mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-14 15:54:15 +08:00
a04cd1600b
Fix a VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages) crash.
With folios support, it is possible to have other than HPAGE_PMD_ORDER
THPs, in the form of folios, in the system. Use thp_order() to correctly
determine the source page order during migration.
Link: https://lkml.kernel.org/r/20220404165325.1883267-1-zi.yan@sent.com
Link: https://lore.kernel.org/linux-mm/20220404132908.GA785673@u2004/
Fixes: d68eccad37
("mm/filemap: Allow large folios to be added to the page cache")
Reported-by: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Signed-off-by: Zi Yan <ziy@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2572 lines
67 KiB
C
2572 lines
67 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Memory Migration functionality - linux/mm/migrate.c
|
|
*
|
|
* Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
|
|
*
|
|
* Page migration was first developed in the context of the memory hotplug
|
|
* project. The main authors of the migration code are:
|
|
*
|
|
* IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
|
|
* Hirokazu Takahashi <taka@valinux.co.jp>
|
|
* Dave Hansen <haveblue@us.ibm.com>
|
|
* Christoph Lameter
|
|
*/
|
|
|
|
#include <linux/migrate.h>
|
|
#include <linux/export.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/security.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/compaction.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/hugetlb_cgroup.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/balloon_compaction.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/page_owner.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sched/sysctl.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include <trace/events/migrate.h>
|
|
|
|
#include "internal.h"
|
|
|
|
int isolate_movable_page(struct page *page, isolate_mode_t mode)
|
|
{
|
|
struct address_space *mapping;
|
|
|
|
/*
|
|
* Avoid burning cycles with pages that are yet under __free_pages(),
|
|
* or just got freed under us.
|
|
*
|
|
* In case we 'win' a race for a movable page being freed under us and
|
|
* raise its refcount preventing __free_pages() from doing its job
|
|
* the put_page() at the end of this block will take care of
|
|
* release this page, thus avoiding a nasty leakage.
|
|
*/
|
|
if (unlikely(!get_page_unless_zero(page)))
|
|
goto out;
|
|
|
|
/*
|
|
* Check PageMovable before holding a PG_lock because page's owner
|
|
* assumes anybody doesn't touch PG_lock of newly allocated page
|
|
* so unconditionally grabbing the lock ruins page's owner side.
|
|
*/
|
|
if (unlikely(!__PageMovable(page)))
|
|
goto out_putpage;
|
|
/*
|
|
* As movable pages are not isolated from LRU lists, concurrent
|
|
* compaction threads can race against page migration functions
|
|
* as well as race against the releasing a page.
|
|
*
|
|
* In order to avoid having an already isolated movable page
|
|
* being (wrongly) re-isolated while it is under migration,
|
|
* or to avoid attempting to isolate pages being released,
|
|
* lets be sure we have the page lock
|
|
* before proceeding with the movable page isolation steps.
|
|
*/
|
|
if (unlikely(!trylock_page(page)))
|
|
goto out_putpage;
|
|
|
|
if (!PageMovable(page) || PageIsolated(page))
|
|
goto out_no_isolated;
|
|
|
|
mapping = page_mapping(page);
|
|
VM_BUG_ON_PAGE(!mapping, page);
|
|
|
|
if (!mapping->a_ops->isolate_page(page, mode))
|
|
goto out_no_isolated;
|
|
|
|
/* Driver shouldn't use PG_isolated bit of page->flags */
|
|
WARN_ON_ONCE(PageIsolated(page));
|
|
SetPageIsolated(page);
|
|
unlock_page(page);
|
|
|
|
return 0;
|
|
|
|
out_no_isolated:
|
|
unlock_page(page);
|
|
out_putpage:
|
|
put_page(page);
|
|
out:
|
|
return -EBUSY;
|
|
}
|
|
|
|
static void putback_movable_page(struct page *page)
|
|
{
|
|
struct address_space *mapping;
|
|
|
|
mapping = page_mapping(page);
|
|
mapping->a_ops->putback_page(page);
|
|
ClearPageIsolated(page);
|
|
}
|
|
|
|
/*
|
|
* Put previously isolated pages back onto the appropriate lists
|
|
* from where they were once taken off for compaction/migration.
|
|
*
|
|
* This function shall be used whenever the isolated pageset has been
|
|
* built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
|
|
* and isolate_huge_page().
|
|
*/
|
|
void putback_movable_pages(struct list_head *l)
|
|
{
|
|
struct page *page;
|
|
struct page *page2;
|
|
|
|
list_for_each_entry_safe(page, page2, l, lru) {
|
|
if (unlikely(PageHuge(page))) {
|
|
putback_active_hugepage(page);
|
|
continue;
|
|
}
|
|
list_del(&page->lru);
|
|
/*
|
|
* We isolated non-lru movable page so here we can use
|
|
* __PageMovable because LRU page's mapping cannot have
|
|
* PAGE_MAPPING_MOVABLE.
|
|
*/
|
|
if (unlikely(__PageMovable(page))) {
|
|
VM_BUG_ON_PAGE(!PageIsolated(page), page);
|
|
lock_page(page);
|
|
if (PageMovable(page))
|
|
putback_movable_page(page);
|
|
else
|
|
ClearPageIsolated(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
} else {
|
|
mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
|
|
page_is_file_lru(page), -thp_nr_pages(page));
|
|
putback_lru_page(page);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore a potential migration pte to a working pte entry
|
|
*/
|
|
static bool remove_migration_pte(struct folio *folio,
|
|
struct vm_area_struct *vma, unsigned long addr, void *old)
|
|
{
|
|
DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
|
|
|
|
while (page_vma_mapped_walk(&pvmw)) {
|
|
pte_t pte;
|
|
swp_entry_t entry;
|
|
struct page *new;
|
|
unsigned long idx = 0;
|
|
|
|
/* pgoff is invalid for ksm pages, but they are never large */
|
|
if (folio_test_large(folio) && !folio_test_hugetlb(folio))
|
|
idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
|
|
new = folio_page(folio, idx);
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
/* PMD-mapped THP migration entry */
|
|
if (!pvmw.pte) {
|
|
VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
|
|
!folio_test_pmd_mappable(folio), folio);
|
|
remove_migration_pmd(&pvmw, new);
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
folio_get(folio);
|
|
pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
|
|
if (pte_swp_soft_dirty(*pvmw.pte))
|
|
pte = pte_mksoft_dirty(pte);
|
|
|
|
/*
|
|
* Recheck VMA as permissions can change since migration started
|
|
*/
|
|
entry = pte_to_swp_entry(*pvmw.pte);
|
|
if (is_writable_migration_entry(entry))
|
|
pte = maybe_mkwrite(pte, vma);
|
|
else if (pte_swp_uffd_wp(*pvmw.pte))
|
|
pte = pte_mkuffd_wp(pte);
|
|
|
|
if (unlikely(is_device_private_page(new))) {
|
|
if (pte_write(pte))
|
|
entry = make_writable_device_private_entry(
|
|
page_to_pfn(new));
|
|
else
|
|
entry = make_readable_device_private_entry(
|
|
page_to_pfn(new));
|
|
pte = swp_entry_to_pte(entry);
|
|
if (pte_swp_soft_dirty(*pvmw.pte))
|
|
pte = pte_swp_mksoft_dirty(pte);
|
|
if (pte_swp_uffd_wp(*pvmw.pte))
|
|
pte = pte_swp_mkuffd_wp(pte);
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
if (folio_test_hugetlb(folio)) {
|
|
unsigned int shift = huge_page_shift(hstate_vma(vma));
|
|
|
|
pte = pte_mkhuge(pte);
|
|
pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
|
|
if (folio_test_anon(folio))
|
|
hugepage_add_anon_rmap(new, vma, pvmw.address);
|
|
else
|
|
page_dup_rmap(new, true);
|
|
set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
|
|
} else
|
|
#endif
|
|
{
|
|
if (folio_test_anon(folio))
|
|
page_add_anon_rmap(new, vma, pvmw.address, false);
|
|
else
|
|
page_add_file_rmap(new, vma, false);
|
|
set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
|
|
}
|
|
if (vma->vm_flags & VM_LOCKED)
|
|
mlock_page_drain_local();
|
|
|
|
trace_remove_migration_pte(pvmw.address, pte_val(pte),
|
|
compound_order(new));
|
|
|
|
/* No need to invalidate - it was non-present before */
|
|
update_mmu_cache(vma, pvmw.address, pvmw.pte);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Get rid of all migration entries and replace them by
|
|
* references to the indicated page.
|
|
*/
|
|
void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
|
|
{
|
|
struct rmap_walk_control rwc = {
|
|
.rmap_one = remove_migration_pte,
|
|
.arg = src,
|
|
};
|
|
|
|
if (locked)
|
|
rmap_walk_locked(dst, &rwc);
|
|
else
|
|
rmap_walk(dst, &rwc);
|
|
}
|
|
|
|
/*
|
|
* Something used the pte of a page under migration. We need to
|
|
* get to the page and wait until migration is finished.
|
|
* When we return from this function the fault will be retried.
|
|
*/
|
|
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
|
|
spinlock_t *ptl)
|
|
{
|
|
pte_t pte;
|
|
swp_entry_t entry;
|
|
|
|
spin_lock(ptl);
|
|
pte = *ptep;
|
|
if (!is_swap_pte(pte))
|
|
goto out;
|
|
|
|
entry = pte_to_swp_entry(pte);
|
|
if (!is_migration_entry(entry))
|
|
goto out;
|
|
|
|
migration_entry_wait_on_locked(entry, ptep, ptl);
|
|
return;
|
|
out:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
}
|
|
|
|
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
|
|
unsigned long address)
|
|
{
|
|
spinlock_t *ptl = pte_lockptr(mm, pmd);
|
|
pte_t *ptep = pte_offset_map(pmd, address);
|
|
__migration_entry_wait(mm, ptep, ptl);
|
|
}
|
|
|
|
void migration_entry_wait_huge(struct vm_area_struct *vma,
|
|
struct mm_struct *mm, pte_t *pte)
|
|
{
|
|
spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
|
|
__migration_entry_wait(mm, pte, ptl);
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pmd_lock(mm, pmd);
|
|
if (!is_pmd_migration_entry(*pmd))
|
|
goto unlock;
|
|
migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
|
|
return;
|
|
unlock:
|
|
spin_unlock(ptl);
|
|
}
|
|
#endif
|
|
|
|
static int expected_page_refs(struct address_space *mapping, struct page *page)
|
|
{
|
|
int expected_count = 1;
|
|
|
|
if (mapping)
|
|
expected_count += compound_nr(page) + page_has_private(page);
|
|
return expected_count;
|
|
}
|
|
|
|
/*
|
|
* Replace the page in the mapping.
