsw_rx_poll : cpsw_rx_mq_poll,
CPSW_POLL_WEIGHT);
netif_tx_napi_add(ndev, &cpsw->napi_tx,
cpsw->quirk_irq ?
cpsw_tx_poll : cpsw_tx_mq_poll,
CPSW_POLL_WEIGHT);
}
napi_ndev = ndev;
}
return ret;
}
static void cpsw_unregister_ports(struct cpsw_common *cpsw)
{
int i = 0;
for (i = 0; i < cpsw->data.slaves; i++) {
if (!cpsw->slaves[i].ndev)
continue;
unregister_netdev(cpsw->slaves[i].ndev);
}
}
static int cpsw_register_ports(struct cpsw_common *cpsw)
{
int ret = 0, i = 0;
for (i = 0; i < cpsw->data.slaves; i++) {
if (!cpsw->slaves[i].ndev)
continue;
/* register the network device */
ret = register_netdev(cpsw->slaves[i].ndev);
if (ret) {
dev_err(cpsw->dev,
"cpsw: err registering net device%d\n", i);
cpsw->slaves[i].ndev = NULL;
break;
}
}
if (ret)
cpsw_unregister_ports(cpsw);
return ret;
}
bool cpsw_port_dev_check(const struct net_device *ndev)
{
if (ndev->netdev_ops == &cpsw_netdev_ops) {
struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
return !cpsw->data.dual_emac;
}
return false;
}
static void cpsw_port_offload_fwd_mark_update(struct cpsw_common *cpsw)
{
int set_val = 0;
int i;
if (!cpsw->ale_bypass &&
(cpsw->br_members == (ALE_PORT_1 | ALE_PORT_2)))
set_val = 1;
dev_dbg(cpsw->dev, "set offload_fwd_mark %d\n", set_val);
for (i = 0; i < cpsw->data.slaves; i++) {
struct net_device *sl_ndev = cpsw->slaves[i].ndev;
struct cpsw_priv *priv = netdev_priv(sl_ndev);
priv->offload_fwd_mark = set_val;
}
}
static int cpsw_netdevice_port_link(struct net_device *ndev,
struct net_device *br_ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
if (!cpsw->br_members) {
cpsw->hw_bridge_dev = br_ndev;
} else {
/* This is adding the port to a second bridge, this is
* unsupported
*/
if (cpsw->hw_bridge_dev != br_ndev)
return -EOPNOTSUPP;
}
cpsw->br_members |= BIT(priv->emac_port);
cpsw_port_offload_fwd_mark_update(cpsw);
return NOTIFY_DONE;
}
static void cpsw_netdevice_port_unlink(struct net_device *ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
cpsw->br_members &= ~BIT(priv->emac_port);
cpsw_port_offload_fwd_mark_update(cpsw);
if (!cpsw->br_members)
cpsw->hw_bridge_dev = NULL;
}
/* netdev notifier */
static int cpsw_netdevice_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct netdev_notifier_changeupper_info *info;
int ret = NOTIFY_DONE;
if (!cpsw_port_dev_check(ndev))
return NOTIFY_DONE;
switch (event) {
case NETDEV_CHANGEUPPER:
info = ptr;
if (netif_is_bridge_master(info->upper_dev)) {
if (info->linking)
ret = cpsw_netdevice_port_link(ndev,
info->upper_dev);
else
cpsw_netdevice_port_unlink(ndev);
}
break;
default:
return NOTIFY_DONE;
}
return notifier_from_errno(ret);
}
static struct notifier_block cpsw_netdevice_nb __read_mostly = {
.notifier_call = cpsw_netdevice_event,
};
static int cpsw_register_notifiers(struct cpsw_common *cpsw)
{
int ret = 0;
ret = register_netdevice_notifier(&cpsw_netdevice_nb);
if (ret) {
dev_err(cpsw->dev, "can't register netdevice notifier\n");
return ret;
}
ret = cpsw_switchdev_register_notifiers(cpsw);
if (ret)
unregister_netdevice_notifier(&cpsw_netdevice_nb);
return ret;
}
static void cpsw_unregister_notifiers(struct cpsw_common *cpsw)
{
cpsw_switchdev_unregister_notifiers(cpsw);
unregister_netdevice_notifier(&cpsw_netdevice_nb);
}
static const struct devlink_ops cpsw_devlink_ops = {
};
static int cpsw_dl_switch_mode_get(struct devlink *dl, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct cpsw_devlink *dl_priv = devlink_priv(dl);
struct cpsw_common *cpsw = dl_priv->cpsw;
dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
if (id != CPSW_DL_PARAM_SWITCH_MODE)
return -EOPNOTSUPP;
ctx->val.vbool = !cpsw->data.dual_emac;
return 0;
}
static int cpsw_dl_switch_mode_set(struct devlink *dl, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct cpsw_devlink *dl_priv = devlink_priv(dl);
