mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-12 16:54:42 +08:00
faadfaba5e
Add TCP_AO_REPAIR setsockopt(), getsockopt(). They let a user to repair TCP-AO ISNs/SNEs. Also let the user hack around when (tp->repair) is on and add ao_info on a socket in any supported state. As SNEs now can be read/written at any moment, use WRITE_ONCE()/READ_ONCE() to set/read them. Signed-off-by: Dmitry Safonov <dima@arista.com> Acked-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
4664 lines
124 KiB
C
4664 lines
124 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* Implementation of the Transmission Control Protocol(TCP).
|
|
*
|
|
* Authors: Ross Biro
|
|
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
|
|
* Mark Evans, <evansmp@uhura.aston.ac.uk>
|
|
* Corey Minyard <wf-rch!minyard@relay.EU.net>
|
|
* Florian La Roche, <flla@stud.uni-sb.de>
|
|
* Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
|
|
* Linus Torvalds, <torvalds@cs.helsinki.fi>
|
|
* Alan Cox, <gw4pts@gw4pts.ampr.org>
|
|
* Matthew Dillon, <dillon@apollo.west.oic.com>
|
|
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
|
|
* Jorge Cwik, <jorge@laser.satlink.net>
|
|
*
|
|
* Fixes:
|
|
* Alan Cox : Numerous verify_area() calls
|
|
* Alan Cox : Set the ACK bit on a reset
|
|
* Alan Cox : Stopped it crashing if it closed while
|
|
* sk->inuse=1 and was trying to connect
|
|
* (tcp_err()).
|
|
* Alan Cox : All icmp error handling was broken
|
|
* pointers passed where wrong and the
|
|
* socket was looked up backwards. Nobody
|
|
* tested any icmp error code obviously.
|
|
* Alan Cox : tcp_err() now handled properly. It
|
|
* wakes people on errors. poll
|
|
* behaves and the icmp error race
|
|
* has gone by moving it into sock.c
|
|
* Alan Cox : tcp_send_reset() fixed to work for
|
|
* everything not just packets for
|
|
* unknown sockets.
|
|
* Alan Cox : tcp option processing.
|
|
* Alan Cox : Reset tweaked (still not 100%) [Had
|
|
* syn rule wrong]
|
|
* Herp Rosmanith : More reset fixes
|
|
* Alan Cox : No longer acks invalid rst frames.
|
|
* Acking any kind of RST is right out.
|
|
* Alan Cox : Sets an ignore me flag on an rst
|
|
* receive otherwise odd bits of prattle
|
|
* escape still
|
|
* Alan Cox : Fixed another acking RST frame bug.
|
|
* Should stop LAN workplace lockups.
|
|
* Alan Cox : Some tidyups using the new skb list
|
|
* facilities
|
|
* Alan Cox : sk->keepopen now seems to work
|
|
* Alan Cox : Pulls options out correctly on accepts
|
|
* Alan Cox : Fixed assorted sk->rqueue->next errors
|
|
* Alan Cox : PSH doesn't end a TCP read. Switched a
|
|
* bit to skb ops.
|
|
* Alan Cox : Tidied tcp_data to avoid a potential
|
|
* nasty.
|
|
* Alan Cox : Added some better commenting, as the
|
|
* tcp is hard to follow
|
|
* Alan Cox : Removed incorrect check for 20 * psh
|
|
* Michael O'Reilly : ack < copied bug fix.
|
|
* Johannes Stille : Misc tcp fixes (not all in yet).
|
|
* Alan Cox : FIN with no memory -> CRASH
|
|
* Alan Cox : Added socket option proto entries.
|
|
* Also added awareness of them to accept.
|
|
* Alan Cox : Added TCP options (SOL_TCP)
|
|
* Alan Cox : Switched wakeup calls to callbacks,
|
|
* so the kernel can layer network
|
|
* sockets.
|
|
* Alan Cox : Use ip_tos/ip_ttl settings.
|
|
* Alan Cox : Handle FIN (more) properly (we hope).
|
|
* Alan Cox : RST frames sent on unsynchronised
|
|
* state ack error.
|
|
* Alan Cox : Put in missing check for SYN bit.
|
|
* Alan Cox : Added tcp_select_window() aka NET2E
|
|
* window non shrink trick.
|
|
* Alan Cox : Added a couple of small NET2E timer
|
|
* fixes
|
|
* Charles Hedrick : TCP fixes
|
|
* Toomas Tamm : TCP window fixes
|
|
* Alan Cox : Small URG fix to rlogin ^C ack fight
|
|
* Charles Hedrick : Rewrote most of it to actually work
|
|
* Linus : Rewrote tcp_read() and URG handling
|
|
* completely
|
|
* Gerhard Koerting: Fixed some missing timer handling
|
|
* Matthew Dillon : Reworked TCP machine states as per RFC
|
|
* Gerhard Koerting: PC/TCP workarounds
|
|
* Adam Caldwell : Assorted timer/timing errors
|
|
* Matthew Dillon : Fixed another RST bug
|
|
* Alan Cox : Move to kernel side addressing changes.
|
|
* Alan Cox : Beginning work on TCP fastpathing
|
|
* (not yet usable)
|
|
* Arnt Gulbrandsen: Turbocharged tcp_check() routine.
|
|
* Alan Cox : TCP fast path debugging
|
|
* Alan Cox : Window clamping
|
|
* Michael Riepe : Bug in tcp_check()
|
|
* Matt Dillon : More TCP improvements and RST bug fixes
|
|
* Matt Dillon : Yet more small nasties remove from the
|
|
* TCP code (Be very nice to this man if
|
|
* tcp finally works 100%) 8)
|
|
* Alan Cox : BSD accept semantics.
|
|
* Alan Cox : Reset on closedown bug.
|
|
* Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
|
|
* Michael Pall : Handle poll() after URG properly in
|
|
* all cases.
|
|
* Michael Pall : Undo the last fix in tcp_read_urg()
|
|
* (multi URG PUSH broke rlogin).
|
|
* Michael Pall : Fix the multi URG PUSH problem in
|
|
* tcp_readable(), poll() after URG
|
|
* works now.
|
|
* Michael Pall : recv(...,MSG_OOB) never blocks in the
|
|
* BSD api.
|
|
* Alan Cox : Changed the semantics of sk->socket to
|
|
* fix a race and a signal problem with
|
|
* accept() and async I/O.
|
|
* Alan Cox : Relaxed the rules on tcp_sendto().
|
|
* Yury Shevchuk : Really fixed accept() blocking problem.
|
|
* Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
|
|
* clients/servers which listen in on
|
|
* fixed ports.
|
|
* Alan Cox : Cleaned the above up and shrank it to
|
|
* a sensible code size.
|
|
* Alan Cox : Self connect lockup fix.
|
|
* Alan Cox : No connect to multicast.
|
|
* Ross Biro : Close unaccepted children on master
|
|
* socket close.
|
|
* Alan Cox : Reset tracing code.
|
|
* Alan Cox : Spurious resets on shutdown.
|
|
* Alan Cox : Giant 15 minute/60 second timer error
|
|
* Alan Cox : Small whoops in polling before an
|
|
* accept.
|
|
* Alan Cox : Kept the state trace facility since
|
|
* it's handy for debugging.
|
|
* Alan Cox : More reset handler fixes.
|
|
* Alan Cox : Started rewriting the code based on
|
|
* the RFC's for other useful protocol
|
|
* references see: Comer, KA9Q NOS, and
|
|
* for a reference on the difference
|
|
* between specifications and how BSD
|
|
* works see the 4.4lite source.
|
|
* A.N.Kuznetsov : Don't time wait on completion of tidy
|
|
* close.
|
|
* Linus Torvalds : Fin/Shutdown & copied_seq changes.
|
|
* Linus Torvalds : Fixed BSD port reuse to work first syn
|
|
* Alan Cox : Reimplemented timers as per the RFC
|
|
* and using multiple timers for sanity.
|
|
* Alan Cox : Small bug fixes, and a lot of new
|
|
* comments.
|
|
* Alan Cox : Fixed dual reader crash by locking
|
|
* the buffers (much like datagram.c)
|
|
* Alan Cox : Fixed stuck sockets in probe. A probe
|
|
* now gets fed up of retrying without
|
|
* (even a no space) answer.
|
|
* Alan Cox : Extracted closing code better
|
|
* Alan Cox : Fixed the closing state machine to
|
|
* resemble the RFC.
|
|
* Alan Cox : More 'per spec' fixes.
|
|
* Jorge Cwik : Even faster checksumming.
|
|
* Alan Cox : tcp_data() doesn't ack illegal PSH
|
|
* only frames. At least one pc tcp stack
|
|
* generates them.
|
|
* Alan Cox : Cache last socket.
|
|
* Alan Cox : Per route irtt.
|
|
* Matt Day : poll()->select() match BSD precisely on error
|
|
* Alan Cox : New buffers
|
|
* Marc Tamsky : Various sk->prot->retransmits and
|
|
* sk->retransmits misupdating fixed.
|
|
* Fixed tcp_write_timeout: stuck close,
|
|
* and TCP syn retries gets used now.
|
|
* Mark Yarvis : In tcp_read_wakeup(), don't send an
|
|
* ack if state is TCP_CLOSED.
|
|
* Alan Cox : Look up device on a retransmit - routes may
|
|
* change. Doesn't yet cope with MSS shrink right
|
|
* but it's a start!
|
|
* Marc Tamsky : Closing in closing fixes.
|
|
* Mike Shaver : RFC1122 verifications.
|
|
* Alan Cox : rcv_saddr errors.
|
|
* Alan Cox : Block double connect().
|
|
* Alan Cox : Small hooks for enSKIP.
|
|
* Alexey Kuznetsov: Path MTU discovery.
|
|
* Alan Cox : Support soft errors.
|
|
* Alan Cox : Fix MTU discovery pathological case
|
|
* when the remote claims no mtu!
|
|
* Marc Tamsky : TCP_CLOSE fix.
|
|
* Colin (G3TNE) : Send a reset on syn ack replies in
|
|
* window but wrong (fixes NT lpd problems)
|
|
* Pedro Roque : Better TCP window handling, delayed ack.
|
|
* Joerg Reuter : No modification of locked buffers in
|
|
* tcp_do_retransmit()
|
|
* Eric Schenk : Changed receiver side silly window
|
|
* avoidance algorithm to BSD style
|
|
* algorithm. This doubles throughput
|
|
* against machines running Solaris,
|
|
* and seems to result in general
|
|
* improvement.