|
|
*
|
|
* The number of remaining references must be:
|
|
* 1 for anonymous pages without a mapping
|
|
* 2 for pages with a mapping
|
|
* 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
|
|
*/
|
|
int folio_migrate_mapping(struct address_space *mapping,
|
|
struct folio *newfolio, struct folio *folio, int extra_count)
|
|
{
|
|
XA_STATE(xas, &mapping->i_pages, folio_index(folio));
|
|
struct zone *oldzone, *newzone;
|
|
int dirty;
|
|
int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
|
|
long nr = folio_nr_pages(folio);
|
|
|
|
if (!mapping) {
|
|
/* Anonymous page without mapping */
|
|
if (folio_ref_count(folio) != expected_count)
|
|
return -EAGAIN;
|
|
|
|
/* No turning back from here */
|
|
newfolio->index = folio->index;
|
|
newfolio->mapping = folio->mapping;
|
|
if (folio_test_swapbacked(folio))
|
|
__folio_set_swapbacked(newfolio);
|
|
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
|
|
oldzone = folio_zone(folio);
|
|
newzone = folio_zone(newfolio);
|
|
|
|
xas_lock_irq(&xas);
|
|
if (!folio_ref_freeze(folio, expected_count)) {
|
|
xas_unlock_irq(&xas);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Now we know that no one else is looking at the folio:
|
|
* no turning back from here.
|
|
*/
|
|
newfolio->index = folio->index;
|
|
newfolio->mapping = folio->mapping;
|
|
folio_ref_add(newfolio, nr); /* add cache reference */
|
|
if (folio_test_swapbacked(folio)) {
|
|
__folio_set_swapbacked(newfolio);
|
|
if (folio_test_swapcache(folio)) {
|
|
folio_set_swapcache(newfolio);
|
|
newfolio->private = folio_get_private(folio);
|
|
}
|
|
} else {
|
|
VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
|
|
}
|
|
|
|
/* Move dirty while page refs frozen and newpage not yet exposed */
|
|
dirty = folio_test_dirty(folio);
|
|
if (dirty) {
|
|
folio_clear_dirty(folio);
|
|
folio_set_dirty(newfolio);
|
|
}
|
|
|
|
xas_store(&xas, newfolio);
|
|
|
|
/*
|
|
* Drop cache reference from old page by unfreezing
|
|
* to one less reference.
|
|
* We know this isn't the last reference.
|
|
*/
|
|
folio_ref_unfreeze(folio, expected_count - nr);
|
|
|
|
xas_unlock(&xas);
|
|
/* Leave irq disabled to prevent preemption while updating stats */
|
|
|
|
/*
|
|
* If moved to a different zone then also account
|
|
* the page for that zone. Other VM counters will be
|
|
* taken care of when we establish references to the
|
|
* new page and drop references to the old page.
|
|
*
|
|
* Note that anonymous pages are accounted for
|
|
* via NR_FILE_PAGES and NR_ANON_MAPPED if they
|
|
* are mapped to swap space.
|
|
*/
|
|
if (newzone != oldzone) {
|
|
struct lruvec *old_lruvec, *new_lruvec;
|
|
struct mem_cgroup *memcg;
|
|
|
|
memcg = folio_memcg(folio);
|
|
old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
|
|
new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
|
|
|
|
__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
|
|
__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
|
|
if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
|
|
__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
|
|
__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
|
|
}
|
|
#ifdef CONFIG_SWAP
|
|
if (folio_test_swapcache(folio)) {
|
|
__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
|
|
__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
|
|
}
|
|
#endif
|
|
if (dirty && mapping_can_writeback(mapping)) {
|
|
__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
|
|
__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
|
|
__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
|
|
__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
|
|
}
|
|
}
|
|
local_irq_enable();
|
|
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
EXPORT_SYMBOL(folio_migrate_mapping);
|
|
|
|
/*
|
|
* The expected number of remaining references is the same as that
|
|
* of folio_migrate_mapping().
|
|
*/
|
|
int migrate_huge_page_move_mapping(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
XA_STATE(xas, &mapping->i_pages, page_index(page));
|
|
int expected_count;
|
|
|
|
xas_lock_irq(&xas);
|
|
expected_count = 2 + page_has_private(page);
|
|
if (page_count(page) != expected_count || xas_load(&xas) != page) {
|
|
xas_unlock_irq(&xas);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (!page_ref_freeze(page, expected_count)) {
|
|
xas_unlock_irq(&xas);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
newpage->index = page->index;
|
|
newpage->mapping = page->mapping;
|
|
|
|
get_page(newpage);
|
|
|
|
xas_store(&xas, newpage);
|
|
|
|
page_ref_unfreeze(page, expected_count - 1);
|
|
|
|
xas_unlock_irq(&xas);
|
|
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Copy the flags and some other ancillary information
|
|
*/
|
|
void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
|
|
{
|
|
int cpupid;
|
|
|
|
if (folio_test_error(folio))
|
|
folio_set_error(newfolio);
|
|
if (folio_test_referenced(folio))
|
|
folio_set_referenced(newfolio);
|
|
if (folio_test_uptodate(folio))
|
|
folio_mark_uptodate(newfolio);
|
|
if (folio_test_clear_active(folio)) {
|
|
VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
|
|
folio_set_active(newfolio);
|
|
} else if (folio_test_clear_unevictable(folio))
|
|
folio_set_unevictable(newfolio);
|
|
if (folio_test_workingset(folio))
|
|
folio_set_workingset(newfolio);
|
|
if (folio_test_checked(folio))
|
|
folio_set_checked(newfolio);
|
|
if (folio_test_mappedtodisk(folio))
|
|
folio_set_mappedtodisk(newfolio);
|
|
|
|
/* Move dirty on pages not done by folio_migrate_mapping() */
|
|
if (folio_test_dirty(folio))
|
|
folio_set_dirty(newfolio);
|
|
|
|
if (folio_test_young(folio))
|
|
folio_set_young(newfolio);
|
|
if (folio_test_idle(folio))
|
|
folio_set_idle(newfolio);
|
|
|
|
/*
|
|
* Copy NUMA information to the new page, to prevent over-eager
|
|
* future migrations of this same page.
|
|
*/
|
|
cpupid = page_cpupid_xchg_last(&folio->page, -1);
|
|
page_cpupid_xchg_last(&newfolio->page, cpupid);
|
|
|
|
folio_migrate_ksm(newfolio, folio);
|
|
/*
|
|
* Please do not reorder this without considering how mm/ksm.c's
|
|
* get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
|
|
*/
|
|
if (folio_test_swapcache(folio))
|
|
folio_clear_swapcache(folio);
|
|
folio_clear_private(folio);
|
|
|
|
/* page->private contains hugetlb specific flags */
|
|
if (!folio_test_hugetlb(folio))
|
|
folio->private = NULL;
|
|
|
|
/*
|
|
* If any waiters have accumulated on the new page then
|
|
* wake them up.
|
|
*/
|
|
if (folio_test_writeback(newfolio))
|
|
folio_end_writeback(newfolio);
|
|
|
|
/*
|
|
* PG_readahead shares the same bit with PG_reclaim. The above
|
|
* end_page_writeback() may clear PG_readahead mistakenly, so set the
|
|
* bit after that.
|
|
*/
|
|
if (folio_test_readahead(folio))
|
|
folio_set_readahead(newfolio);
|
|
|
|
folio_copy_owner(newfolio, folio);
|
|
|
|
if (!folio_test_hugetlb(folio))
|
|
mem_cgroup_migrate(folio, newfolio);
|
|
}
|
|
EXPORT_SYMBOL(folio_migrate_flags);
|
|
|
|
void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
|
|
{
|
|
folio_copy(newfolio, folio);
|
|
folio_migrate_flags(newfolio, folio);
|
|
}
|
|
EXPORT_SYMBOL(folio_migrate_copy);
|
|
|
|
/************************************************************
|
|
* Migration functions
|
|
***********************************************************/
|
|
|
|
/*
|
|
* Common logic to directly migrate a single LRU page suitable for
|
|
* pages that do not use PagePrivate/PagePrivate2.
|
|
*
|
|
* Pages are locked upon entry and exit.
|
|
*/
|
|
int migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page,
|
|
enum migrate_mode mode)
|
|
{
|
|
struct folio *newfolio = page_folio(newpage);
|
|
struct folio *folio = page_folio(page);
|
|
int rc;
|
|
|
|
BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */
|
|
|
|
rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
|
|
|
|
if (rc != MIGRATEPAGE_SUCCESS)
|
|
return rc;
|
|
|
|
if (mode != MIGRATE_SYNC_NO_COPY)
|
|
folio_migrate_copy(newfolio, folio);
|
|
else
|
|
folio_migrate_flags(newfolio, folio);
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
EXPORT_SYMBOL(migrate_page);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
/* Returns true if all buffers are successfully locked */
|
|
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
|
|
enum migrate_mode mode)
|
|
{
|
|
struct buffer_head *bh = head;
|
|
|
|
/* Simple case, sync compaction */
|
|
if (mode != MIGRATE_ASYNC) {
|
|
do {
|
|
lock_buffer(bh);
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* async case, we cannot block on lock_buffer so use trylock_buffer */
|
|
do {
|
|
if (!trylock_buffer(bh)) {
|
|
/*
|
|
* We failed to lock the buffer and cannot stall in
|
|
* async migration. Release the taken locks
|
|
*/
|
|
struct buffer_head *failed_bh = bh;
|
|
bh = head;
|
|
while (bh != failed_bh) {
|
|
unlock_buffer(bh);
|
|
bh = bh->b_this_page;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
return true;
|
|
}
|
|
|
|
static int __buffer_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page, enum migrate_mode mode,
|
|
bool check_refs)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
int rc;
|
|
int expected_count;
|
|
|
|
if (!page_has_buffers(page))
|
|
return migrate_page(mapping, newpage, page, mode);
|
|
|
|
/* Check whether page does not have extra refs before we do more work */
|
|
expected_count = expected_page_refs(mapping, page);
|
|
if (page_count(page) != expected_count)
|
|
return -EAGAIN;
|
|
|
|
head = page_buffers(page);
|
|
if (!buffer_migrate_lock_buffers(head, mode))
|
|
return -EAGAIN;
|
|
|
|
if (check_refs) {
|
|
bool busy;
|
|
bool invalidated = false;
|
|
|
|
recheck_buffers:
|
|
busy = false;
|
|
spin_lock(&mapping->private_lock);
|
|
bh = head;
|
|
do {
|
|
if (atomic_read(&bh->b_count)) {
|
|
busy = true;
|
|
break;
|
|
}
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
if (busy) {
|
|
if (invalidated) {
|
|
rc = -EAGAIN;
|
|
goto unlock_buffers;
|
|
}
|
|
spin_unlock(&mapping->private_lock);
|
|
invalidate_bh_lrus();
|
|
invalidated = true;
|
|
goto recheck_buffers;
|
|
}
|
|
}
|
|
|
|
rc = migrate_page_move_mapping(mapping, newpage, page, 0);
|
|
if (rc != MIGRATEPAGE_SUCCESS)
|
|
goto unlock_buffers;
|
|
|
|
attach_page_private(newpage, detach_page_private(page));
|
|
|
|
bh = head;
|
|
do {
|
|
set_bh_page(bh, newpage, bh_offset(bh));
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
if (mode != MIGRATE_SYNC_NO_COPY)
|
|
migrate_page_copy(newpage, page);
|
|
else
|
|
migrate_page_states(newpage, page);
|
|
|
|
rc = MIGRATEPAGE_SUCCESS;
|
|
unlock_buffers:
|
|
if (check_refs)
|
|
spin_unlock(&mapping->private_lock);
|
|
bh = head;
|
|
do {
|
|
unlock_buffer(bh);
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Migration function for pages with buffers. This function can only be used
|
|
* if the underlying filesystem guarantees that no other references to "page"
|
|
* exist. For example attached buffer heads are accessed only under page lock.