struct cpsw_common *cpsw = dl_priv->cpsw;
int vlan = cpsw->data.default_vlan;
bool switch_en = ctx->val.vbool;
bool if_running = false;
int i;
dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
if (id != CPSW_DL_PARAM_SWITCH_MODE)
return -EOPNOTSUPP;
if (switch_en == !cpsw->data.dual_emac)
return 0;
if (!switch_en && cpsw->br_members) {
dev_err(cpsw->dev, "Remove ports from BR before disabling switch mode\n");
return -EINVAL;
}
rtnl_lock();
for (i = 0; i < cpsw->data.slaves; i++) {
struct cpsw_slave *slave = &cpsw->slaves[i];
struct net_device *sl_ndev = slave->ndev;
if (!sl_ndev || !netif_running(sl_ndev))
continue;
if_running = true;
}
if (!if_running) {
/* all ndevs are down */
cpsw->data.dual_emac = !switch_en;
for (i = 0; i < cpsw->data.slaves; i++) {
struct cpsw_slave *slave = &cpsw->slaves[i];
struct net_device *sl_ndev = slave->ndev;
if (!sl_ndev)
continue;
if (switch_en)
vlan = cpsw->data.default_vlan;
else
vlan = slave->data->dual_emac_res_vlan;
slave->port_vlan = vlan;
}
goto exit;
}
if (switch_en) {
dev_info(cpsw->dev, "Enable switch mode\n");
/* enable bypass - no forwarding; all traffic goes to Host */
cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1);
/* clean up ALE table */
cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1);
cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT);
cpsw_init_host_port_switch(cpsw);
for (i = 0; i < cpsw->data.slaves; i++) {
struct cpsw_slave *slave = &cpsw->slaves[i];
struct net_device *sl_ndev = slave->ndev;
struct cpsw_priv *priv;
if (!sl_ndev)
continue;
priv = netdev_priv(sl_ndev);
slave->port_vlan = vlan;
if (netif_running(sl_ndev))
cpsw_port_add_switch_def_ale_entries(priv,
slave);
}
cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0);
cpsw->data.dual_emac = false;
} else {
dev_info(cpsw->dev, "Disable switch mode\n");
/* enable bypass - no forwarding; all traffic goes to Host */
cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1);
cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1);
cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT);
cpsw_init_host_port_dual_mac(cpsw);
for (i = 0; i < cpsw->data.slaves; i++) {
struct cpsw_slave *slave = &cpsw->slaves[i];
struct net_device *sl_ndev = slave->ndev;
struct cpsw_priv *priv;
if (!sl_ndev)
continue;
priv = netdev_priv(slave->ndev);
slave->port_vlan = slave->data->dual_emac_res_vlan;
cpsw_port_add_dual_emac_def_ale_entries(priv, slave);
}
cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0);
cpsw->data.dual_emac = true;
}
exit:
rtnl_unlock();
return 0;
}
static int cpsw_dl_ale_ctrl_get(struct devlink *dl, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct cpsw_devlink *dl_priv = devlink_priv(dl);
struct cpsw_common *cpsw = dl_priv->cpsw;
dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
switch (id) {
case CPSW_DL_PARAM_ALE_BYPASS:
ctx->val.vbool = cpsw_ale_control_get(cpsw->ale, 0, ALE_BYPASS);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int cpsw_dl_ale_ctrl_set(struct devlink *dl, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct cpsw_devlink *dl_priv = devlink_priv(dl);
struct cpsw_common *cpsw = dl_priv->cpsw;
int ret = -EOPNOTSUPP;
dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
switch (id) {
case CPSW_DL_PARAM_ALE_BYPASS:
ret = cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS,
ctx->val.vbool);
if (!ret) {
cpsw->ale_bypass = ctx->val.vbool;
cpsw_port_offload_fwd_mark_update(cpsw);
}
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static const struct devlink_param cpsw_devlink_params[] = {
DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_SWITCH_MODE,
"switch_mode", DEVLINK_PARAM_TYPE_BOOL,