|
|
* Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
|
|
* Willy Konynenberg : Transparent proxying support.
|
|
* Mike McLagan : Routing by source
|
|
* Keith Owens : Do proper merging with partial SKB's in
|
|
* tcp_do_sendmsg to avoid burstiness.
|
|
* Eric Schenk : Fix fast close down bug with
|
|
* shutdown() followed by close().
|
|
* Andi Kleen : Make poll agree with SIGIO
|
|
* Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
|
|
* lingertime == 0 (RFC 793 ABORT Call)
|
|
* Hirokazu Takahashi : Use copy_from_user() instead of
|
|
* csum_and_copy_from_user() if possible.
|
|
*
|
|
* Description of States:
|
|
*
|
|
* TCP_SYN_SENT sent a connection request, waiting for ack
|
|
*
|
|
* TCP_SYN_RECV received a connection request, sent ack,
|
|
* waiting for final ack in three-way handshake.
|
|
*
|
|
* TCP_ESTABLISHED connection established
|
|
*
|
|
* TCP_FIN_WAIT1 our side has shutdown, waiting to complete
|
|
* transmission of remaining buffered data
|
|
*
|
|
* TCP_FIN_WAIT2 all buffered data sent, waiting for remote
|
|
* to shutdown
|
|
*
|
|
* TCP_CLOSING both sides have shutdown but we still have
|
|
* data we have to finish sending
|
|
*
|
|
* TCP_TIME_WAIT timeout to catch resent junk before entering
|
|
* closed, can only be entered from FIN_WAIT2
|
|
* or CLOSING. Required because the other end
|
|
* may not have gotten our last ACK causing it
|
|
* to retransmit the data packet (which we ignore)
|
|
*
|
|
* TCP_CLOSE_WAIT remote side has shutdown and is waiting for
|
|
* us to finish writing our data and to shutdown
|
|
* (we have to close() to move on to LAST_ACK)
|
|
*
|
|
* TCP_LAST_ACK out side has shutdown after remote has
|
|
* shutdown. There may still be data in our
|
|
* buffer that we have to finish sending
|
|
*
|
|
* TCP_CLOSE socket is finished
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "TCP: " fmt
|
|
|
|
#include <crypto/hash.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/inet_diag.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/splice.h>
|
|
#include <linux/net.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/random.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/err.h>
|
|
#include <linux/time.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errqueue.h>
|
|
#include <linux/static_key.h>
|
|
#include <linux/btf.h>
|
|
|
|
#include <net/icmp.h>
|
|
#include <net/inet_common.h>
|
|
#include <net/tcp.h>
|
|
#include <net/mptcp.h>
|
|
#include <net/xfrm.h>
|
|
#include <net/ip.h>
|
|
#include <net/sock.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/ioctls.h>
|
|
#include <net/busy_poll.h>
|
|
|
|
/* Track pending CMSGs. */
|
|
enum {
|
|
TCP_CMSG_INQ = 1,
|
|
TCP_CMSG_TS = 2
|
|
};
|
|
|
|
DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
|
|
EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
|
|
|
|
long sysctl_tcp_mem[3] __read_mostly;
|
|
EXPORT_SYMBOL(sysctl_tcp_mem);
|
|
|
|
atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
|
|
EXPORT_SYMBOL(tcp_memory_allocated);
|
|
DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
|
|
EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
|
|
|
|
#if IS_ENABLED(CONFIG_SMC)
|
|
DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
|
|
EXPORT_SYMBOL(tcp_have_smc);
|
|
#endif
|
|
|
|
/*
|
|
* Current number of TCP sockets.
|
|
*/
|
|
struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
|
|
EXPORT_SYMBOL(tcp_sockets_allocated);
|
|
|
|
/*
|
|
* TCP splice context
|
|
*/
|
|
struct tcp_splice_state {
|
|
struct pipe_inode_info *pipe;
|
|
size_t len;
|
|
unsigned int flags;
|
|
};
|
|
|
|
/*
|
|
* Pressure flag: try to collapse.
|
|
* Technical note: it is used by multiple contexts non atomically.
|
|
* All the __sk_mem_schedule() is of this nature: accounting
|
|
* is strict, actions are advisory and have some latency.
|
|
*/
|
|
unsigned long tcp_memory_pressure __read_mostly;
|
|
EXPORT_SYMBOL_GPL(tcp_memory_pressure);
|
|
|
|
void tcp_enter_memory_pressure(struct sock *sk)
|
|
{
|
|
unsigned long val;
|
|
|
|
if (READ_ONCE(tcp_memory_pressure))
|
|
return;
|
|
val = jiffies;
|
|
|
|
if (!val)
|
|
val--;
|
|
if (!cmpxchg(&tcp_memory_pressure, 0, val))
|
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
|
|
|
|
void tcp_leave_memory_pressure(struct sock *sk)
|
|
{
|
|
unsigned long val;
|
|
|
|
if (!READ_ONCE(tcp_memory_pressure))
|
|
return;
|
|
val = xchg(&tcp_memory_pressure, 0);
|
|
if (val)
|
|
NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
|
|
jiffies_to_msecs(jiffies - val));
|
|
}
|
|
EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
|
|
|
|
/* Convert seconds to retransmits based on initial and max timeout */
|
|
static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
|
|
{
|
|
u8 res = 0;
|
|
|
|
if (seconds > 0) {
|
|
int period = timeout;
|
|
|
|
res = 1;
|
|
while (seconds > period && res < 255) {
|
|
res++;
|
|
timeout <<= 1;
|
|
if (timeout > rto_max)
|
|
timeout = rto_max;
|
|
period += timeout;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Convert retransmits to seconds based on initial and max timeout */
|
|
static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
|
|
{
|
|
int period = 0;
|
|
|
|
if (retrans > 0) {
|
|
period = timeout;
|
|
while (--retrans) {
|
|
timeout <<= 1;
|
|
if (timeout > rto_max)
|
|
timeout = rto_max;
|
|
period += timeout;
|
|
}
|
|
}
|
|
return period;
|
|
}
|
|
|
|
static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
|
|
{
|
|
u32 rate = READ_ONCE(tp->rate_delivered);
|
|
u32 intv = READ_ONCE(tp->rate_interval_us);
|
|
u64 rate64 = 0;
|
|
|
|
if (rate && intv) {
|
|
rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
|
|
do_div(rate64, intv);
|
|
}
|
|
return rate64;
|
|
}
|
|
|
|
/* Address-family independent initialization for a tcp_sock.
|
|
*
|
|
* NOTE: A lot of things set to zero explicitly by call to
|
|
* sk_alloc() so need not be done here.
|
|
*/
|
|
void tcp_init_sock(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
tp->out_of_order_queue = RB_ROOT;
|
|
sk->tcp_rtx_queue = RB_ROOT;
|
|
tcp_init_xmit_timers(sk);
|
|
INIT_LIST_HEAD(&tp->tsq_node);
|
|
INIT_LIST_HEAD(&tp->tsorted_sent_queue);
|
|
|
|
icsk->icsk_rto = TCP_TIMEOUT_INIT;
|
|
icsk->icsk_rto_min = TCP_RTO_MIN;
|
|
icsk->icsk_delack_max = TCP_DELACK_MAX;
|
|
tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
|
|
minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
|
|
|
|
/* So many TCP implementations out there (incorrectly) count the
|
|
* initial SYN frame in their delayed-ACK and congestion control
|
|
* algorithms that we must have the following bandaid to talk
|
|
* efficiently to them. -DaveM
|
|
*/
|
|
tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
|
|
|
|
/* There's a bubble in the pipe until at least the first ACK. */
|
|
tp->app_limited = ~0U;
|
|
tp->rate_app_limited = 1;
|
|
|
|
/* See draft-stevens-tcpca-spec-01 for discussion of the
|
|
* initialization of these values.
|
|
*/
|
|
tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
|
|
tp->snd_cwnd_clamp = ~0;
|
|
tp->mss_cache = TCP_MSS_DEFAULT;
|
|
|
|
tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
|
|
tcp_assign_congestion_control(sk);
|
|
|
|
tp->tsoffset = 0;
|
|
tp->rack.reo_wnd_steps = 1;
|
|
|
|
sk->sk_write_space = sk_stream_write_space;
|
|
sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
|
|
|
|
icsk->icsk_sync_mss = tcp_sync_mss;
|
|
|
|
WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
|
|
WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
|
|
tcp_scaling_ratio_init(sk);
|
|
|
|
set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
|
|
sk_sockets_allocated_inc(sk);
|
|
}
|
|
EXPORT_SYMBOL(tcp_init_sock);
|
|
|
|
static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
|
|
{
|
|
struct sk_buff *skb = tcp_write_queue_tail(sk);
|
|
|
|
if (tsflags && skb) {
|
|
struct skb_shared_info *shinfo = skb_shinfo(skb);
|
|
struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
|
|
|
|
sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
|
|
if (tsflags & SOF_TIMESTAMPING_TX_ACK)
|
|
tcb->txstamp_ack = 1;
|
|
if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
|
|
shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
|
|
}
|
|
}
|
|
|
|
static bool tcp_stream_is_readable(struct sock *sk, int target)
|
|
{
|
|
if (tcp_epollin_ready(sk, target))
|
|
return true;
|
|
return sk_is_readable(sk);
|
|
}
|
|
|
|
/*
|
|
* Wait for a TCP event.
|
|
*
|
|
* Note that we don't need to lock the socket, as the upper poll layers
|
|
* take care of normal races (between the test and the event) and we don't
|
|
* go look at any of the socket buffers directly.
|
|
*/
|
|
__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
|
|
{
|
|
__poll_t mask;
|
|
struct sock *sk = sock->sk;
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
u8 shutdown;
|
|
int state;
|
|
|
|
sock_poll_wait(file, sock, wait);
|
|
|
|
state = inet_sk_state_load(sk);
|
|
if (state == TCP_LISTEN)
|
|
return inet_csk_listen_poll(sk);
|
|
|
|
/* Socket is not locked. We are protected from async events
|
|
* by poll logic and correct handling of state changes
|
|
* made by other threads is impossible in any case.
|
|
*/
|
|
|
|
mask = 0;
|
|
|
|
/*
|
|
* EPOLLHUP is certainly not done right. But poll() doesn't
|
|
* have a notion of HUP in just one direction, and for a
|
|
* socket the read side is more interesting.