|
|
*/
|
|
int buffer_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page, enum migrate_mode mode)
|
|
{
|
|
return __buffer_migrate_page(mapping, newpage, page, mode, false);
|
|
}
|
|
EXPORT_SYMBOL(buffer_migrate_page);
|
|
|
|
/*
|
|
* Same as above except that this variant is more careful and checks that there
|
|
* are also no buffer head references. This function is the right one for
|
|
* mappings where buffer heads are directly looked up and referenced (such as
|
|
* block device mappings).
|
|
*/
|
|
int buffer_migrate_page_norefs(struct address_space *mapping,
|
|
struct page *newpage, struct page *page, enum migrate_mode mode)
|
|
{
|
|
return __buffer_migrate_page(mapping, newpage, page, mode, true);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Writeback a page to clean the dirty state
|
|
*/
|
|
static int writeout(struct address_space *mapping, struct page *page)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_NONE,
|
|
.nr_to_write = 1,
|
|
.range_start = 0,
|
|
.range_end = LLONG_MAX,
|
|
.for_reclaim = 1
|
|
};
|
|
int rc;
|
|
|
|
if (!mapping->a_ops->writepage)
|
|
/* No write method for the address space */
|
|
return -EINVAL;
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
/* Someone else already triggered a write */
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* A dirty page may imply that the underlying filesystem has
|
|
* the page on some queue. So the page must be clean for
|
|
* migration. Writeout may mean we loose the lock and the
|
|
* page state is no longer what we checked for earlier.
|
|
* At this point we know that the migration attempt cannot
|
|
* be successful.
|
|
*/
|
|
remove_migration_ptes(folio, folio, false);
|
|
|
|
rc = mapping->a_ops->writepage(page, &wbc);
|
|
|
|
if (rc != AOP_WRITEPAGE_ACTIVATE)
|
|
/* unlocked. Relock */
|
|
lock_page(page);
|
|
|
|
return (rc < 0) ? -EIO : -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Default handling if a filesystem does not provide a migration function.
|
|
*/
|
|
static int fallback_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page, enum migrate_mode mode)
|
|
{
|
|
if (PageDirty(page)) {
|
|
/* Only writeback pages in full synchronous migration */
|
|
switch (mode) {
|
|
case MIGRATE_SYNC:
|
|
case MIGRATE_SYNC_NO_COPY:
|
|
break;
|
|
default:
|
|
return -EBUSY;
|
|
}
|
|
return writeout(mapping, page);
|
|
}
|
|
|
|
/*
|
|
* Buffers may be managed in a filesystem specific way.
|
|
* We must have no buffers or drop them.
|
|
*/
|
|
if (page_has_private(page) &&
|
|
!try_to_release_page(page, GFP_KERNEL))
|
|
return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
|
|
|
|
return migrate_page(mapping, newpage, page, mode);
|
|
}
|
|
|
|
/*
|
|
* Move a page to a newly allocated page
|
|
* The page is locked and all ptes have been successfully removed.
|
|
*
|
|
* The new page will have replaced the old page if this function
|
|
* is successful.
|
|
*
|
|
* Return value:
|
|
* < 0 - error code
|
|
* MIGRATEPAGE_SUCCESS - success
|
|
*/
|
|
static int move_to_new_page(struct page *newpage, struct page *page,
|
|
enum migrate_mode mode)
|
|
{
|
|
struct address_space *mapping;
|
|
int rc = -EAGAIN;
|
|
bool is_lru = !__PageMovable(page);
|
|
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
|
|
|
|
mapping = page_mapping(page);
|
|
|
|
if (likely(is_lru)) {
|
|
if (!mapping)
|
|
rc = migrate_page(mapping, newpage, page, mode);
|
|
else if (mapping->a_ops->migratepage)
|
|
/*
|
|
* Most pages have a mapping and most filesystems
|
|
* provide a migratepage callback. Anonymous pages
|
|
* are part of swap space which also has its own
|
|
* migratepage callback. This is the most common path
|
|
* for page migration.
|
|
*/
|
|
rc = mapping->a_ops->migratepage(mapping, newpage,
|
|
page, mode);
|
|
else
|
|
rc = fallback_migrate_page(mapping, newpage,
|
|
page, mode);
|
|
} else {
|
|
/*
|
|
* In case of non-lru page, it could be released after
|
|
* isolation step. In that case, we shouldn't try migration.
|
|
*/
|
|
VM_BUG_ON_PAGE(!PageIsolated(page), page);
|
|
if (!PageMovable(page)) {
|
|
rc = MIGRATEPAGE_SUCCESS;
|
|
ClearPageIsolated(page);
|
|
goto out;
|
|
}
|
|
|
|
rc = mapping->a_ops->migratepage(mapping, newpage,
|
|
page, mode);
|
|
WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
|
|
!PageIsolated(page));
|
|
}
|
|
|
|
/*
|
|
* When successful, old pagecache page->mapping must be cleared before
|
|
* page is freed; but stats require that PageAnon be left as PageAnon.
|
|
*/
|
|
if (rc == MIGRATEPAGE_SUCCESS) {
|
|
if (__PageMovable(page)) {
|
|
VM_BUG_ON_PAGE(!PageIsolated(page), page);
|
|
|
|
/*
|
|
* We clear PG_movable under page_lock so any compactor
|
|
* cannot try to migrate this page.
|
|
*/
|
|
ClearPageIsolated(page);
|
|
}
|
|
|
|
/*
|
|
* Anonymous and movable page->mapping will be cleared by
|
|
* free_pages_prepare so don't reset it here for keeping
|
|
* the type to work PageAnon, for example.
|
|
*/
|
|
if (!PageMappingFlags(page))
|
|
page->mapping = NULL;
|
|
|
|
if (likely(!is_zone_device_page(newpage)))
|
|
flush_dcache_folio(page_folio(newpage));
|
|
}
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static int __unmap_and_move(struct page *page, struct page *newpage,
|
|
int force, enum migrate_mode mode)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
struct folio *dst = page_folio(newpage);
|
|
int rc = -EAGAIN;
|
|
bool page_was_mapped = false;
|
|
struct anon_vma *anon_vma = NULL;
|
|
bool is_lru = !__PageMovable(page);
|
|
|
|
if (!trylock_page(page)) {
|
|
if (!force || mode == MIGRATE_ASYNC)
|
|
goto out;
|
|
|
|
/*
|
|
* It's not safe for direct compaction to call lock_page.
|
|
* For example, during page readahead pages are added locked
|
|
* to the LRU. Later, when the IO completes the pages are
|
|
* marked uptodate and unlocked. However, the queueing
|
|
* could be merging multiple pages for one bio (e.g.
|
|
* mpage_readahead). If an allocation happens for the
|
|
* second or third page, the process can end up locking
|
|
* the same page twice and deadlocking. Rather than
|
|
* trying to be clever about what pages can be locked,
|
|
* avoid the use of lock_page for direct compaction
|
|
* altogether.
|
|
*/
|
|
if (current->flags & PF_MEMALLOC)
|
|
goto out;
|
|
|
|
lock_page(page);
|
|
}
|
|
|
|
if (PageWriteback(page)) {
|
|
/*
|
|
* Only in the case of a full synchronous migration is it
|
|
* necessary to wait for PageWriteback. In the async case,
|
|
* the retry loop is too short and in the sync-light case,
|
|
* the overhead of stalling is too much
|
|
*/
|
|
switch (mode) {
|
|
case MIGRATE_SYNC:
|
|
case MIGRATE_SYNC_NO_COPY:
|
|
break;
|
|
default:
|
|
rc = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
if (!force)
|
|
goto out_unlock;
|
|
wait_on_page_writeback(page);
|
|
}
|
|
|
|
/*
|
|
* By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
|
|
* we cannot notice that anon_vma is freed while we migrates a page.
|
|
* This get_anon_vma() delays freeing anon_vma pointer until the end
|
|
* of migration. File cache pages are no problem because of page_lock()
|
|
* File Caches may use write_page() or lock_page() in migration, then,
|
|
* just care Anon page here.
|
|
*
|
|
* Only page_get_anon_vma() understands the subtleties of
|
|
* getting a hold on an anon_vma from outside one of its mms.
|
|
* But if we cannot get anon_vma, then we won't need it anyway,
|
|
* because that implies that the anon page is no longer mapped
|
|
* (and cannot be remapped so long as we hold the page lock).