BIT(DEVLINK_PARAM_CMODE_RUNTIME),
cpsw_dl_switch_mode_get, cpsw_dl_switch_mode_set,
NULL),
DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_ALE_BYPASS,
"ale_bypass", DEVLINK_PARAM_TYPE_BOOL,
BIT(DEVLINK_PARAM_CMODE_RUNTIME),
cpsw_dl_ale_ctrl_get, cpsw_dl_ale_ctrl_set, NULL),
};
static int cpsw_register_devlink(struct cpsw_common *cpsw)
{
struct device *dev = cpsw->dev;
struct cpsw_devlink *dl_priv;
int ret = 0;
cpsw->devlink = devlink_alloc(&cpsw_devlink_ops, sizeof(*dl_priv));
if (!cpsw->devlink)
return -ENOMEM;
dl_priv = devlink_priv(cpsw->devlink);
dl_priv->cpsw = cpsw;
ret = devlink_register(cpsw->devlink, dev);
if (ret) {
dev_err(dev, "DL reg fail ret:%d\n", ret);
goto dl_free;
}
ret = devlink_params_register(cpsw->devlink, cpsw_devlink_params,
ARRAY_SIZE(cpsw_devlink_params));
if (ret) {
dev_err(dev, "DL params reg fail ret:%d\n", ret);
goto dl_unreg;
}
devlink_params_publish(cpsw->devlink);
return ret;
dl_unreg:
devlink_unregister(cpsw->devlink);
dl_free:
devlink_free(cpsw->devlink);
return ret;
}
static void cpsw_unregister_devlink(struct cpsw_common *cpsw)
{
devlink_params_unpublish(cpsw->devlink);
devlink_params_unregister(cpsw->devlink, cpsw_devlink_params,
ARRAY_SIZE(cpsw_devlink_params));
devlink_unregister(cpsw->devlink);
devlink_free(cpsw->devlink);
}
static const struct of_device_id cpsw_of_mtable[] = {
{ .compatible = "ti,cpsw-switch"},
{ .compatible = "ti,am335x-cpsw-switch"},
{ .compatible = "ti,am4372-cpsw-switch"},
{ .compatible = "ti,dra7-cpsw-switch"},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
static const struct soc_device_attribute cpsw_soc_devices[] = {
{ .family = "AM33xx", .revision = "ES1.0"},
{ /* sentinel */ }
};
static int cpsw_probe(struct platform_device *pdev)
{
const struct soc_device_attribute *soc;
struct device *dev = &pdev->dev;
struct cpsw_common *cpsw;
struct resource *ss_res;
struct gpio_descs *mode;
void __iomem *ss_regs;
int ret = 0, ch;
struct clk *clk;
int irq;
cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
if (!cpsw)
return -ENOMEM;
cpsw_slave_index = cpsw_slave_index_priv;
cpsw->dev = dev;
cpsw->slaves = devm_kcalloc(dev,
CPSW_SLAVE_PORTS_NUM,
sizeof(struct cpsw_slave),
GFP_KERNEL);
if (!cpsw->slaves)
return -ENOMEM;
mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
if (IS_ERR(mode)) {
ret = PTR_ERR(mode);
dev_err(dev, "gpio request failed, ret %d\n", ret);
return ret;
}
clk = devm_clk_get(dev, "fck");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(dev, "fck is not found %d\n", ret);
return ret;
}
cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ss_regs = devm_ioremap_resource(dev, ss_res);
if (IS_ERR(ss_regs)) {
ret = PTR_ERR(ss_regs);
return ret;
}
cpsw->regs = ss_regs;
irq = platform_get_irq_byname(pdev, "rx");
if (irq < 0)
return irq;
cpsw->irqs_table[0] = irq;
irq = platform_get_irq_byname(pdev, "tx");
if (irq < 0)
return irq;
cpsw->irqs_table[1] = irq;
irq = platform_get_irq_byname(pdev, "misc");
if (irq <= 0)
return irq;
cpsw->misc_irq = irq;
platform_set_drvdata(pdev, cpsw);
/* This may be required here for child devices. */
pm_runtime_enable(dev);
/* Need to enable clocks with runtime PM api to access module
* registers
*/
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
pm_runtime_disable(dev);
return ret;
}
ret = cpsw_probe_dt(cpsw);
if (ret)
goto clean_dt_ret;
soc = soc_device_match(cpsw_soc_devices);
if (soc)
cpsw->quirk_irq = true;
cpsw->rx_packet_max = rx_packet_max;
cpsw->descs_pool_size = descs_pool_size;
eth_random_addr(cpsw->base_mac);
ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
(u32 __force)ss_res->start + CPSW2_BD_OFFSET,
descs_pool_size);
if (ret)
goto clean_dt_ret;
cpsw->wr_regs = cpsw->version == CPSW_VERSION_1 ?