|
|
*
|
|
* Some poll() documentation says that EPOLLHUP is incompatible
|
|
* with the EPOLLOUT/POLLWR flags, so somebody should check this
|
|
* all. But careful, it tends to be safer to return too many
|
|
* bits than too few, and you can easily break real applications
|
|
* if you don't tell them that something has hung up!
|
|
*
|
|
* Check-me.
|
|
*
|
|
* Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
|
|
* our fs/select.c). It means that after we received EOF,
|
|
* poll always returns immediately, making impossible poll() on write()
|
|
* in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
|
|
* if and only if shutdown has been made in both directions.
|
|
* Actually, it is interesting to look how Solaris and DUX
|
|
* solve this dilemma. I would prefer, if EPOLLHUP were maskable,
|
|
* then we could set it on SND_SHUTDOWN. BTW examples given
|
|
* in Stevens' books assume exactly this behaviour, it explains
|
|
* why EPOLLHUP is incompatible with EPOLLOUT. --ANK
|
|
*
|
|
* NOTE. Check for TCP_CLOSE is added. The goal is to prevent
|
|
* blocking on fresh not-connected or disconnected socket. --ANK
|
|
*/
|
|
shutdown = READ_ONCE(sk->sk_shutdown);
|
|
if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
|
|
mask |= EPOLLHUP;
|
|
if (shutdown & RCV_SHUTDOWN)
|
|
mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
|
|
|
|
/* Connected or passive Fast Open socket? */
|
|
if (state != TCP_SYN_SENT &&
|
|
(state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
|
|
int target = sock_rcvlowat(sk, 0, INT_MAX);
|
|
u16 urg_data = READ_ONCE(tp->urg_data);
|
|
|
|
if (unlikely(urg_data) &&
|
|
READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
|
|
!sock_flag(sk, SOCK_URGINLINE))
|
|
target++;
|
|
|
|
if (tcp_stream_is_readable(sk, target))
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
|
|
if (!(shutdown & SEND_SHUTDOWN)) {
|
|
if (__sk_stream_is_writeable(sk, 1)) {
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
} else { /* send SIGIO later */
|
|
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
|
|
/* Race breaker. If space is freed after
|
|
* wspace test but before the flags are set,
|
|
* IO signal will be lost. Memory barrier
|
|
* pairs with the input side.
|
|
*/
|
|
smp_mb__after_atomic();
|
|
if (__sk_stream_is_writeable(sk, 1))
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
}
|
|
} else
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
|
|
if (urg_data & TCP_URG_VALID)
|
|
mask |= EPOLLPRI;
|
|
} else if (state == TCP_SYN_SENT &&
|
|
inet_test_bit(DEFER_CONNECT, sk)) {
|
|
/* Active TCP fastopen socket with defer_connect
|
|
* Return EPOLLOUT so application can call write()
|
|
* in order for kernel to generate SYN+data
|
|
*/
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
}
|
|
/* This barrier is coupled with smp_wmb() in tcp_reset() */
|
|
smp_rmb();
|
|
if (READ_ONCE(sk->sk_err) ||
|
|
!skb_queue_empty_lockless(&sk->sk_error_queue))
|
|
mask |= EPOLLERR;
|
|
|
|
return mask;
|
|
}
|
|
EXPORT_SYMBOL(tcp_poll);
|
|
|
|
int tcp_ioctl(struct sock *sk, int cmd, int *karg)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
int answ;
|
|
bool slow;
|
|
|
|
switch (cmd) {
|
|
case SIOCINQ:
|
|
if (sk->sk_state == TCP_LISTEN)
|
|
return -EINVAL;
|
|
|
|
slow = lock_sock_fast(sk);
|
|
answ = tcp_inq(sk);
|
|
unlock_sock_fast(sk, slow);
|
|
break;
|
|
case SIOCATMARK:
|
|
answ = READ_ONCE(tp->urg_data) &&
|
|
READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
|
|
break;
|
|
case SIOCOUTQ:
|
|
if (sk->sk_state == TCP_LISTEN)
|
|
return -EINVAL;
|
|
|
|
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
|
|
answ = 0;
|
|
else
|
|
answ = READ_ONCE(tp->write_seq) - tp->snd_una;
|
|
break;
|
|
case SIOCOUTQNSD:
|
|
if (sk->sk_state == TCP_LISTEN)
|
|
return -EINVAL;
|
|
|
|
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
|
|
answ = 0;
|
|
else
|
|
answ = READ_ONCE(tp->write_seq) -
|
|
READ_ONCE(tp->snd_nxt);
|
|
break;
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
|
|
*karg = answ;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tcp_ioctl);
|
|
|
|
void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
|
|
{
|
|
TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
|
|
tp->pushed_seq = tp->write_seq;
|
|
}
|
|
|
|
static inline bool forced_push(const struct tcp_sock *tp)
|
|
{
|
|
return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
|
|
}
|
|
|
|
void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
|
|
|
|
tcb->seq = tcb->end_seq = tp->write_seq;
|
|
tcb->tcp_flags = TCPHDR_ACK;
|
|
__skb_header_release(skb);
|
|
tcp_add_write_queue_tail(sk, skb);
|
|
sk_wmem_queued_add(sk, skb->truesize);
|
|
sk_mem_charge(sk, skb->truesize);
|
|
if (tp->nonagle & TCP_NAGLE_PUSH)
|
|
tp->nonagle &= ~TCP_NAGLE_PUSH;
|
|
|
|
tcp_slow_start_after_idle_check(sk);
|
|
}
|
|
|
|
static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
|
|
{
|
|
if (flags & MSG_OOB)
|
|
tp->snd_up = tp->write_seq;
|
|
}
|
|
|
|
/* If a not yet filled skb is pushed, do not send it if
|
|
* we have data packets in Qdisc or NIC queues :
|
|
* Because TX completion will happen shortly, it gives a chance
|
|
* to coalesce future sendmsg() payload into this skb, without
|
|
* need for a timer, and with no latency trade off.
|
|
* As packets containing data payload have a bigger truesize
|
|
* than pure acks (dataless) packets, the last checks prevent
|
|
* autocorking if we only have an ACK in Qdisc/NIC queues,
|
|
* or if TX completion was delayed after we processed ACK packet.
|
|
*/
|
|
static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
|
|
int size_goal)
|
|
{
|
|
return skb->len < size_goal &&
|
|
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
|
|
!tcp_rtx_queue_empty(sk) &&
|
|
refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
|
|
tcp_skb_can_collapse_to(skb);
|
|
}
|
|
|
|
void tcp_push(struct sock *sk, int flags, int mss_now,
|
|
int nonagle, int size_goal)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *skb;
|
|
|
|
skb = tcp_write_queue_tail(sk);
|
|
if (!skb)
|
|
return;
|
|
if (!(flags & MSG_MORE) || forced_push(tp))
|
|
tcp_mark_push(tp, skb);
|
|
|
|
tcp_mark_urg(tp, flags);
|
|
|
|
if (tcp_should_autocork(sk, skb, size_goal)) {
|
|
|
|
/* avoid atomic op if TSQ_THROTTLED bit is already set */
|
|
if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
|
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
|
|
set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
|
|
}
|
|
/* It is possible TX completion already happened
|
|
* before we set TSQ_THROTTLED.
|
|
*/
|
|
if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
|
|
return;
|
|
}
|
|
|
|
if (flags & MSG_MORE)
|
|
nonagle = TCP_NAGLE_CORK;
|
|
|
|
__tcp_push_pending_frames(sk, mss_now, nonagle);
|
|
}
|
|
|
|
static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
|
|
unsigned int offset, size_t len)
|
|
{
|
|
struct tcp_splice_state *tss = rd_desc->arg.data;
|
|
int ret;
|
|
|
|
ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
|
|
min(rd_desc->count, len), tss->flags);
|
|
if (ret > 0)
|
|
rd_desc->count -= ret;
|
|
return ret;
|
|
}
|
|
|
|
static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
|
|
{
|
|
/* Store TCP splice context information in read_descriptor_t. */
|
|
read_descriptor_t rd_desc = {
|
|
.arg.data = tss,
|
|
.count = tss->len,
|
|
};
|
|
|
|
return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
|
|
}
|
|
|
|
/**
|
|
* tcp_splice_read - splice data from TCP socket to a pipe
|
|
* @sock: socket to splice from
|
|
* @ppos: position (not valid)
|
|
* @pipe: pipe to splice to
|
|
* @len: number of bytes to splice
|
|
* @flags: splice modifier flags
|
|
*
|
|
* Description:
|
|
* Will read pages from given socket and fill them into a pipe.
|
|
*
|
|
**/
|
|
ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
|
|
struct pipe_inode_info *pipe, size_t len,
|
|
unsigned int flags)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct tcp_splice_state tss = {
|
|
.pipe = pipe,
|
|
.len = len,
|
|
.flags = flags,
|
|
};
|
|
long timeo;
|
|
ssize_t spliced;
|
|
int ret;
|
|
|
|
sock_rps_record_flow(sk);
|
|
/*
|
|
* We can't seek on a socket input
|
|
*/
|
|
if (unlikely(*ppos))
|
|
return -ESPIPE;
|
|
|
|
ret = spliced = 0;
|
|
|
|
lock_sock(sk);
|
|
|
|
timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
|
|
while (tss.len) {
|
|
ret = __tcp_splice_read(sk, &tss);
|
|
if (ret < 0)
|
|
break;
|
|
else if (!ret) {
|
|
if (spliced)
|
|
break;
|
|
if (sock_flag(sk, SOCK_DONE))
|
|
break;
|
|
if (sk->sk_err) {
|
|
ret = sock_error(sk);
|
|
break;
|
|
}
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN)
|
|
break;
|
|
if (sk->sk_state == TCP_CLOSE) {
|
|
/*
|
|
* This occurs when user tries to read
|
|
* from never connected socket.
|
|
*/
|
|
ret = -ENOTCONN;
|
|
break;
|
|
}
|
|
if (!timeo) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
/* if __tcp_splice_read() got nothing while we have
|
|
* an skb in receive queue, we do not want to loop.
|
|
* This might happen with URG data.