|
|
*/
|
|
if (PageAnon(page) && !PageKsm(page))
|
|
anon_vma = page_get_anon_vma(page);
|
|
|
|
/*
|
|
* Block others from accessing the new page when we get around to
|
|
* establishing additional references. We are usually the only one
|
|
* holding a reference to newpage at this point. We used to have a BUG
|
|
* here if trylock_page(newpage) fails, but would like to allow for
|
|
* cases where there might be a race with the previous use of newpage.
|
|
* This is much like races on refcount of oldpage: just don't BUG().
|
|
*/
|
|
if (unlikely(!trylock_page(newpage)))
|
|
goto out_unlock;
|
|
|
|
if (unlikely(!is_lru)) {
|
|
rc = move_to_new_page(newpage, page, mode);
|
|
goto out_unlock_both;
|
|
}
|
|
|
|
/*
|
|
* Corner case handling:
|
|
* 1. When a new swap-cache page is read into, it is added to the LRU
|
|
* and treated as swapcache but it has no rmap yet.
|
|
* Calling try_to_unmap() against a page->mapping==NULL page will
|
|
* trigger a BUG. So handle it here.
|
|
* 2. An orphaned page (see truncate_cleanup_page) might have
|
|
* fs-private metadata. The page can be picked up due to memory
|
|
* offlining. Everywhere else except page reclaim, the page is
|
|
* invisible to the vm, so the page can not be migrated. So try to
|
|
* free the metadata, so the page can be freed.
|
|
*/
|
|
if (!page->mapping) {
|
|
VM_BUG_ON_PAGE(PageAnon(page), page);
|
|
if (page_has_private(page)) {
|
|
try_to_free_buffers(page);
|
|
goto out_unlock_both;
|
|
}
|
|
} else if (page_mapped(page)) {
|
|
/* Establish migration ptes */
|
|
VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
|
|
page);
|
|
try_to_migrate(folio, 0);
|
|
page_was_mapped = true;
|
|
}
|
|
|
|
if (!page_mapped(page))
|
|
rc = move_to_new_page(newpage, page, mode);
|
|
|
|
/*
|
|
* When successful, push newpage to LRU immediately: so that if it
|
|
* turns out to be an mlocked page, remove_migration_ptes() will
|
|
* automatically build up the correct newpage->mlock_count for it.
|
|
*
|
|
* We would like to do something similar for the old page, when
|
|
* unsuccessful, and other cases when a page has been temporarily
|
|
* isolated from the unevictable LRU: but this case is the easiest.
|
|
*/
|
|
if (rc == MIGRATEPAGE_SUCCESS) {
|
|
lru_cache_add(newpage);
|
|
if (page_was_mapped)
|
|
lru_add_drain();
|
|
}
|
|
|
|
if (page_was_mapped)
|
|
remove_migration_ptes(folio,
|
|
rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
|
|
|
|
out_unlock_both:
|
|
unlock_page(newpage);
|
|
out_unlock:
|
|
/* Drop an anon_vma reference if we took one */
|
|
if (anon_vma)
|
|
put_anon_vma(anon_vma);
|
|
unlock_page(page);
|
|
out:
|
|
/*
|
|
* If migration is successful, decrease refcount of the newpage,
|
|
* which will not free the page because new page owner increased
|
|
* refcounter.
|
|
*/
|
|
if (rc == MIGRATEPAGE_SUCCESS)
|
|
put_page(newpage);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Obtain the lock on page, remove all ptes and migrate the page
|
|
* to the newly allocated page in newpage.
|
|
*/
|
|
static int unmap_and_move(new_page_t get_new_page,
|
|
free_page_t put_new_page,
|
|
unsigned long private, struct page *page,
|
|
int force, enum migrate_mode mode,
|
|
enum migrate_reason reason,
|
|
struct list_head *ret)
|
|
{
|
|
int rc = MIGRATEPAGE_SUCCESS;
|
|
struct page *newpage = NULL;
|
|
|
|
if (!thp_migration_supported() && PageTransHuge(page))
|
|
return -ENOSYS;
|
|
|
|
if (page_count(page) == 1) {
|
|
/* page was freed from under us. So we are done. */
|
|
ClearPageActive(page);
|
|
ClearPageUnevictable(page);
|
|
if (unlikely(__PageMovable(page))) {
|
|
lock_page(page);
|
|
if (!PageMovable(page))
|
|
ClearPageIsolated(page);
|
|
unlock_page(page);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
newpage = get_new_page(page, private);
|
|
if (!newpage)
|
|
return -ENOMEM;
|
|
|
|
rc = __unmap_and_move(page, newpage, force, mode);
|
|
if (rc == MIGRATEPAGE_SUCCESS)
|
|
set_page_owner_migrate_reason(newpage, reason);
|
|
|
|
out:
|
|
if (rc != -EAGAIN) {
|
|
/*
|
|
* A page that has been migrated has all references
|
|
* removed and will be freed. A page that has not been
|
|
* migrated will have kept its references and be restored.
|
|
*/
|
|
list_del(&page->lru);
|
|
}
|
|
|
|
/*
|
|
* If migration is successful, releases reference grabbed during
|
|
* isolation. Otherwise, restore the page to right list unless
|
|
* we want to retry.
|
|
*/
|
|
if (rc == MIGRATEPAGE_SUCCESS) {
|
|
/*
|
|
* Compaction can migrate also non-LRU pages which are
|
|
* not accounted to NR_ISOLATED_*. They can be recognized
|
|
* as __PageMovable
|
|
*/
|
|
if (likely(!__PageMovable(page)))
|
|
mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
|
|
page_is_file_lru(page), -thp_nr_pages(page));
|
|
|
|
if (reason != MR_MEMORY_FAILURE)
|
|
/*
|
|
* We release the page in page_handle_poison.
|
|
*/
|
|
put_page(page);
|
|
} else {
|
|
if (rc != -EAGAIN)
|
|
list_add_tail(&page->lru, ret);
|
|
|
|
if (put_new_page)
|
|
put_new_page(newpage, private);
|
|
else
|
|
put_page(newpage);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Counterpart of unmap_and_move_page() for hugepage migration.
|
|
*
|
|
* This function doesn't wait the completion of hugepage I/O
|
|
* because there is no race between I/O and migration for hugepage.
|
|
* Note that currently hugepage I/O occurs only in direct I/O
|
|
* where no lock is held and PG_writeback is irrelevant,
|
|
* and writeback status of all subpages are counted in the reference
|
|
* count of the head page (i.e. if all subpages of a 2MB hugepage are
|
|
* under direct I/O, the reference of the head page is 512 and a bit more.)
|
|
* This means that when we try to migrate hugepage whose subpages are
|
|
* doing direct I/O, some references remain after try_to_unmap() and
|
|
* hugepage migration fails without data corruption.
|
|
*
|
|
* There is also no race when direct I/O is issued on the page under migration,
|
|
* because then pte is replaced with migration swap entry and direct I/O code
|
|
* will wait in the page fault for migration to complete.
|
|
*/
|
|
static int unmap_and_move_huge_page(new_page_t get_new_page,
|
|
free_page_t put_new_page, unsigned long private,
|
|
struct page *hpage, int force,
|
|
enum migrate_mode mode, int reason,
|
|
struct list_head *ret)
|
|
{
|
|
struct folio *dst, *src = page_folio(hpage);
|
|
int rc = -EAGAIN;
|
|
int page_was_mapped = 0;
|
|
struct page *new_hpage;
|
|
struct anon_vma *anon_vma = NULL;
|
|
struct address_space *mapping = NULL;
|
|
|
|
/*
|
|
* Migratability of hugepages depends on architectures and their size.
|
|
* This check is necessary because some callers of hugepage migration
|
|
* like soft offline and memory hotremove don't walk through page
|
|
* tables or check whether the hugepage is pmd-based or not before
|
|
* kicking migration.
|
|
*/
|
|
if (!hugepage_migration_supported(page_hstate(hpage))) {
|
|
list_move_tail(&hpage->lru, ret);
|
|
return -ENOSYS;
|
|
}
|
|
|
|
if (page_count(hpage) == 1) {
|
|
/* page was freed from under us. So we are done. */
|
|
putback_active_hugepage(hpage);
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
|
|
new_hpage = get_new_page(hpage, private);
|
|
if (!new_hpage)
|
|
return -ENOMEM;
|
|
dst = page_folio(new_hpage);
|
|
|
|
if (!trylock_page(hpage)) {
|
|
if (!force)
|
|
goto out;
|
|
switch (mode) {
|
|
case MIGRATE_SYNC:
|
|
case MIGRATE_SYNC_NO_COPY:
|
|
break;
|
|
default:
|
|
goto out;
|
|
}
|
|
lock_page(hpage);
|
|
}
|
|
|
|
/*
|
|
* Check for pages which are in the process of being freed. Without
|
|
* page_mapping() set, hugetlbfs specific move page routine will not
|
|
* be called and we could leak usage counts for subpools.
|
|
*/
|
|
if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
|
|
rc = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (PageAnon(hpage))
|
|
anon_vma = page_get_anon_vma(hpage);
|
|
|
|
if (unlikely(!trylock_page(new_hpage)))
|
|
goto put_anon;
|
|
|
|
if (page_mapped(hpage)) {
|
|
bool mapping_locked = false;
|
|
enum ttu_flags ttu = 0;
|
|
|
|
if (!PageAnon(hpage)) {
|
|
/*
|
|
* In shared mappings, try_to_unmap could potentially
|
|
* call huge_pmd_unshare. Because of this, take
|
|
* semaphore in write mode here and set TTU_RMAP_LOCKED
|
|
* to let lower levels know we have taken the lock.
|
|
*/
|
|
mapping = hugetlb_page_mapping_lock_write(hpage);
|
|
if (unlikely(!mapping))
|
|
goto unlock_put_anon;
|
|
|
|
mapping_locked = true;
|
|
ttu |= TTU_RMAP_LOCKED;
|
|
}
|
|
|
|
try_to_migrate(src, ttu);
|
|
page_was_mapped = 1;
|
|
|
|
if (mapping_locked)
|
|
i_mmap_unlock_write(mapping);
|
|
}
|
|
|
|
if (!page_mapped(hpage))
|
|
rc = move_to_new_page(new_hpage, hpage, mode);
|
|
|
|
if (page_was_mapped)
|
|
remove_migration_ptes(src,
|
|
rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
|
|
|
|
unlock_put_anon:
|
|
unlock_page(new_hpage);
|
|
|
|
put_anon:
|
|
if (anon_vma)
|
|
put_anon_vma(anon_vma);
|
|
|
|
if (rc == MIGRATEPAGE_SUCCESS) {
|
|
move_hugetlb_state(hpage, new_hpage, reason);
|
|
put_new_page = NULL;
|
|
}
|
|
|
|
out_unlock:
|
|
unlock_page(hpage);
|
|
out:
|
|
if (rc == MIGRATEPAGE_SUCCESS)
|
|
putback_active_hugepage(hpage);
|
|
else if (rc != -EAGAIN)
|
|
list_move_tail(&hpage->lru, ret);
|
|
|
|
/*
|
|
* If migration was not successful and there's a freeing callback, use
|
|
* it. Otherwise, put_page() will drop the reference grabbed during
|
|
* isolation.