ss_regs + CPSW1_WR_OFFSET :
ss_regs + CPSW2_WR_OFFSET;
ch = cpsw->quirk_irq ? 0 : 7;
cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
if (IS_ERR(cpsw->txv[0].ch)) {
dev_err(dev, "error initializing tx dma channel\n");
ret = PTR_ERR(cpsw->txv[0].ch);
goto clean_cpts;
}
cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
if (IS_ERR(cpsw->rxv[0].ch)) {
dev_err(dev, "error initializing rx dma channel\n");
ret = PTR_ERR(cpsw->rxv[0].ch);
goto clean_cpts;
}
cpsw_split_res(cpsw);
/* setup netdevs */
ret = cpsw_create_ports(cpsw);
if (ret)
goto clean_unregister_netdev;
/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
* MISC IRQs which are always kept disabled with this driver so
* we will not request them.
*
* If anyone wants to implement support for those, make sure to
* first request and append them to irqs_table array.
*/
ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
0, dev_name(dev), cpsw);
if (ret < 0) {
dev_err(dev, "error attaching irq (%d)\n", ret);
goto clean_unregister_netdev;
}
ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
0, dev_name(dev), cpsw);
if (ret < 0) {
dev_err(dev, "error attaching irq (%d)\n", ret);
goto clean_unregister_netdev;
}
if (!cpsw->cpts)
goto skip_cpts;
ret = devm_request_irq(dev, cpsw->misc_irq, cpsw_misc_interrupt,
0, dev_name(&pdev->dev), cpsw);
if (ret < 0) {
dev_err(dev, "error attaching misc irq (%d)\n", ret);
goto clean_unregister_netdev;
}
/* Enable misc CPTS evnt_pend IRQ */
cpts_set_irqpoll(cpsw->cpts, false);
skip_cpts:
ret = cpsw_register_notifiers(cpsw);
if (ret)
goto clean_unregister_netdev;
ret = cpsw_register_devlink(cpsw);
if (ret)
goto clean_unregister_notifiers;
ret = cpsw_register_ports(cpsw);
if (ret)
goto clean_unregister_notifiers;
dev_notice(dev, "initialized (regs %pa, pool size %d) hw_ver:%08X %d.%d (%d)\n",
&ss_res->start, descs_pool_size,
cpsw->version, CPSW_MAJOR_VERSION(cpsw->version),
CPSW_MINOR_VERSION(cpsw->version),
CPSW_RTL_VERSION(cpsw->version));
pm_runtime_put(dev);
return 0;
clean_unregister_notifiers:
cpsw_unregister_notifiers(cpsw);
clean_unregister_netdev:
cpsw_unregister_ports(cpsw);
clean_cpts:
cpts_release(cpsw->cpts);
cpdma_ctlr_destroy(cpsw->dma);
clean_dt_ret:
cpsw_remove_dt(cpsw);
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
return ret;
}
static int cpsw_remove(struct platform_device *pdev)
{
struct cpsw_common *cpsw = platform_get_drvdata(pdev);
int ret;
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
pm_runtime_put_noidle(&pdev->dev);
return ret;
}
cpsw_unregister_notifiers(cpsw);
cpsw_unregister_devlink(cpsw);
cpsw_unregister_ports(cpsw);
cpts_release(cpsw->cpts);
cpdma_ctlr_destroy(cpsw->dma);
cpsw_remove_dt(cpsw);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static int __maybe_unused cpsw_suspend(struct device *dev)
{
struct cpsw_common *cpsw = dev_get_drvdata(dev);
int i;
rtnl_lock();
for (i = 0; i < cpsw->data.slaves; i++) {
struct net_device *ndev = cpsw->slaves[i].ndev;
if (!(ndev && netif_running(ndev)))
continue;
cpsw_ndo_stop(ndev);
}
rtnl_unlock();
/* Select sleep pin state */
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int __maybe_unused cpsw_resume(struct device *dev)
{
struct cpsw_common *cpsw = dev_get_drvdata(dev);
int i;
/* Select default pin state */
pinctrl_pm_select_default_state(dev);
/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
rtnl_lock();
for (i = 0; i < cpsw->data.slaves; i++) {
struct net_device *ndev = cpsw->slaves[i].ndev;
if (!(ndev && netif_running(ndev)))
continue;
cpsw_ndo_open(ndev);
}
rtnl_unlock();
return 0;
}
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
static struct platform_driver cpsw_driver = {
.driver = {
.name = "cpsw-switch",
.pm = &cpsw_pm_ops,
.of_match_table = cpsw_of_mtable,
},
.probe = cpsw_probe,
.remove = cpsw_remove,
};
module_platform_driver(cpsw_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("TI CPSW switchdev Ethernet driver");