|
|
*/
|
|
if (!skb_queue_empty(&sk->sk_receive_queue))
|
|
break;
|
|
ret = sk_wait_data(sk, &timeo, NULL);
|
|
if (ret < 0)
|
|
break;
|
|
if (signal_pending(current)) {
|
|
ret = sock_intr_errno(timeo);
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
tss.len -= ret;
|
|
spliced += ret;
|
|
|
|
if (!tss.len || !timeo)
|
|
break;
|
|
release_sock(sk);
|
|
lock_sock(sk);
|
|
|
|
if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
|
|
(sk->sk_shutdown & RCV_SHUTDOWN) ||
|
|
signal_pending(current))
|
|
break;
|
|
}
|
|
|
|
release_sock(sk);
|
|
|
|
if (spliced)
|
|
return spliced;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(tcp_splice_read);
|
|
|
|
struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
|
|
bool force_schedule)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
|
|
if (likely(skb)) {
|
|
bool mem_scheduled;
|
|
|
|
skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
|
|
if (force_schedule) {
|
|
mem_scheduled = true;
|
|
sk_forced_mem_schedule(sk, skb->truesize);
|
|
} else {
|
|
mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
|
|
}
|
|
if (likely(mem_scheduled)) {
|
|
skb_reserve(skb, MAX_TCP_HEADER);
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
|
|
return skb;
|
|
}
|
|
__kfree_skb(skb);
|
|
} else {
|
|
sk->sk_prot->enter_memory_pressure(sk);
|
|
sk_stream_moderate_sndbuf(sk);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
|
|
int large_allowed)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
u32 new_size_goal, size_goal;
|
|
|
|
if (!large_allowed)
|
|
return mss_now;
|
|
|
|
/* Note : tcp_tso_autosize() will eventually split this later */
|
|
new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
|
|
|
|
/* We try hard to avoid divides here */
|
|
size_goal = tp->gso_segs * mss_now;
|
|
if (unlikely(new_size_goal < size_goal ||
|
|
new_size_goal >= size_goal + mss_now)) {
|
|
tp->gso_segs = min_t(u16, new_size_goal / mss_now,
|
|
sk->sk_gso_max_segs);
|
|
size_goal = tp->gso_segs * mss_now;
|
|
}
|
|
|
|
return max(size_goal, mss_now);
|
|
}
|
|
|
|
int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
|
|
{
|
|
int mss_now;
|
|
|
|
mss_now = tcp_current_mss(sk);
|
|
*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
|
|
|
|
return mss_now;
|
|
}
|
|
|
|
/* In some cases, sendmsg() could have added an skb to the write queue,
|
|
* but failed adding payload on it. We need to remove it to consume less
|
|
* memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
|
|
* epoll() users. Another reason is that tcp_write_xmit() does not like
|
|
* finding an empty skb in the write queue.
|
|
*/
|
|
void tcp_remove_empty_skb(struct sock *sk)
|
|
{
|
|
struct sk_buff *skb = tcp_write_queue_tail(sk);
|
|
|
|
if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
|
|
tcp_unlink_write_queue(skb, sk);
|
|
if (tcp_write_queue_empty(sk))
|
|
tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
|
|
tcp_wmem_free_skb(sk, skb);
|
|
}
|
|
}
|
|
|
|
/* skb changing from pure zc to mixed, must charge zc */
|
|
static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
if (unlikely(skb_zcopy_pure(skb))) {
|
|
u32 extra = skb->truesize -
|
|
SKB_TRUESIZE(skb_end_offset(skb));
|
|
|
|
if (!sk_wmem_schedule(sk, extra))
|
|
return -ENOMEM;
|
|
|
|
sk_mem_charge(sk, extra);
|
|
skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int tcp_wmem_schedule(struct sock *sk, int copy)
|
|
{
|
|
int left;
|
|
|
|
if (likely(sk_wmem_schedule(sk, copy)))
|
|
return copy;
|
|
|
|
/* We could be in trouble if we have nothing queued.
|
|
* Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
|
|
* to guarantee some progress.
|
|
*/
|
|
left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
|
|
if (left > 0)
|
|
sk_forced_mem_schedule(sk, min(left, copy));
|
|
return min(copy, sk->sk_forward_alloc);
|
|
}
|
|
|
|
void tcp_free_fastopen_req(struct tcp_sock *tp)
|
|
{
|
|
if (tp->fastopen_req) {
|
|
kfree(tp->fastopen_req);
|
|
tp->fastopen_req = NULL;
|
|
}
|
|
}
|
|
|
|
int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
|
|
size_t size, struct ubuf_info *uarg)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct sockaddr *uaddr = msg->msg_name;
|
|
int err, flags;
|
|
|
|
if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
|
|
TFO_CLIENT_ENABLE) ||
|
|
(uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
|
|
uaddr->sa_family == AF_UNSPEC))
|
|
return -EOPNOTSUPP;
|
|
if (tp->fastopen_req)
|
|
return -EALREADY; /* Another Fast Open is in progress */
|
|
|
|
tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
|
|
sk->sk_allocation);
|
|
if (unlikely(!tp->fastopen_req))
|
|
return -ENOBUFS;
|
|
tp->fastopen_req->data = msg;
|
|
tp->fastopen_req->size = size;
|
|
tp->fastopen_req->uarg = uarg;
|
|
|
|
if (inet_test_bit(DEFER_CONNECT, sk)) {
|
|
err = tcp_connect(sk);
|
|
/* Same failure procedure as in tcp_v4/6_connect */
|
|
if (err) {
|
|
tcp_set_state(sk, TCP_CLOSE);
|
|
inet->inet_dport = 0;
|
|
sk->sk_route_caps = 0;
|
|
}
|
|
}
|
|
flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
|
|
err = __inet_stream_connect(sk->sk_socket, uaddr,
|
|
msg->msg_namelen, flags, 1);
|
|
/* fastopen_req could already be freed in __inet_stream_connect
|
|
* if the connection times out or gets rst
|
|
*/
|
|
if (tp->fastopen_req) {
|
|
*copied = tp->fastopen_req->copied;
|
|
tcp_free_fastopen_req(tp);
|
|
inet_clear_bit(DEFER_CONNECT, sk);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct ubuf_info *uarg = NULL;
|
|
struct sk_buff *skb;
|
|
struct sockcm_cookie sockc;
|
|
int flags, err, copied = 0;
|
|
int mss_now = 0, size_goal, copied_syn = 0;
|
|
int process_backlog = 0;
|
|
int zc = 0;
|
|
long timeo;
|
|
|
|
flags = msg->msg_flags;
|
|
|
|
if ((flags & MSG_ZEROCOPY) && size) {
|
|
if (msg->msg_ubuf) {
|
|
uarg = msg->msg_ubuf;
|
|
if (sk->sk_route_caps & NETIF_F_SG)
|
|
zc = MSG_ZEROCOPY;
|
|
} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
|
|
skb = tcp_write_queue_tail(sk);
|
|
uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
|
|
if (!uarg) {
|
|
err = -ENOBUFS;
|
|
goto out_err;
|
|
}
|
|
if (sk->sk_route_caps & NETIF_F_SG)
|
|
zc = MSG_ZEROCOPY;
|
|
else
|
|
uarg_to_msgzc(uarg)->zerocopy = 0;
|
|
}
|
|
} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
|
|
if (sk->sk_route_caps & NETIF_F_SG)
|
|
zc = MSG_SPLICE_PAGES;
|
|
}
|
|
|
|
if (unlikely(flags & MSG_FASTOPEN ||
|
|
inet_test_bit(DEFER_CONNECT, sk)) &&
|
|
!tp->repair) {
|
|
err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
|
|
if (err == -EINPROGRESS && copied_syn > 0)
|
|
goto out;
|
|
else if (err)
|
|
goto out_err;
|
|
}
|
|
|
|
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
|
|
|
|
tcp_rate_check_app_limited(sk); /* is sending application-limited? */
|
|
|
|
/* Wait for a connection to finish. One exception is TCP Fast Open
|
|
* (passive side) where data is allowed to be sent before a connection
|
|
* is fully established.
|
|
*/
|
|
if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
|
|
!tcp_passive_fastopen(sk)) {
|
|
err = sk_stream_wait_connect(sk, &timeo);
|
|
if (err != 0)
|
|
goto do_error;
|
|
}
|
|
|
|
if (unlikely(tp->repair)) {
|
|
if (tp->repair_queue == TCP_RECV_QUEUE) {
|
|
copied = tcp_send_rcvq(sk, msg, size);
|
|
goto out_nopush;
|
|
}
|
|
|
|
err = -EINVAL;
|
|
if (tp->repair_queue == TCP_NO_QUEUE)
|
|
goto out_err;
|
|
|
|
/* 'common' sending to sendq */
|
|
}
|
|
|
|
sockcm_init(&sockc, sk);
|
|
if (msg->msg_controllen) {
|
|
err = sock_cmsg_send(sk, msg, &sockc);
|
|
if (unlikely(err)) {
|
|
err = -EINVAL;
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
/* This should be in poll */
|
|
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
|
|
|
|
/* Ok commence sending. */
|
|
copied = 0;
|
|
|
|
restart:
|
|
mss_now = tcp_send_mss(sk, &size_goal, flags);
|
|
|
|
err = -EPIPE;
|
|
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
|
|
goto do_error;
|
|
|
|
while (msg_data_left(msg)) {
|
|
ssize_t copy = 0;
|
|
|
|
skb = tcp_write_queue_tail(sk);
|
|
if (skb)
|
|
copy = size_goal - skb->len;
|
|
|
|
if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
|
|
bool first_skb;
|
|
|
|
new_segment:
|
|
if (!sk_stream_memory_free(sk))
|
|
goto wait_for_space;
|
|
|
|
if (unlikely(process_backlog >= 16)) {
|
|
process_backlog = 0;
|
|
if (sk_flush_backlog(sk))
|
|
goto restart;
|
|
}
|
|
first_skb = tcp_rtx_and_write_queues_empty(sk);
|
|
skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
|
|
first_skb);
|
|
if (!skb)
|
|
goto wait_for_space;
|
|
|
|
process_backlog++;
|
|
|
|
tcp_skb_entail(sk, skb);
|
|
copy = size_goal;
|
|
|
|
/* All packets are restored as if they have
|
|
* already been sent. skb_mstamp_ns isn't set to
|
|
* avoid wrong rtt estimation.