|
|
*/
|
|
if (put_new_page)
|
|
put_new_page(new_hpage, private);
|
|
else
|
|
putback_active_hugepage(new_hpage);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static inline int try_split_thp(struct page *page, struct page **page2,
|
|
struct list_head *from)
|
|
{
|
|
int rc = 0;
|
|
|
|
lock_page(page);
|
|
rc = split_huge_page_to_list(page, from);
|
|
unlock_page(page);
|
|
if (!rc)
|
|
list_safe_reset_next(page, *page2, lru);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* migrate_pages - migrate the pages specified in a list, to the free pages
|
|
* supplied as the target for the page migration
|
|
*
|
|
* @from: The list of pages to be migrated.
|
|
* @get_new_page: The function used to allocate free pages to be used
|
|
* as the target of the page migration.
|
|
* @put_new_page: The function used to free target pages if migration
|
|
* fails, or NULL if no special handling is necessary.
|
|
* @private: Private data to be passed on to get_new_page()
|
|
* @mode: The migration mode that specifies the constraints for
|
|
* page migration, if any.
|
|
* @reason: The reason for page migration.
|
|
* @ret_succeeded: Set to the number of normal pages migrated successfully if
|
|
* the caller passes a non-NULL pointer.
|
|
*
|
|
* The function returns after 10 attempts or if no pages are movable any more
|
|
* because the list has become empty or no retryable pages exist any more.
|
|
* It is caller's responsibility to call putback_movable_pages() to return pages
|
|
* to the LRU or free list only if ret != 0.
|
|
*
|
|
* Returns the number of {normal page, THP, hugetlb} that were not migrated, or
|
|
* an error code. The number of THP splits will be considered as the number of
|
|
* non-migrated THP, no matter how many subpages of the THP are migrated successfully.
|
|
*/
|
|
int migrate_pages(struct list_head *from, new_page_t get_new_page,
|
|
free_page_t put_new_page, unsigned long private,
|
|
enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
|
|
{
|
|
int retry = 1;
|
|
int thp_retry = 1;
|
|
int nr_failed = 0;
|
|
int nr_failed_pages = 0;
|
|
int nr_succeeded = 0;
|
|
int nr_thp_succeeded = 0;
|
|
int nr_thp_failed = 0;
|
|
int nr_thp_split = 0;
|
|
int pass = 0;
|
|
bool is_thp = false;
|
|
struct page *page;
|
|
struct page *page2;
|
|
int rc, nr_subpages;
|
|
LIST_HEAD(ret_pages);
|
|
LIST_HEAD(thp_split_pages);
|
|
bool nosplit = (reason == MR_NUMA_MISPLACED);
|
|
bool no_subpage_counting = false;
|
|
|
|
trace_mm_migrate_pages_start(mode, reason);
|
|
|
|
thp_subpage_migration:
|
|
for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
|
|
retry = 0;
|
|
thp_retry = 0;
|
|
|
|
list_for_each_entry_safe(page, page2, from, lru) {
|
|
retry:
|
|
/*
|
|
* THP statistics is based on the source huge page.
|
|
* Capture required information that might get lost
|
|
* during migration.
|
|
*/
|
|
is_thp = PageTransHuge(page) && !PageHuge(page);
|
|
nr_subpages = compound_nr(page);
|
|
cond_resched();
|
|
|
|
if (PageHuge(page))
|
|
rc = unmap_and_move_huge_page(get_new_page,
|
|
put_new_page, private, page,
|
|
pass > 2, mode, reason,
|
|
&ret_pages);
|
|
else
|
|
rc = unmap_and_move(get_new_page, put_new_page,
|
|
private, page, pass > 2, mode,
|
|
reason, &ret_pages);
|
|
/*
|
|
* The rules are:
|
|
* Success: non hugetlb page will be freed, hugetlb
|
|
* page will be put back
|
|
* -EAGAIN: stay on the from list
|
|
* -ENOMEM: stay on the from list
|
|
* Other errno: put on ret_pages list then splice to
|
|
* from list
|
|
*/
|
|
switch(rc) {
|
|
/*
|
|
* THP migration might be unsupported or the
|
|
* allocation could've failed so we should
|
|
* retry on the same page with the THP split
|
|
* to base pages.
|
|
*
|
|
* Head page is retried immediately and tail
|
|
* pages are added to the tail of the list so
|
|
* we encounter them after the rest of the list
|
|
* is processed.
|
|
*/
|
|
case -ENOSYS:
|
|
/* THP migration is unsupported */
|
|
if (is_thp) {
|
|
nr_thp_failed++;
|
|
if (!try_split_thp(page, &page2, &thp_split_pages)) {
|
|
nr_thp_split++;
|
|
goto retry;
|
|
}
|
|
|
|
nr_failed_pages += nr_subpages;
|
|
break;
|
|
}
|
|
|
|
/* Hugetlb migration is unsupported */
|
|
if (!no_subpage_counting)
|
|
nr_failed++;
|
|
nr_failed_pages += nr_subpages;
|
|
break;
|
|
case -ENOMEM:
|
|
/*
|
|
* When memory is low, don't bother to try to migrate
|
|
* other pages, just exit.
|
|
* THP NUMA faulting doesn't split THP to retry.
|
|
*/
|
|
if (is_thp && !nosplit) {
|
|
nr_thp_failed++;
|
|
if (!try_split_thp(page, &page2, &thp_split_pages)) {
|
|
nr_thp_split++;
|
|
goto retry;
|
|
}
|
|
|
|
nr_failed_pages += nr_subpages;
|
|
goto out;
|
|
}
|
|
|
|
if (!no_subpage_counting)
|
|
nr_failed++;
|
|
nr_failed_pages += nr_subpages;
|
|
goto out;
|
|
case -EAGAIN:
|
|
if (is_thp) {
|
|
thp_retry++;
|
|
break;
|
|
}
|
|
retry++;
|
|
break;
|
|
case MIGRATEPAGE_SUCCESS:
|
|
nr_succeeded += nr_subpages;
|
|
if (is_thp) {
|
|
nr_thp_succeeded++;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
/*
|
|
* Permanent failure (-EBUSY, etc.):
|
|
* unlike -EAGAIN case, the failed page is
|
|
* removed from migration page list and not
|
|
* retried in the next outer loop.
|
|
*/
|
|
if (is_thp) {
|
|
nr_thp_failed++;
|
|
nr_failed_pages += nr_subpages;
|
|
break;
|
|
}
|
|
|
|
if (!no_subpage_counting)
|
|
nr_failed++;
|
|
nr_failed_pages += nr_subpages;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
nr_failed += retry;
|
|
nr_thp_failed += thp_retry;
|
|
/*
|
|
* Try to migrate subpages of fail-to-migrate THPs, no nr_failed
|
|
* counting in this round, since all subpages of a THP is counted
|
|
* as 1 failure in the first round.
|
|
*/
|
|
if (!list_empty(&thp_split_pages)) {
|
|
/*
|
|
* Move non-migrated pages (after 10 retries) to ret_pages
|
|
* to avoid migrating them again.
|
|
*/
|
|
list_splice_init(from, &ret_pages);
|
|
list_splice_init(&thp_split_pages, from);
|
|
no_subpage_counting = true;
|
|
retry = 1;
|
|
goto thp_subpage_migration;
|
|
}
|
|
|
|
rc = nr_failed + nr_thp_failed;
|
|
out:
|
|
/*
|
|
* Put the permanent failure page back to migration list, they
|
|
* will be put back to the right list by the caller.
|
|
*/
|
|
list_splice(&ret_pages, from);
|
|
|
|
count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
|
|
count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
|
|
count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
|
|
count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
|
|
count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
|
|
trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
|
|
nr_thp_failed, nr_thp_split, mode, reason);
|
|
|
|
if (ret_succeeded)
|
|
*ret_succeeded = nr_succeeded;
|
|
|
|
return rc;
|
|
}
|
|
|
|
struct page *alloc_migration_target(struct page *page, unsigned long private)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
struct migration_target_control *mtc;
|
|
gfp_t gfp_mask;
|
|
unsigned int order = 0;
|
|
struct folio *new_folio = NULL;
|
|
int nid;
|
|
int zidx;
|
|
|
|
mtc = (struct migration_target_control *)private;
|
|
gfp_mask = mtc->gfp_mask;
|
|
nid = mtc->nid;
|
|
if (nid == NUMA_NO_NODE)
|
|
nid = folio_nid(folio);
|
|
|
|
if (folio_test_hugetlb(folio)) {
|
|
struct hstate *h = page_hstate(&folio->page);
|
|
|
|
gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
|
|
return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
|
|
}
|
|
|
|
if (folio_test_large(folio)) {
|
|
/*
|
|
* clear __GFP_RECLAIM to make the migration callback
|
|
* consistent with regular THP allocations.
|
|
*/
|
|
gfp_mask &= ~__GFP_RECLAIM;
|
|
gfp_mask |= GFP_TRANSHUGE;
|
|
order = folio_order(folio);
|
|
}
|
|
zidx = zone_idx(folio_zone(folio));
|
|
if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
|
|
gfp_mask |= __GFP_HIGHMEM;
|
|
|
|
new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
|
|
|
|
return &new_folio->page;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
static int store_status(int __user *status, int start, int value, int nr)
|
|
{
|
|
while (nr-- > 0) {
|
|
if (put_user(value, status + start))
|
|
return -EFAULT;
|
|
start++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_move_pages_to_node(struct mm_struct *mm,
|
|
struct list_head *pagelist, int node)
|
|
{
|
|
int err;
|
|
struct migration_target_control mtc = {
|
|
.nid = node,
|
|
.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
|
|
};
|
|
|
|
err = migrate_pages(pagelist, alloc_migration_target, NULL,
|
|
(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
|
|
if (err)
|
|
putback_movable_pages(pagelist);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Resolves the given address to a struct page, isolates it from the LRU and
|
|
* puts it to the given pagelist.