|
|
*/
|
|
if (tp->repair)
|
|
TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
|
|
}
|
|
|
|
/* Try to append data to the end of skb. */
|
|
if (copy > msg_data_left(msg))
|
|
copy = msg_data_left(msg);
|
|
|
|
if (zc == 0) {
|
|
bool merge = true;
|
|
int i = skb_shinfo(skb)->nr_frags;
|
|
struct page_frag *pfrag = sk_page_frag(sk);
|
|
|
|
if (!sk_page_frag_refill(sk, pfrag))
|
|
goto wait_for_space;
|
|
|
|
if (!skb_can_coalesce(skb, i, pfrag->page,
|
|
pfrag->offset)) {
|
|
if (i >= READ_ONCE(sysctl_max_skb_frags)) {
|
|
tcp_mark_push(tp, skb);
|
|
goto new_segment;
|
|
}
|
|
merge = false;
|
|
}
|
|
|
|
copy = min_t(int, copy, pfrag->size - pfrag->offset);
|
|
|
|
if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
|
|
if (tcp_downgrade_zcopy_pure(sk, skb))
|
|
goto wait_for_space;
|
|
skb_zcopy_downgrade_managed(skb);
|
|
}
|
|
|
|
copy = tcp_wmem_schedule(sk, copy);
|
|
if (!copy)
|
|
goto wait_for_space;
|
|
|
|
err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
|
|
pfrag->page,
|
|
pfrag->offset,
|
|
copy);
|
|
if (err)
|
|
goto do_error;
|
|
|
|
/* Update the skb. */
|
|
if (merge) {
|
|
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
|
|
} else {
|
|
skb_fill_page_desc(skb, i, pfrag->page,
|
|
pfrag->offset, copy);
|
|
page_ref_inc(pfrag->page);
|
|
}
|
|
pfrag->offset += copy;
|
|
} else if (zc == MSG_ZEROCOPY) {
|
|
/* First append to a fragless skb builds initial
|
|
* pure zerocopy skb
|
|
*/
|
|
if (!skb->len)
|
|
skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
|
|
|
|
if (!skb_zcopy_pure(skb)) {
|
|
copy = tcp_wmem_schedule(sk, copy);
|
|
if (!copy)
|
|
goto wait_for_space;
|
|
}
|
|
|
|
err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
|
|
if (err == -EMSGSIZE || err == -EEXIST) {
|
|
tcp_mark_push(tp, skb);
|
|
goto new_segment;
|
|
}
|
|
if (err < 0)
|
|
goto do_error;
|
|
copy = err;
|
|
} else if (zc == MSG_SPLICE_PAGES) {
|
|
/* Splice in data if we can; copy if we can't. */
|
|
if (tcp_downgrade_zcopy_pure(sk, skb))
|
|
goto wait_for_space;
|
|
copy = tcp_wmem_schedule(sk, copy);
|
|
if (!copy)
|
|
goto wait_for_space;
|
|
|
|
err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
|
|
sk->sk_allocation);
|
|
if (err < 0) {
|
|
if (err == -EMSGSIZE) {
|
|
tcp_mark_push(tp, skb);
|
|
goto new_segment;
|
|
}
|
|
goto do_error;
|
|
}
|
|
copy = err;
|
|
|
|
if (!(flags & MSG_NO_SHARED_FRAGS))
|
|
skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
|
|
|
|
sk_wmem_queued_add(sk, copy);
|
|
sk_mem_charge(sk, copy);
|
|
}
|
|
|
|
if (!copied)
|
|
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
|
|
|
|
WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
|
|
TCP_SKB_CB(skb)->end_seq += copy;
|
|
tcp_skb_pcount_set(skb, 0);
|
|
|
|
copied += copy;
|
|
if (!msg_data_left(msg)) {
|
|
if (unlikely(flags & MSG_EOR))
|
|
TCP_SKB_CB(skb)->eor = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
|
|
continue;
|
|
|
|
if (forced_push(tp)) {
|
|
tcp_mark_push(tp, skb);
|
|
__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
|
|
} else if (skb == tcp_send_head(sk))
|
|
tcp_push_one(sk, mss_now);
|
|
continue;
|
|
|
|
wait_for_space:
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
tcp_remove_empty_skb(sk);
|
|
if (copied)
|
|
tcp_push(sk, flags & ~MSG_MORE, mss_now,
|
|
TCP_NAGLE_PUSH, size_goal);
|
|
|
|
err = sk_stream_wait_memory(sk, &timeo);
|
|
if (err != 0)
|
|
goto do_error;
|
|
|
|
mss_now = tcp_send_mss(sk, &size_goal, flags);
|
|
}
|
|
|
|
out:
|
|
if (copied) {
|
|
tcp_tx_timestamp(sk, sockc.tsflags);
|
|
tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
|
|
}
|
|
out_nopush:
|
|
/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
|
|
if (uarg && !msg->msg_ubuf)
|
|
net_zcopy_put(uarg);
|
|
return copied + copied_syn;
|
|
|
|
do_error:
|
|
tcp_remove_empty_skb(sk);
|
|
|
|
if (copied + copied_syn)
|
|
goto out;
|
|
out_err:
|
|
/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
|
|
if (uarg && !msg->msg_ubuf)
|
|
net_zcopy_put_abort(uarg, true);
|
|
err = sk_stream_error(sk, flags, err);
|
|
/* make sure we wake any epoll edge trigger waiter */
|
|
if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
|
|
sk->sk_write_space(sk);
|
|
tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
|
|
}
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
|
|
|
|
int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
|
|
{
|
|
int ret;
|
|
|
|
lock_sock(sk);
|
|
ret = tcp_sendmsg_locked(sk, msg, size);
|
|
release_sock(sk);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(tcp_sendmsg);
|
|
|
|
void tcp_splice_eof(struct socket *sock)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
int mss_now, size_goal;
|
|
|
|
if (!tcp_write_queue_tail(sk))
|
|
return;
|
|
|
|
lock_sock(sk);
|
|
mss_now = tcp_send_mss(sk, &size_goal, 0);
|
|
tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
|
|
release_sock(sk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tcp_splice_eof);
|
|
|
|
/*
|
|
* Handle reading urgent data. BSD has very simple semantics for
|
|
* this, no blocking and very strange errors 8)
|
|
*/
|
|
|
|
static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
/* No URG data to read. */
|
|
if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
|
|
tp->urg_data == TCP_URG_READ)
|
|
return -EINVAL; /* Yes this is right ! */
|
|
|
|
if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
|
|
return -ENOTCONN;
|
|
|
|
if (tp->urg_data & TCP_URG_VALID) {
|
|
int err = 0;
|
|
char c = tp->urg_data;
|
|
|
|
if (!(flags & MSG_PEEK))
|
|
WRITE_ONCE(tp->urg_data, TCP_URG_READ);
|
|
|
|
/* Read urgent data. */
|
|
msg->msg_flags |= MSG_OOB;
|
|
|
|
if (len > 0) {
|
|
if (!(flags & MSG_TRUNC))
|
|
err = memcpy_to_msg(msg, &c, 1);
|
|
len = 1;
|
|
} else
|
|
msg->msg_flags |= MSG_TRUNC;
|
|
|
|
return err ? -EFAULT : len;
|
|
}
|
|
|
|
if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
|
|
return 0;
|
|
|
|
/* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
|
|
* the available implementations agree in this case:
|
|
* this call should never block, independent of the
|
|
* blocking state of the socket.
|
|
* Mike <pall@rz.uni-karlsruhe.de>
|
|
*/
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
|
|
{
|
|
struct sk_buff *skb;
|
|
int copied = 0, err = 0;
|
|
|
|
/* XXX -- need to support SO_PEEK_OFF */
|
|
|
|
skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
|
|
err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
|
|
if (err)
|
|
return err;
|
|
copied += skb->len;
|
|
}
|
|
|
|
skb_queue_walk(&sk->sk_write_queue, skb) {
|
|
err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
|
|
if (err)
|
|
break;
|
|
|
|
copied += skb->len;
|
|
}
|
|
|
|
return err ?: copied;
|
|
}
|
|
|
|
/* Clean up the receive buffer for full frames taken by the user,
|
|
* then send an ACK if necessary. COPIED is the number of bytes
|
|
* tcp_recvmsg has given to the user so far, it speeds up the
|
|
* calculation of whether or not we must ACK for the sake of
|
|
* a window update.
|
|
*/
|
|
void __tcp_cleanup_rbuf(struct sock *sk, int copied)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
bool time_to_ack = false;
|
|
|
|
if (inet_csk_ack_scheduled(sk)) {
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
|
|
tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
|
|
/*
|
|
* If this read emptied read buffer, we send ACK, if
|
|
* connection is not bidirectional, user drained
|
|
* receive buffer and there was a small segment
|
|
* in queue.
|
|
*/
|
|
(copied > 0 &&
|
|
((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
|
|
((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
|
|
!inet_csk_in_pingpong_mode(sk))) &&
|
|
!atomic_read(&sk->sk_rmem_alloc)))
|
|
time_to_ack = true;
|
|
}
|
|
|
|
/* We send an ACK if we can now advertise a non-zero window
|
|
* which has been raised "significantly".
|
|
*
|
|
* Even if window raised up to infinity, do not send window open ACK
|
|
* in states, where we will not receive more. It is useless.
|
|
*/
|
|
if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
|
|
__u32 rcv_window_now = tcp_receive_window(tp);
|
|
|
|
/* Optimize, __tcp_select_window() is not cheap. */
|
|
if (2*rcv_window_now <= tp->window_clamp) {
|
|
__u32 new_window = __tcp_select_window(sk);
|
|
|
|
/* Send ACK now, if this read freed lots of space
|
|
* in our buffer. Certainly, new_window is new window.
|
|
* We can advertise it now, if it is not less than current one.
|
|
* "Lots" means "at least twice" here.
|
|
*/
|
|
if (new_window && new_window >= 2 * rcv_window_now)
|
|
time_to_ack = true;
|
|
}
|
|
}
|
|
if (time_to_ack)
|
|
tcp_send_ack(sk);
|
|
}
|
|
|
|
void tcp_cleanup_rbuf(struct sock *sk, int copied)
|
|
{
|
|
struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
|
|
"cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
|
|
tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
|
|
__tcp_cleanup_rbuf(sk, copied);
|
|
}
|
|
|
|
static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
__skb_unlink(skb, &sk->sk_receive_queue);
|
|
if (likely(skb->destructor == sock_rfree)) {
|
|
sock_rfree(skb);
|
|
skb->destructor = NULL;
|
|
skb->sk = NULL;
|
|
return skb_attempt_defer_free(skb);
|
|
}
|
|
__kfree_skb(skb);
|
|
}
|
|
|
|
struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
|
|
{
|
|
struct sk_buff *skb;
|
|
u32 offset;
|
|
|
|
while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
|
|
offset = seq - TCP_SKB_CB(skb)->seq;
|
|
if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
|
|
pr_err_once("%s: found a SYN, please report !\n", __func__);
|
|
offset--;
|
|
}
|
|
if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
|
|
*off = offset;
|
|
return skb;
|
|
}
|
|
/* This looks weird, but this can happen if TCP collapsing
|
|
* splitted a fat GRO packet, while we released socket lock
|
|
* in skb_splice_bits()
|
|
*/
|
|
tcp_eat_recv_skb(sk, skb);
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(tcp_recv_skb);
|
|
|
|
/*
|
|
* This routine provides an alternative to tcp_recvmsg() for routines
|
|
* that would like to handle copying from skbuffs directly in 'sendfile'
|
|
* fashion.
|
|
* Note:
|
|
* - It is assumed that the socket was locked by the caller.
|
|
* - The routine does not block.
|
|
* - At present, there is no support for reading OOB data
|
|
* or for 'peeking' the socket using this routine
|
|
* (although both would be easy to implement).
|
|
*/
|
|
int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
|
|
sk_read_actor_t recv_actor)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
u32 seq = tp->copied_seq;
|
|
u32 offset;
|
|
int copied = 0;
|
|
|
|
if (sk->sk_state == TCP_LISTEN)
|
|
return -ENOTCONN;
|
|
while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
|
|
if (offset < skb->len) {
|
|
int used;
|
|
size_t len;
|
|
|
|
len = skb->len - offset;
|
|
/* Stop reading if we hit a patch of urgent data */
|
|
if (unlikely(tp->urg_data)) {
|
|
u32 urg_offset = tp->urg_seq - seq;
|
|
if (urg_offset < len)
|
|
len = urg_offset;
|
|
if (!len)
|
|
break;
|
|
}
|
|
used = recv_actor(desc, skb, offset, len);
|
|
if (used <= 0) {
|
|
if (!copied)
|
|
copied = used;
|
|
break;
|
|
}
|
|
if (WARN_ON_ONCE(used > len))
|
|
used = len;
|
|
seq += used;
|
|
copied += used;
|
|
offset += used;
|
|
|
|
/* If recv_actor drops the lock (e.g. TCP splice
|
|
* receive) the skb pointer might be invalid when
|
|
* getting here: tcp_collapse might have deleted it
|
|
* while aggregating skbs from the socket queue.
|
|
*/
|
|
skb = tcp_recv_skb(sk, seq - 1, &offset);
|
|
if (!skb)
|
|
break;
|
|
/* TCP coalescing might have appended data to the skb.
|
|
* Try to splice more frags
|
|
*/
|
|
if (offset + 1 != skb->len)
|
|
continue;
|
|
}
|
|
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
|
|
tcp_eat_recv_skb(sk, skb);
|
|
++seq;
|
|
break;
|
|
}
|
|
tcp_eat_recv_skb(sk, skb);
|
|
if (!desc->count)
|
|
break;
|
|
WRITE_ONCE(tp->copied_seq, seq);
|
|
}
|
|
WRITE_ONCE(tp->copied_seq, seq);
|
|
|
|
tcp_rcv_space_adjust(sk);
|
|
|
|
/* Clean up data we have read: This will do ACK frames. */
|
|
if (copied > 0) {
|
|
tcp_recv_skb(sk, seq, &offset);
|
|
tcp_cleanup_rbuf(sk, copied);
|
|
}
|
|
return copied;
|
|
}
|
|
EXPORT_SYMBOL(tcp_read_sock);
|
|
|
|
int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
|
|
{
|
|
struct sk_buff *skb;
|
|
int copied = 0;
|
|
|
|
if (sk->sk_state == TCP_LISTEN)
|
|
return -ENOTCONN;
|
|
|
|
while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
|
|
u8 tcp_flags;
|
|
int used;
|
|
|
|
__skb_unlink(skb, &sk->sk_receive_queue);
|
|
WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
|
|
tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
|
|
used = recv_actor(sk, skb);
|
|
if (used < 0) {
|
|
if (!copied)
|
|
copied = used;
|
|
break;
|
|
}
|
|
copied += used;
|
|
|
|
if (tcp_flags & TCPHDR_FIN)
|
|
break;
|
|
}
|
|
return copied;
|
|
}
|
|
EXPORT_SYMBOL(tcp_read_skb);
|
|
|
|
void tcp_read_done(struct sock *sk, size_t len)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
u32 seq = tp->copied_seq;
|
|
struct sk_buff *skb;
|
|
size_t left;
|
|
u32 offset;
|
|
|
|
if (sk->sk_state == TCP_LISTEN)
|
|
return;
|
|
|
|
left = len;
|
|
while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
|
|
int used;
|
|
|
|
used = min_t(size_t, skb->len - offset, left);
|
|
seq += used;
|
|
left -= used;
|
|
|
|
if (skb->len > offset + used)
|
|
break;
|
|
|
|
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
|
|
tcp_eat_recv_skb(sk, skb);
|
|
++seq;
|
|
break;
|
|
}
|
|
tcp_eat_recv_skb(sk, skb);
|
|
}
|
|
WRITE_ONCE(tp->copied_seq, seq);
|
|
|
|
tcp_rcv_space_adjust(sk);
|
|
|
|
/* Clean up data we have read: This will do ACK frames. */
|
|
if (left != len)
|
|
tcp_cleanup_rbuf(sk, len - left);
|
|
}
|
|
EXPORT_SYMBOL(tcp_read_done);
|
|
|
|
int tcp_peek_len(struct socket *sock)
|
|
{
|
|
return tcp_inq(sock->sk);
|
|
}
|
|
EXPORT_SYMBOL(tcp_peek_len);
|
|
|
|
/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
|
|
int tcp_set_rcvlowat(struct sock *sk, int val)
|
|
{
|
|
int space, cap;
|
|
|
|
if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
|
|
cap = sk->sk_rcvbuf >> 1;
|
|
else
|
|
cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
|
|
val = min(val, cap);
|
|
WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
|
|
|
|
/* Check if we need to signal EPOLLIN right now */
|
|
tcp_data_ready(sk);
|
|
|
|
if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
|
|
return 0;
|
|
|
|
space = tcp_space_from_win(sk, val);
|
|
if (space > sk->sk_rcvbuf) {
|
|
WRITE_ONCE(sk->sk_rcvbuf, space);
|
|
tcp_sk(sk)->window_clamp = val;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tcp_set_rcvlowat);
|
|
|
|
void tcp_update_recv_tstamps(struct sk_buff *skb,
|
|
struct scm_timestamping_internal *tss)
|
|
{
|
|
if (skb->tstamp)
|
|
tss->ts[0] = ktime_to_timespec64(skb->tstamp);
|
|
else
|
|
tss->ts[0] = (struct timespec64) {0};
|
|
|
|
if (skb_hwtstamps(skb)->hwtstamp)
|
|
tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
|
|
else
|
|
tss->ts[2] = (struct timespec64) {0};
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
static const struct vm_operations_struct tcp_vm_ops = {
|
|
};
|
|
|
|
int tcp_mmap(struct file *file, struct socket *sock,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
if (vma->vm_flags & (VM_WRITE | VM_EXEC))
|
|
return -EPERM;
|
|
vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
|
|
|
|
/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
|
|
vm_flags_set(vma, VM_MIXEDMAP);
|
|
|
|
vma->vm_ops = &tcp_vm_ops;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tcp_mmap);
|
|
|
|
static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
|
|
u32 *offset_frag)
|
|
{
|
|
skb_frag_t *frag;
|
|
|
|
if (unlikely(offset_skb >= skb->len))
|
|
return NULL;
|
|
|
|
offset_skb -= skb_headlen(skb);
|
|
if ((int)offset_skb < 0 || skb_has_frag_list(skb))
|
|
return NULL;
|
|
|
|
frag = skb_shinfo(skb)->frags;
|
|
while (offset_skb) {
|
|
if (skb_frag_size(frag) > offset_skb) {
|
|
*offset_frag = offset_skb;
|
|
return frag;
|
|
}
|
|
offset_skb -= skb_frag_size(frag);
|
|
++frag;
|
|
}
|
|
*offset_frag = 0;
|
|
return frag;
|
|
}
|
|
|
|
static bool can_map_frag(const skb_frag_t *frag)
|
|
{
|
|
return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
|
|
}
|
|
|
|
static int find_next_mappable_frag(const skb_frag_t *frag,
|
|
int remaining_in_skb)
|
|
{
|
|
int offset = 0;
|
|
|
|
if (likely(can_map_frag(frag)))
|
|
return 0;
|
|
|
|
while (offset < remaining_in_skb && !can_map_frag(frag)) {
|
|
offset += skb_frag_size(frag);
|
|
++frag;
|
|
}
|
|
return offset;
|
|
}
|
|
|
|
static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
|
|
struct tcp_zerocopy_receive *zc,
|
|
struct sk_buff *skb, u32 offset)
|
|
{
|
|
u32 frag_offset, partial_frag_remainder = 0;
|
|
int mappable_offset;
|
|
skb_frag_t *frag;
|
|
|
|
/* worst case: skip to next skb. try to improve on this case below */
|
|
zc->recv_skip_hint = skb->len - offset;
|
|
|
|
/* Find the frag containing this offset (and how far into that frag) */
|
|
frag = skb_advance_to_frag(skb, offset, &frag_offset);
|
|
if (!frag)
|
|
return;
|
|
|
|
if (frag_offset) {
|
|
struct skb_shared_info *info = skb_shinfo(skb);
|
|
|
|
/* We read part of the last frag, must recvmsg() rest of skb. */
|
|
if (frag == &info->frags[info->nr_frags - 1])
|
|
return;
|
|
|
|
/* Else, we must at least read the remainder in this frag. */
|
|
partial_frag_remainder = skb_frag_size(frag) - frag_offset;
|
|
zc->recv_skip_hint -= partial_frag_remainder;
|
|
++frag;
|
|
}
|
|
|
|
/* partial_frag_remainder: If part way through a frag, must read rest.