|
|
* Returns:
|
|
* errno - if the page cannot be found/isolated
|
|
* 0 - when it doesn't have to be migrated because it is already on the
|
|
* target node
|
|
* 1 - when it has been queued
|
|
*/
|
|
static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
|
|
int node, struct list_head *pagelist, bool migrate_all)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct page *page;
|
|
int err;
|
|
|
|
mmap_read_lock(mm);
|
|
err = -EFAULT;
|
|
vma = find_vma(mm, addr);
|
|
if (!vma || addr < vma->vm_start || !vma_migratable(vma))
|
|
goto out;
|
|
|
|
/* FOLL_DUMP to ignore special (like zero) pages */
|
|
page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
|
|
|
|
err = PTR_ERR(page);
|
|
if (IS_ERR(page))
|
|
goto out;
|
|
|
|
err = -ENOENT;
|
|
if (!page)
|
|
goto out;
|
|
|
|
err = 0;
|
|
if (page_to_nid(page) == node)
|
|
goto out_putpage;
|
|
|
|
err = -EACCES;
|
|
if (page_mapcount(page) > 1 && !migrate_all)
|
|
goto out_putpage;
|
|
|
|
if (PageHuge(page)) {
|
|
if (PageHead(page)) {
|
|
isolate_huge_page(page, pagelist);
|
|
err = 1;
|
|
}
|
|
} else {
|
|
struct page *head;
|
|
|
|
head = compound_head(page);
|
|
err = isolate_lru_page(head);
|
|
if (err)
|
|
goto out_putpage;
|
|
|
|
err = 1;
|
|
list_add_tail(&head->lru, pagelist);
|
|
mod_node_page_state(page_pgdat(head),
|
|
NR_ISOLATED_ANON + page_is_file_lru(head),
|
|
thp_nr_pages(head));
|
|
}
|
|
out_putpage:
|
|
/*
|
|
* Either remove the duplicate refcount from
|
|
* isolate_lru_page() or drop the page ref if it was
|
|
* not isolated.
|
|
*/
|
|
put_page(page);
|
|
out:
|
|
mmap_read_unlock(mm);
|
|
return err;
|
|
}
|
|
|
|
static int move_pages_and_store_status(struct mm_struct *mm, int node,
|
|
struct list_head *pagelist, int __user *status,
|
|
int start, int i, unsigned long nr_pages)
|
|
{
|
|
int err;
|
|
|
|
if (list_empty(pagelist))
|
|
return 0;
|
|
|
|
err = do_move_pages_to_node(mm, pagelist, node);
|
|
if (err) {
|
|
/*
|
|
* Positive err means the number of failed
|
|
* pages to migrate. Since we are going to
|
|
* abort and return the number of non-migrated
|
|
* pages, so need to include the rest of the
|
|
* nr_pages that have not been attempted as
|
|
* well.
|
|
*/
|
|
if (err > 0)
|
|
err += nr_pages - i - 1;
|
|
return err;
|
|
}
|
|
return store_status(status, start, node, i - start);
|
|
}
|
|
|
|
/*
|
|
* Migrate an array of page address onto an array of nodes and fill
|
|
* the corresponding array of status.
|
|
*/
|
|
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
|
|
unsigned long nr_pages,
|
|
const void __user * __user *pages,
|
|
const int __user *nodes,
|
|
int __user *status, int flags)
|
|
{
|
|
int current_node = NUMA_NO_NODE;
|
|
LIST_HEAD(pagelist);
|
|
int start, i;
|
|
int err = 0, err1;
|
|
|
|
lru_cache_disable();
|
|
|
|
for (i = start = 0; i < nr_pages; i++) {
|
|
const void __user *p;
|
|
unsigned long addr;
|
|
int node;
|
|
|
|
err = -EFAULT;
|
|
if (get_user(p, pages + i))
|
|
goto out_flush;
|
|
if (get_user(node, nodes + i))
|
|
goto out_flush;
|
|
addr = (unsigned long)untagged_addr(p);
|
|
|
|
err = -ENODEV;
|
|
if (node < 0 || node >= MAX_NUMNODES)
|
|
goto out_flush;
|
|
if (!node_state(node, N_MEMORY))
|
|
goto out_flush;
|
|
|
|
err = -EACCES;
|
|
if (!node_isset(node, task_nodes))
|
|
goto out_flush;
|
|
|
|
if (current_node == NUMA_NO_NODE) {
|
|
current_node = node;
|
|
start = i;
|
|
} else if (node != current_node) {
|
|
err = move_pages_and_store_status(mm, current_node,
|
|
&pagelist, status, start, i, nr_pages);
|
|
if (err)
|
|
goto out;
|
|
start = i;
|
|
current_node = node;
|
|
}
|
|
|
|
/*
|
|
* Errors in the page lookup or isolation are not fatal and we simply
|
|
* report them via status
|
|
*/
|
|
err = add_page_for_migration(mm, addr, current_node,
|
|
&pagelist, flags & MPOL_MF_MOVE_ALL);
|
|
|
|
if (err > 0) {
|
|
/* The page is successfully queued for migration */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The move_pages() man page does not have an -EEXIST choice, so
|
|
* use -EFAULT instead.
|
|
*/
|
|
if (err == -EEXIST)
|
|
err = -EFAULT;
|
|
|
|
/*
|
|
* If the page is already on the target node (!err), store the
|
|
* node, otherwise, store the err.
|
|
*/
|
|
err = store_status(status, i, err ? : current_node, 1);
|
|
if (err)
|
|
goto out_flush;
|
|
|
|
err = move_pages_and_store_status(mm, current_node, &pagelist,
|
|
status, start, i, nr_pages);
|
|
if (err)
|
|
goto out;
|
|
current_node = NUMA_NO_NODE;
|
|
}
|
|
out_flush:
|
|
/* Make sure we do not overwrite the existing error */
|
|
err1 = move_pages_and_store_status(mm, current_node, &pagelist,
|
|
status, start, i, nr_pages);
|
|
if (err >= 0)
|
|
err = err1;
|
|
out:
|
|
lru_cache_enable();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Determine the nodes of an array of pages and store it in an array of status.
|
|
*/
|
|
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
|
|
const void __user **pages, int *status)
|
|
{
|
|
unsigned long i;
|
|
|
|
mmap_read_lock(mm);
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
unsigned long addr = (unsigned long)(*pages);
|
|
struct vm_area_struct *vma;
|
|
struct page *page;
|
|
int err = -EFAULT;
|
|
|
|
vma = vma_lookup(mm, addr);
|
|
if (!vma)
|
|
goto set_status;
|
|
|
|
/* FOLL_DUMP to ignore special (like zero) pages */
|
|
page = follow_page(vma, addr, FOLL_DUMP);
|
|
|
|
err = PTR_ERR(page);
|
|
if (IS_ERR(page))
|
|
goto set_status;
|
|
|
|
err = page ? page_to_nid(page) : -ENOENT;
|
|
set_status:
|
|
*status = err;
|
|
|
|
pages++;
|
|
status++;
|
|
}
|
|
|
|
mmap_read_unlock(mm);
|
|
}
|
|
|
|
static int get_compat_pages_array(const void __user *chunk_pages[],
|
|
const void __user * __user *pages,
|
|
unsigned long chunk_nr)
|
|
{
|
|
compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
|
|
compat_uptr_t p;
|
|
int i;
|
|
|
|
for (i = 0; i < chunk_nr; i++) {
|
|
if (get_user(p, pages32 + i))
|
|
return -EFAULT;
|
|
chunk_pages[i] = compat_ptr(p);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Determine the nodes of a user array of pages and store it in
|
|
* a user array of status.
|
|
*/
|
|
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
|
|
const void __user * __user *pages,
|
|
int __user *status)
|
|
{
|
|
#define DO_PAGES_STAT_CHUNK_NR 16
|
|
const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
|
|
int chunk_status[DO_PAGES_STAT_CHUNK_NR];
|
|
|
|
while (nr_pages) {
|
|
unsigned long chunk_nr;
|
|
|
|
chunk_nr = nr_pages;
|
|
if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
|
|
chunk_nr = DO_PAGES_STAT_CHUNK_NR;
|
|
|
|
if (in_compat_syscall()) {
|
|
if (get_compat_pages_array(chunk_pages, pages,
|
|
chunk_nr))
|
|
break;
|
|
} else {
|
|
if (copy_from_user(chunk_pages, pages,
|
|
chunk_nr * sizeof(*chunk_pages)))
|
|
break;
|
|
}
|
|
|
|
do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
|
|
|
|
if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
|
|
break;
|
|
|
|
pages += chunk_nr;
|
|
status += chunk_nr;
|
|
nr_pages -= chunk_nr;
|
|
}
|
|
return nr_pages ? -EFAULT : 0;
|
|
}
|
|
|
|
static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
|
|
{
|
|
struct task_struct *task;
|
|
struct mm_struct *mm;
|
|
|
|
/*
|
|
* There is no need to check if current process has the right to modify
|
|
* the specified process when they are same.
|
|
*/
|
|
if (!pid) {
|
|
mmget(current->mm);
|
|
*mem_nodes = cpuset_mems_allowed(current);
|
|
return current->mm;
|
|
}
|
|
|
|
/* Find the mm_struct */
|
|
rcu_read_lock();
|
|
task = find_task_by_vpid(pid);
|
|
if (!task) {
|
|
rcu_read_unlock();
|
|
return ERR_PTR(-ESRCH);
|
|
}
|
|
get_task_struct(task);
|
|
|
|
/*
|
|
* Check if this process has the right to modify the specified
|
|
* process. Use the regular "ptrace_may_access()" checks.
|
|
*/
|
|
if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
|
|
rcu_read_unlock();
|
|
mm = ERR_PTR(-EPERM);
|
|
goto out;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
mm = ERR_PTR(security_task_movememory(task));
|
|
if (IS_ERR(mm))
|
|
goto out;
|
|
*mem_nodes = cpuset_mems_allowed(task);
|
|
mm = get_task_mm(task);
|
|
out:
|
|
put_task_struct(task);
|
|
if (!mm)
|
|
mm = ERR_PTR(-EINVAL);
|
|
return mm;
|
|
}
|
|
|
|
/*
|
|
* Move a list of pages in the address space of the currently executing
|
|
* process.
|
|
*/
|
|
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
|
|
const void __user * __user *pages,
|
|
const int __user *nodes,
|
|
int __user *status, int flags)
|
|
{
|
|
struct mm_struct *mm;
|
|
int err;
|
|
nodemask_t task_nodes;
|
|
|
|
/* Check flags */
|
|
if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
|
|
return -EINVAL;
|
|
|
|
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
|
|
return -EPERM;
|
|
|
|
mm = find_mm_struct(pid, &task_nodes);
|
|
if (IS_ERR(mm))
|
|
return PTR_ERR(mm);
|
|
|
|
if (nodes)
|
|
err = do_pages_move(mm, task_nodes, nr_pages, pages,
|
|
nodes, status, flags);
|
|
else
|
|
err = do_pages_stat(mm, nr_pages, pages, status);
|
|
|
|
mmput(mm);
|
|
return err;
|
|
}
|
|
|
|
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
|
|
const void __user * __user *, pages,
|
|
const int __user *, nodes,
|
|
int __user *, status, int, flags)
|
|
{
|
|
return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/*
|
|
* Returns true if this is a safe migration target node for misplaced NUMA
|
|
* pages. Currently it only checks the watermarks which crude
|
|
*/
|
|
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
|
|
unsigned long nr_migrate_pages)
|
|
{
|
|
int z;
|
|
|
|
for (z = pgdat->nr_zones - 1; z >= 0; z--) {
|
|
struct zone *zone = pgdat->node_zones + z;
|
|
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
/* Avoid waking kswapd by allocating pages_to_migrate pages. */
|
|
if (!zone_watermark_ok(zone, 0,
|
|
high_wmark_pages(zone) +
|
|
nr_migrate_pages,
|
|
ZONE_MOVABLE, 0))
|
|
continue;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static struct page *alloc_misplaced_dst_page(struct page *page,
|
|
unsigned long data)
|
|
{
|
|
int nid = (int) data;
|
|
int order = compound_order(page);
|
|
gfp_t gfp = __GFP_THISNODE;
|
|
struct folio *new;
|
|
|
|
if (order > 0)
|
|
gfp |= GFP_TRANSHUGE_LIGHT;
|
|
else {
|
|
gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
|
|
__GFP_NOWARN;
|
|
gfp &= ~__GFP_RECLAIM;
|
|
}
|
|
new = __folio_alloc_node(gfp, order, nid);
|
|
|
|
return &new->page;
|
|
}
|
|
|
|
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
|
|
{
|
|
int page_lru;
|
|
int nr_pages = thp_nr_pages(page);
|
|
int order = compound_order(page);
|
|
|
|
VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
|
|
|
|
/* Do not migrate THP mapped by multiple processes */
|
|
if (PageTransHuge(page) && total_mapcount(page) > 1)
|
|
return 0;
|
|
|
|
/* Avoid migrating to a node that is nearly full */
|
|
if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
|
|
int z;
|
|
|
|
if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
|
|
return 0;
|
|
for (z = pgdat->nr_zones - 1; z >= 0; z--) {
|
|
if (populated_zone(pgdat->node_zones + z))
|
|
break;
|
|
}
|
|
wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
|
|
return 0;
|
|
}
|
|
|
|
if (isolate_lru_page(page))
|
|
return 0;
|
|
|
|
page_lru = page_is_file_lru(page);
|
|
mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
|
|
nr_pages);
|
|
|
|
/*
|
|
* Isolating the page has taken another reference, so the
|
|
* caller's reference can be safely dropped without the page
|
|
* disappearing underneath us during migration.
|
|
*/
|
|
put_page(page);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Attempt to migrate a misplaced page to the specified destination
|
|
* node. Caller is expected to have an elevated reference count on
|
|
* the page that will be dropped by this function before returning.
|
|
*/
|
|
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
|
|
int node)
|
|
{
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
int isolated;
|
|
int nr_remaining;
|
|
unsigned int nr_succeeded;
|
|
LIST_HEAD(migratepages);
|
|
int nr_pages = thp_nr_pages(page);
|
|
|
|
/*
|
|
* Don't migrate file pages that are mapped in multiple processes
|
|
* with execute permissions as they are probably shared libraries.
|
|
*/
|
|
if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
|
|
(vma->vm_flags & VM_EXEC))
|
|
goto out;
|
|
|
|
/*
|
|
* Also do not migrate dirty pages as not all filesystems can move
|
|
* dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
|
|
*/
|
|
if (page_is_file_lru(page) && PageDirty(page))
|
|
goto out;
|
|
|
|
isolated = numamigrate_isolate_page(pgdat, page);
|
|
if (!isolated)
|
|
goto out;
|
|
|
|
list_add(&page->lru, &migratepages);
|
|
nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
|
|
NULL, node, MIGRATE_ASYNC,
|
|
MR_NUMA_MISPLACED, &nr_succeeded);
|
|
if (nr_remaining) {
|
|
if (!list_empty(&migratepages)) {
|
|
list_del(&page->lru);
|
|
mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
|
|
page_is_file_lru(page), -nr_pages);
|
|
putback_lru_page(page);
|
|
}
|
|
isolated = 0;
|
|
}
|
|
if (nr_succeeded) {
|
|
count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
|
|
if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
|
|
mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
|
|
nr_succeeded);
|
|
}
|
|
BUG_ON(!list_empty(&migratepages));
|
|
return isolated;
|
|
|
|
out:
|
|
put_page(page);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
/*
|
|
* node_demotion[] example:
|
|
*
|
|
* Consider a system with two sockets. Each socket has
|
|
* three classes of memory attached: fast, medium and slow.
|
|
* Each memory class is placed in its own NUMA node. The
|
|
* CPUs are placed in the node with the "fast" memory. The
|
|
* 6 NUMA nodes (0-5) might be split among the sockets like
|
|
* this:
|
|
*
|
|
* Socket A: 0, 1, 2
|
|
* Socket B: 3, 4, 5
|
|
*
|
|
* When Node 0 fills up, its memory should be migrated to
|
|
* Node 1. When Node 1 fills up, it should be migrated to
|
|
* Node 2. The migration path start on the nodes with the
|
|
* processors (since allocations default to this node) and
|
|
* fast memory, progress through medium and end with the
|
|
* slow memory:
|
|
*
|
|
* 0 -> 1 -> 2 -> stop
|
|
* 3 -> 4 -> 5 -> stop
|
|
*
|
|
* This is represented in the node_demotion[] like this:
|
|
*
|
|
* { nr=1, nodes[0]=1 }, // Node 0 migrates to 1
|
|
* { nr=1, nodes[0]=2 }, // Node 1 migrates to 2
|
|
* { nr=0, nodes[0]=-1 }, // Node 2 does not migrate
|
|
* { nr=1, nodes[0]=4 }, // Node 3 migrates to 4
|
|
* { nr=1, nodes[0]=5 }, // Node 4 migrates to 5
|
|
* { nr=0, nodes[0]=-1 }, // Node 5 does not migrate
|
|
*
|
|
* Moreover some systems may have multiple slow memory nodes.
|
|
* Suppose a system has one socket with 3 memory nodes, node 0
|
|
* is fast memory type, and node 1/2 both are slow memory
|
|
* type, and the distance between fast memory node and slow
|
|
* memory node is same. So the migration path should be:
|
|
*
|
|
* 0 -> 1/2 -> stop
|
|
*
|
|
* This is represented in the node_demotion[] like this:
|
|
* { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
|
|
* { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
|
|
* { nr=0, nodes[0]=-1, }, // Node 2 does not migrate
|
|
*/
|
|
|
|
/*
|
|
* Writes to this array occur without locking. Cycles are
|
|
* not allowed: Node X demotes to Y which demotes to X...
|
|
*
|
|
* If multiple reads are performed, a single rcu_read_lock()
|
|
* must be held over all reads to ensure that no cycles are
|
|
* observed.
|
|
*/
|
|
#define DEFAULT_DEMOTION_TARGET_NODES 15
|
|
|
|
#if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
|
|
#define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1)
|
|
#else
|
|
#define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES
|
|
#endif
|
|
|
|
struct demotion_nodes {
|
|
unsigned short nr;
|
|
short nodes[DEMOTION_TARGET_NODES];
|
|
};
|
|
|
|
static struct demotion_nodes *node_demotion __read_mostly;
|
|
|
|
/**
|
|
* next_demotion_node() - Get the next node in the demotion path
|
|
* @node: The starting node to lookup the next node
|
|
*
|
|
* Return: node id for next memory node in the demotion path hierarchy
|
|
* from @node; NUMA_NO_NODE if @node is terminal. This does not keep
|
|
* @node online or guarantee that it *continues* to be the next demotion
|
|
* target.
|
|
*/
|
|
int next_demotion_node(int node)
|
|
{
|
|
struct demotion_nodes *nd;
|
|
unsigned short target_nr, index;
|
|
int target;
|
|
|
|
if (!node_demotion)
|
|
return NUMA_NO_NODE;
|
|
|
|
nd = &node_demotion[node];
|
|
|
|
/*
|
|
* node_demotion[] is updated without excluding this
|
|
* function from running. RCU doesn't provide any
|
|
* compiler barriers, so the READ_ONCE() is required
|
|
* to avoid compiler reordering or read merging.
|
|
*
|
|
* Make sure to use RCU over entire code blocks if
|
|
* node_demotion[] reads need to be consistent.
|
|
*/
|
|
rcu_read_lock();
|
|
target_nr = READ_ONCE(nd->nr);
|
|
|
|
switch (target_nr) {
|
|
case 0:
|
|
target = NUMA_NO_NODE;
|
|
goto out;
|
|
case 1:
|
|
index = 0;
|
|
break;
|
|
default:
|
|
/*
|
|
* If there are multiple target nodes, just select one
|
|
* target node randomly.
|
|
*
|
|
* In addition, we can also use round-robin to select
|
|
* target node, but we should introduce another variable
|
|
* for node_demotion[] to record last selected target node,
|
|
* that may cause cache ping-pong due to the changing of
|
|
* last target node. Or introducing per-cpu data to avoid
|
|
* caching issue, which seems more complicated. So selecting
|
|
* target node randomly seems better until now.