|
|
* mappable_offset: Bytes till next mappable frag, *not* counting bytes
|
|
* in partial_frag_remainder.
|
|
*/
|
|
mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
|
|
zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
|
|
}
|
|
|
|
static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
|
|
int flags, struct scm_timestamping_internal *tss,
|
|
int *cmsg_flags);
|
|
static int receive_fallback_to_copy(struct sock *sk,
|
|
struct tcp_zerocopy_receive *zc, int inq,
|
|
struct scm_timestamping_internal *tss)
|
|
{
|
|
unsigned long copy_address = (unsigned long)zc->copybuf_address;
|
|
struct msghdr msg = {};
|
|
struct iovec iov;
|
|
int err;
|
|
|
|
zc->length = 0;
|
|
zc->recv_skip_hint = 0;
|
|
|
|
if (copy_address != zc->copybuf_address)
|
|
return -EINVAL;
|
|
|
|
err = import_single_range(ITER_DEST, (void __user *)copy_address,
|
|
inq, &iov, &msg.msg_iter);
|
|
if (err)
|
|
return err;
|
|
|
|
err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
|
|
tss, &zc->msg_flags);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
zc->copybuf_len = err;
|
|
if (likely(zc->copybuf_len)) {
|
|
struct sk_buff *skb;
|
|
u32 offset;
|
|
|
|
skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
|
|
if (skb)
|
|
tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
|
|
struct sk_buff *skb, u32 copylen,
|
|
u32 *offset, u32 *seq)
|
|
{
|
|
unsigned long copy_address = (unsigned long)zc->copybuf_address;
|
|
struct msghdr msg = {};
|
|
struct iovec iov;
|
|
int err;
|
|
|
|
if (copy_address != zc->copybuf_address)
|
|
return -EINVAL;
|
|
|
|
err = import_single_range(ITER_DEST, (void __user *)copy_address,
|
|
copylen, &iov, &msg.msg_iter);
|
|
if (err)
|
|
return err;
|
|
err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
|
|
if (err)
|
|
return err;
|
|
zc->recv_skip_hint -= copylen;
|
|
*offset += copylen;
|
|
*seq += copylen;
|
|
return (__s32)copylen;
|
|
}
|
|
|
|
static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
|
|
struct sock *sk,
|
|
struct sk_buff *skb,
|
|
u32 *seq,
|
|
s32 copybuf_len,
|
|
struct scm_timestamping_internal *tss)
|
|
{
|
|
u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
|
|
|
|
if (!copylen)
|
|
return 0;
|
|
/* skb is null if inq < PAGE_SIZE. */
|
|
if (skb) {
|
|
offset = *seq - TCP_SKB_CB(skb)->seq;
|
|
} else {
|
|
skb = tcp_recv_skb(sk, *seq, &offset);
|
|
if (TCP_SKB_CB(skb)->has_rxtstamp) {
|
|
tcp_update_recv_tstamps(skb, tss);
|
|
zc->msg_flags |= TCP_CMSG_TS;
|
|
}
|
|
}
|
|
|
|
zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
|
|
seq);
|
|
return zc->copybuf_len < 0 ? 0 : copylen;
|
|
}
|
|
|
|
static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
|
|
struct page **pending_pages,
|
|
unsigned long pages_remaining,
|
|
unsigned long *address,
|
|
u32 *length,
|
|
u32 *seq,
|
|
struct tcp_zerocopy_receive *zc,
|
|
u32 total_bytes_to_map,
|
|
int err)
|
|
{
|
|
/* At least one page did not map. Try zapping if we skipped earlier. */
|
|
if (err == -EBUSY &&
|
|
zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
|
|
u32 maybe_zap_len;
|
|
|
|
maybe_zap_len = total_bytes_to_map - /* All bytes to map */
|
|
*length + /* Mapped or pending */
|
|
(pages_remaining * PAGE_SIZE); /* Failed map. */
|
|
zap_page_range_single(vma, *address, maybe_zap_len, NULL);
|
|
err = 0;
|
|
}
|
|
|
|
if (!err) {
|
|
unsigned long leftover_pages = pages_remaining;
|
|
int bytes_mapped;
|
|
|
|
/* We called zap_page_range_single, try to reinsert. */
|
|
err = vm_insert_pages(vma, *address,
|
|
pending_pages,
|
|
&pages_remaining);
|
|
bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
|
|
*seq += bytes_mapped;
|
|
*address += bytes_mapped;
|
|
}
|
|
if (err) {
|
|
/* Either we were unable to zap, OR we zapped, retried an
|
|
* insert, and still had an issue. Either ways, pages_remaining
|
|
* is the number of pages we were unable to map, and we unroll
|
|
* some state we speculatively touched before.
|
|
*/
|
|
const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
|
|
|
|
*length -= bytes_not_mapped;
|
|
zc->recv_skip_hint += bytes_not_mapped;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
|
|
struct page **pages,
|
|
unsigned int pages_to_map,
|
|
unsigned long *address,
|
|
u32 *length,
|
|
u32 *seq,
|
|
struct tcp_zerocopy_receive *zc,
|
|
u32 total_bytes_to_map)
|
|
{
|
|
unsigned long pages_remaining = pages_to_map;
|
|
unsigned int pages_mapped;
|
|
unsigned int bytes_mapped;
|
|
int err;
|
|
|
|
err = vm_insert_pages(vma, *address, pages, &pages_remaining);
|
|
pages_mapped = pages_to_map - (unsigned int)pages_remaining;
|
|
bytes_mapped = PAGE_SIZE * pages_mapped;
|
|
/* Even if vm_insert_pages fails, it may have partially succeeded in
|
|
* mapping (some but not all of the pages).
|
|
*/
|
|
*seq += bytes_mapped;
|
|
*address += bytes_mapped;
|
|
|
|
if (likely(!err))
|
|
return 0;
|
|
|
|
/* Error: maybe zap and retry + rollback state for failed inserts. */
|
|
return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
|
|
pages_remaining, address, length, seq, zc, total_bytes_to_map,
|
|
err);
|
|
}
|
|
|
|
#define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
|
|
static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
|
|
struct tcp_zerocopy_receive *zc,
|
|
struct scm_timestamping_internal *tss)
|
|
{
|
|
unsigned long msg_control_addr;
|
|
struct msghdr cmsg_dummy;
|
|
|
|
msg_control_addr = (unsigned long)zc->msg_control;
|
|
cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
|
|
cmsg_dummy.msg_controllen =
|
|
(__kernel_size_t)zc->msg_controllen;
|
|
cmsg_dummy.msg_flags = in_compat_syscall()
|
|
? MSG_CMSG_COMPAT : 0;
|
|
cmsg_dummy.msg_control_is_user = true;
|
|
zc->msg_flags = 0;
|
|
if (zc->msg_control == msg_control_addr &&
|
|
zc->msg_controllen == cmsg_dummy.msg_controllen) {
|
|
tcp_recv_timestamp(&cmsg_dummy, sk, tss);
|
|
zc->msg_control = (__u64)
|
|
((uintptr_t)cmsg_dummy.msg_control_user);
|
|
zc->msg_controllen =
|
|
(__u64)cmsg_dummy.msg_controllen;
|
|
zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
|
|
}
|
|
}
|
|
|
|
static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
|
|
unsigned long address,
|
|
bool *mmap_locked)
|
|
{
|
|
struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
|
|
|
|
if (vma) {
|
|
if (vma->vm_ops != &tcp_vm_ops) {
|
|
vma_end_read(vma);
|
|
return NULL;
|
|
}
|
|
*mmap_locked = false;
|
|
return vma;
|
|
}
|
|
|
|
mmap_read_lock(mm);
|
|
vma = vma_lookup(mm, address);
|
|
if (!vma || vma->vm_ops != &tcp_vm_ops) {
|
|
mmap_read_unlock(mm);
|
|
return NULL;
|
|
}
|
|
*mmap_locked = true;
|
|
return vma;
|
|
}
|
|
|
|
#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
|
|
static int tcp_zerocopy_receive(struct sock *sk,
|
|
struct tcp_zerocopy_receive *zc,
|
|
struct scm_timestamping_internal *tss)
|
|
{
|
|
u32 length = 0, offset, vma_len, avail_len, copylen = 0;
|
|
unsigned long address = (unsigned long)zc->address;
|
|
struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
|
|
s32 copybuf_len = zc->copybuf_len;
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
const skb_frag_t *frags = NULL;
|
|
unsigned int pages_to_map = 0;
|
|
struct vm_area_struct *vma;
|
|
struct sk_buff *skb = NULL;
|
|
u32 seq = tp->copied_seq;
|
|
u32 total_bytes_to_map;
|
|
int inq = tcp_inq(sk);
|
|
bool mmap_locked;
|
|
int ret;
|
|
|
|
zc->copybuf_len = 0;
|
|
zc->msg_flags = 0;
|
|
|
|
if (address & (PAGE_SIZE - 1) || address != zc->address)
|
|
return -EINVAL;
|
|
|
|
if (sk->sk_state == TCP_LISTEN)
|
|
return -ENOTCONN;
|
|
|
|
sock_rps_record_flow(sk);
|
|
|
|
if (inq && inq <= copybuf_len)
|
|
return receive_fallback_to_copy(sk, zc, inq, tss);
|
|
|
|
if (inq < PAGE_SIZE) {
|
|
zc->length = 0;
|
|
zc->recv_skip_hint = inq;
|
|
if (!inq && sock_flag(sk, SOCK_DONE))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
vma = find_tcp_vma(current->mm, address, &mmap_locked);
|
|
if (!vma)
|
|
return -EINVAL;
|
|
|
|
vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
|
|
avail_len = min_t(u32, vma_len, inq);
|
|
total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
|
|
if (total_bytes_to_map) {
|
|
if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
|
|
zap_page_range_single(vma, address, total_bytes_to_map,
|
|
NULL);
|
|
zc->length = total_bytes_to_map;
|
|
zc->recv_skip_hint = 0;
|
|
} else {
|
|
zc->length = avail_len;
|
|
zc->recv_skip_hint = avail_len;
|
|
}
|
|
ret = 0;
|
|
while (length + PAGE_SIZE <= zc->length) {
|
|
int mappable_offset;
|
|
struct page *page;
|
|
|
|
if (zc->recv_skip_hint < PAGE_SIZE) {
|
|
u32 offset_frag;
|
|
|
|
if (skb) {
|
|
if (zc->recv_skip_hint > 0)
|
|
break;
|
|
skb = skb->next;
|
|
offset = seq - TCP_SKB_CB(skb)->seq;
|
|
} else {
|
|
skb = tcp_recv_skb(sk, seq, &offset);
|
|
}
|
|
|
|
if (TCP_SKB_CB(skb)->has_rxtstamp) {
|
|
tcp_update_recv_tstamps(skb, tss);
|
|
zc->msg_flags |= TCP_CMSG_TS;
|
|
}
|
|
zc->recv_skip_hint = skb->len - offset;
|
|
frags = skb_advance_to_frag(skb, offset, &offset_frag);
|
|
if (!frags || offset_frag)
|
|
break;
|
|
}
|
|
|
|
mappable_offset = find_next_mappable_frag(frags,
|
|
zc->recv_skip_hint);
|
|
if (mappable_offset) {
|
|
zc->recv_skip_hint = mappable_offset;
|
|
break;
|
|
}
|
|
page = skb_frag_page(frags);
|
|
prefetchw(page);
|
|
pages[pages_to_map++] = page;
|
|
length += PAGE_SIZE;
|
|
zc->recv_skip_hint -= PAGE_SIZE;
|
|
frags++;
|
|
if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
|
|
zc->recv_skip_hint < PAGE_SIZE) {
|
|
/* Either full batch, or we're about to go to next skb
|
|
* (and we cannot unroll failed ops across skbs).