|
|
*/
|
|
index = get_random_int() % target_nr;
|
|
break;
|
|
}
|
|
|
|
target = READ_ONCE(nd->nodes[index]);
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
return target;
|
|
}
|
|
|
|
#if defined(CONFIG_HOTPLUG_CPU)
|
|
/* Disable reclaim-based migration. */
|
|
static void __disable_all_migrate_targets(void)
|
|
{
|
|
int node, i;
|
|
|
|
if (!node_demotion)
|
|
return;
|
|
|
|
for_each_online_node(node) {
|
|
node_demotion[node].nr = 0;
|
|
for (i = 0; i < DEMOTION_TARGET_NODES; i++)
|
|
node_demotion[node].nodes[i] = NUMA_NO_NODE;
|
|
}
|
|
}
|
|
|
|
static void disable_all_migrate_targets(void)
|
|
{
|
|
__disable_all_migrate_targets();
|
|
|
|
/*
|
|
* Ensure that the "disable" is visible across the system.
|
|
* Readers will see either a combination of before+disable
|
|
* state or disable+after. They will never see before and
|
|
* after state together.
|
|
*
|
|
* The before+after state together might have cycles and
|
|
* could cause readers to do things like loop until this
|
|
* function finishes. This ensures they can only see a
|
|
* single "bad" read and would, for instance, only loop
|
|
* once.
|
|
*/
|
|
synchronize_rcu();
|
|
}
|
|
|
|
/*
|
|
* Find an automatic demotion target for 'node'.
|
|
* Failing here is OK. It might just indicate
|
|
* being at the end of a chain.
|
|
*/
|
|
static int establish_migrate_target(int node, nodemask_t *used,
|
|
int best_distance)
|
|
{
|
|
int migration_target, index, val;
|
|
struct demotion_nodes *nd;
|
|
|
|
if (!node_demotion)
|
|
return NUMA_NO_NODE;
|
|
|
|
nd = &node_demotion[node];
|
|
|
|
migration_target = find_next_best_node(node, used);
|
|
if (migration_target == NUMA_NO_NODE)
|
|
return NUMA_NO_NODE;
|
|
|
|
/*
|
|
* If the node has been set a migration target node before,
|
|
* which means it's the best distance between them. Still
|
|
* check if this node can be demoted to other target nodes
|
|
* if they have a same best distance.
|
|
*/
|
|
if (best_distance != -1) {
|
|
val = node_distance(node, migration_target);
|
|
if (val > best_distance)
|
|
goto out_clear;
|
|
}
|
|
|
|
index = nd->nr;
|
|
if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
|
|
"Exceeds maximum demotion target nodes\n"))
|
|
goto out_clear;
|
|
|
|
nd->nodes[index] = migration_target;
|
|
nd->nr++;
|
|
|
|
return migration_target;
|
|
out_clear:
|
|
node_clear(migration_target, *used);
|
|
return NUMA_NO_NODE;
|
|
}
|
|
|
|
/*
|
|
* When memory fills up on a node, memory contents can be
|
|
* automatically migrated to another node instead of
|
|
* discarded at reclaim.
|
|
*
|
|
* Establish a "migration path" which will start at nodes
|
|
* with CPUs and will follow the priorities used to build the
|
|
* page allocator zonelists.
|
|
*
|
|
* The difference here is that cycles must be avoided. If
|
|
* node0 migrates to node1, then neither node1, nor anything
|
|
* node1 migrates to can migrate to node0. Also one node can
|
|
* be migrated to multiple nodes if the target nodes all have
|
|
* a same best-distance against the source node.
|
|
*
|
|
* This function can run simultaneously with readers of
|
|
* node_demotion[]. However, it can not run simultaneously
|
|
* with itself. Exclusion is provided by memory hotplug events
|
|
* being single-threaded.
|
|
*/
|
|
static void __set_migration_target_nodes(void)
|
|
{
|
|
nodemask_t next_pass = NODE_MASK_NONE;
|
|
nodemask_t this_pass = NODE_MASK_NONE;
|
|
nodemask_t used_targets = NODE_MASK_NONE;
|
|
int node, best_distance;
|
|
|
|
/*
|
|
* Avoid any oddities like cycles that could occur
|
|
* from changes in the topology. This will leave
|
|
* a momentary gap when migration is disabled.
|
|
*/
|
|
disable_all_migrate_targets();
|
|
|
|
/*
|
|
* Allocations go close to CPUs, first. Assume that
|
|
* the migration path starts at the nodes with CPUs.
|
|
*/
|
|
next_pass = node_states[N_CPU];
|
|
again:
|
|
this_pass = next_pass;
|
|
next_pass = NODE_MASK_NONE;
|
|
/*
|
|
* To avoid cycles in the migration "graph", ensure
|
|
* that migration sources are not future targets by
|
|
* setting them in 'used_targets'. Do this only
|
|
* once per pass so that multiple source nodes can
|
|
* share a target node.
|
|
*
|
|
* 'used_targets' will become unavailable in future
|
|
* passes. This limits some opportunities for
|
|
* multiple source nodes to share a destination.
|
|
*/
|
|
nodes_or(used_targets, used_targets, this_pass);
|
|
|
|
for_each_node_mask(node, this_pass) {
|
|
best_distance = -1;
|
|
|
|
/*
|
|
* Try to set up the migration path for the node, and the target
|
|
* migration nodes can be multiple, so doing a loop to find all
|
|
* the target nodes if they all have a best node distance.
|
|
*/
|
|
do {
|
|
int target_node =
|
|
establish_migrate_target(node, &used_targets,
|
|
best_distance);
|
|
|
|
if (target_node == NUMA_NO_NODE)
|
|
break;
|
|
|
|
if (best_distance == -1)
|
|
best_distance = node_distance(node, target_node);
|
|
|
|
/*
|
|
* Visit targets from this pass in the next pass.
|
|
* Eventually, every node will have been part of
|
|
* a pass, and will become set in 'used_targets'.
|
|
*/
|
|
node_set(target_node, next_pass);
|
|
} while (1);
|
|
}
|
|
/*
|
|
* 'next_pass' contains nodes which became migration
|
|
* targets in this pass. Make additional passes until
|
|
* no more migrations targets are available.
|
|
*/
|
|
if (!nodes_empty(next_pass))
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* For callers that do not hold get_online_mems() already.
|
|
*/
|
|
void set_migration_target_nodes(void)
|
|
{
|
|
get_online_mems();
|
|
__set_migration_target_nodes();
|
|
put_online_mems();
|
|
}
|
|
|
|
/*
|
|
* This leaves migrate-on-reclaim transiently disabled between
|
|
* the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs
|
|
* whether reclaim-based migration is enabled or not, which
|
|
* ensures that the user can turn reclaim-based migration at
|
|
* any time without needing to recalculate migration targets.
|
|
*
|
|
* These callbacks already hold get_online_mems(). That is why
|
|
* __set_migration_target_nodes() can be used as opposed to
|
|
* set_migration_target_nodes().
|
|
*/
|
|
static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
|
|
unsigned long action, void *_arg)
|
|
{
|
|
struct memory_notify *arg = _arg;
|
|
|
|
/*
|
|
* Only update the node migration order when a node is
|
|
* changing status, like online->offline. This avoids
|
|
* the overhead of synchronize_rcu() in most cases.
|
|
*/
|
|
if (arg->status_change_nid < 0)
|
|
return notifier_from_errno(0);
|
|
|
|
switch (action) {
|
|
case MEM_GOING_OFFLINE:
|
|
/*
|
|
* Make sure there are not transient states where
|
|
* an offline node is a migration target. This
|
|
* will leave migration disabled until the offline
|
|
* completes and the MEM_OFFLINE case below runs.
|
|
*/
|
|
disable_all_migrate_targets();
|
|
break;
|
|
case MEM_OFFLINE:
|
|
case MEM_ONLINE:
|
|
/*
|
|
* Recalculate the target nodes once the node
|
|
* reaches its final state (online or offline).
|
|
*/
|
|
__set_migration_target_nodes();
|
|
break;
|
|
case MEM_CANCEL_OFFLINE:
|
|
/*
|
|
* MEM_GOING_OFFLINE disabled all the migration
|
|
* targets. Reenable them.
|
|
*/
|
|
__set_migration_target_nodes();
|
|
break;
|
|
case MEM_GOING_ONLINE:
|
|
case MEM_CANCEL_ONLINE:
|
|
break;
|
|
}
|
|
|
|
return notifier_from_errno(0);
|
|
}
|
|
|
|
void __init migrate_on_reclaim_init(void)
|
|
{
|
|
node_demotion = kmalloc_array(nr_node_ids,
|
|
sizeof(struct demotion_nodes),
|
|
GFP_KERNEL);
|
|
WARN_ON(!node_demotion);
|
|
|
|
hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
|
|
/*
|
|
* At this point, all numa nodes with memory/CPus have their state
|
|
* properly set, so we can build the demotion order now.
|
|
* Let us hold the cpu_hotplug lock just, as we could possibily have
|
|
* CPU hotplug events during boot.
|
|
*/
|
|
cpus_read_lock();
|
|
set_migration_target_nodes();
|
|
cpus_read_unlock();
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
bool numa_demotion_enabled = false;
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%s\n",
|
|
numa_demotion_enabled ? "true" : "false");
|
|
}
|
|
|
|
static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
|
|
numa_demotion_enabled = true;
|
|
else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
|
|
numa_demotion_enabled = false;
|
|
else
|
|
return -EINVAL;
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct kobj_attribute numa_demotion_enabled_attr =
|
|
__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
|
|
numa_demotion_enabled_store);
|
|
|
|
static struct attribute *numa_attrs[] = {
|
|
&numa_demotion_enabled_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group numa_attr_group = {
|
|
.attrs = numa_attrs,
|
|
};
|
|
|
|
static int __init numa_init_sysfs(void)
|
|
{
|
|
int err;
|
|
struct kobject *numa_kobj;
|
|
|
|
numa_kobj = kobject_create_and_add("numa", mm_kobj);
|
|
if (!numa_kobj) {
|
|
pr_err("failed to create numa kobject\n");
|
|
return -ENOMEM;
|
|
}
|
|
err = sysfs_create_group(numa_kobj, &numa_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register numa group\n");
|
|
goto delete_obj;
|
|
}
|
|
return 0;
|
|
|
|
delete_obj:
|
|
kobject_put(numa_kobj);
|
|
return err;
|
|
}
|
|
subsys_initcall(numa_init_sysfs);
|
|
#endif
|