|
|
*/
|
|
ret = tcp_zerocopy_vm_insert_batch(vma, pages,
|
|
pages_to_map,
|
|
&address, &length,
|
|
&seq, zc,
|
|
total_bytes_to_map);
|
|
if (ret)
|
|
goto out;
|
|
pages_to_map = 0;
|
|
}
|
|
}
|
|
if (pages_to_map) {
|
|
ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
|
|
&address, &length, &seq,
|
|
zc, total_bytes_to_map);
|
|
}
|
|
out:
|
|
if (mmap_locked)
|
|
mmap_read_unlock(current->mm);
|
|
else
|
|
vma_end_read(vma);
|
|
/* Try to copy straggler data. */
|
|
if (!ret)
|
|
copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
|
|
|
|
if (length + copylen) {
|
|
WRITE_ONCE(tp->copied_seq, seq);
|
|
tcp_rcv_space_adjust(sk);
|
|
|
|
/* Clean up data we have read: This will do ACK frames. */
|
|
tcp_recv_skb(sk, seq, &offset);
|
|
tcp_cleanup_rbuf(sk, length + copylen);
|
|
ret = 0;
|
|
if (length == zc->length)
|
|
zc->recv_skip_hint = 0;
|
|
} else {
|
|
if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
|
|
ret = -EIO;
|
|
}
|
|
zc->length = length;
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/* Similar to __sock_recv_timestamp, but does not require an skb */
|
|
void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
|
|
struct scm_timestamping_internal *tss)
|
|
{
|
|
int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
|
|
bool has_timestamping = false;
|
|
|
|
if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
|
|
if (sock_flag(sk, SOCK_RCVTSTAMP)) {
|
|
if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
|
|
if (new_tstamp) {
|
|
struct __kernel_timespec kts = {
|
|
.tv_sec = tss->ts[0].tv_sec,
|
|
.tv_nsec = tss->ts[0].tv_nsec,
|
|
};
|
|
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
|
|
sizeof(kts), &kts);
|
|
} else {
|
|
struct __kernel_old_timespec ts_old = {
|
|
.tv_sec = tss->ts[0].tv_sec,
|
|
.tv_nsec = tss->ts[0].tv_nsec,
|
|
};
|
|
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
|
|
sizeof(ts_old), &ts_old);
|
|
}
|
|
} else {
|
|
if (new_tstamp) {
|
|
struct __kernel_sock_timeval stv = {
|
|
.tv_sec = tss->ts[0].tv_sec,
|
|
.tv_usec = tss->ts[0].tv_nsec / 1000,
|
|
};
|
|
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
|
|
sizeof(stv), &stv);
|
|
} else {
|
|
struct __kernel_old_timeval tv = {
|
|
.tv_sec = tss->ts[0].tv_sec,
|
|
.tv_usec = tss->ts[0].tv_nsec / 1000,
|
|
};
|
|
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
|
|
sizeof(tv), &tv);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
|
|
has_timestamping = true;
|
|
else
|
|
tss->ts[0] = (struct timespec64) {0};
|
|
}
|
|
|
|
if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
|
|
if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
|
|
has_timestamping = true;
|
|
else
|
|
tss->ts[2] = (struct timespec64) {0};
|
|
}
|
|
|
|
if (has_timestamping) {
|
|
tss->ts[1] = (struct timespec64) {0};
|
|
if (sock_flag(sk, SOCK_TSTAMP_NEW))
|
|
put_cmsg_scm_timestamping64(msg, tss);
|
|
else
|
|
put_cmsg_scm_timestamping(msg, tss);
|
|
}
|
|
}
|
|
|
|
static int tcp_inq_hint(struct sock *sk)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
u32 copied_seq = READ_ONCE(tp->copied_seq);
|
|
u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
|
|
int inq;
|
|
|
|
inq = rcv_nxt - copied_seq;
|
|
if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
|
|
lock_sock(sk);
|
|
inq = tp->rcv_nxt - tp->copied_seq;
|
|
release_sock(sk);
|
|
}
|
|
/* After receiving a FIN, tell the user-space to continue reading
|
|
* by returning a non-zero inq.
|
|
*/
|
|
if (inq == 0 && sock_flag(sk, SOCK_DONE))
|
|
inq = 1;
|
|
return inq;
|
|
}
|
|
|
|
/*
|
|
* This routine copies from a sock struct into the user buffer.
|
|
*
|
|
* Technical note: in 2.3 we work on _locked_ socket, so that
|
|
* tricks with *seq access order and skb->users are not required.
|
|
* Probably, code can be easily improved even more.
|
|
*/
|
|
|
|
static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
|
|
int flags, struct scm_timestamping_internal *tss,
|
|
int *cmsg_flags)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
int copied = 0;
|
|
u32 peek_seq;
|
|
u32 *seq;
|
|
unsigned long used;
|
|
int err;
|
|
int target; /* Read at least this many bytes */
|
|
long timeo;
|
|
struct sk_buff *skb, *last;
|
|
u32 urg_hole = 0;
|
|
|
|
err = -ENOTCONN;
|
|
if (sk->sk_state == TCP_LISTEN)
|
|
goto out;
|
|
|
|
if (tp->recvmsg_inq) {
|
|
*cmsg_flags = TCP_CMSG_INQ;
|
|
msg->msg_get_inq = 1;
|
|
}
|
|
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
|
|
/* Urgent data needs to be handled specially. */
|
|
if (flags & MSG_OOB)
|
|
goto recv_urg;
|
|
|
|
if (unlikely(tp->repair)) {
|
|
err = -EPERM;
|
|
if (!(flags & MSG_PEEK))
|
|
goto out;
|
|
|
|
if (tp->repair_queue == TCP_SEND_QUEUE)
|
|
goto recv_sndq;
|
|
|
|
err = -EINVAL;
|
|
if (tp->repair_queue == TCP_NO_QUEUE)
|
|
goto out;
|
|
|
|
/* 'common' recv queue MSG_PEEK-ing */
|
|
}
|
|
|
|
seq = &tp->copied_seq;
|
|
if (flags & MSG_PEEK) {
|
|
peek_seq = tp->copied_seq;
|
|
seq = &peek_seq;
|
|
}
|
|
|
|
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
|
|
|
|
do {
|
|
u32 offset;
|
|
|
|
/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
|
|
if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
|
|
if (copied)
|
|
break;
|
|
if (signal_pending(current)) {
|
|
copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Next get a buffer. */
|
|
|
|
last = skb_peek_tail(&sk->sk_receive_queue);
|
|
skb_queue_walk(&sk->sk_receive_queue, skb) {
|
|
last = skb;
|
|
/* Now that we have two receive queues this
|
|
* shouldn't happen.
|
|
*/
|
|
if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
|
|
"TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
|
|
*seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
|
|
flags))
|
|
break;
|
|
|
|
offset = *seq - TCP_SKB_CB(skb)->seq;
|
|
if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
|
|
pr_err_once("%s: found a SYN, please report !\n", __func__);
|
|
offset--;
|
|
}
|
|
if (offset < skb->len)
|
|
goto found_ok_skb;
|
|
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
|
|
goto found_fin_ok;
|
|
WARN(!(flags & MSG_PEEK),
|
|
"TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
|
|
*seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
|
|
}
|
|
|
|
/* Well, if we have backlog, try to process it now yet. */
|
|
|
|
if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
|
|
break;
|
|
|
|
if (copied) {
|
|
if (!timeo ||
|
|
sk->sk_err ||
|
|
sk->sk_state == TCP_CLOSE ||
|
|
(sk->sk_shutdown & RCV_SHUTDOWN) ||
|
|
signal_pending(current))
|
|
break;
|
|
} else {
|
|
if (sock_flag(sk, SOCK_DONE))
|
|
break;
|
|
|
|
if (sk->sk_err) {
|
|
copied = sock_error(sk);
|
|
break;
|
|
}
|
|
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN)
|
|
break;
|
|
|
|
if (sk->sk_state == TCP_CLOSE) {
|
|
/* This occurs when user tries to read
|
|
* from never connected socket.
|
|
*/
|
|
copied = -ENOTCONN;
|
|
break;
|
|
}
|
|
|
|
if (!timeo) {
|
|
copied = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (signal_pending(current)) {
|
|
copied = sock_intr_errno(timeo);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (copied >= target) {
|
|
/* Do not sleep, just process backlog. */
|
|
__sk_flush_backlog(sk);
|
|
} else {
|
|
tcp_cleanup_rbuf(sk, copied);
|
|
err = sk_wait_data(sk, &timeo, last);
|
|
if (err < 0) {
|
|
err = copied ? : err;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if ((flags & MSG_PEEK) &&
|
|
(peek_seq - copied - urg_hole != tp->copied_seq)) {
|
|
net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
|
|
current->comm,
|
|
task_pid_nr(current));
|
|
peek_seq = tp->copied_seq;
|
|
}
|
|
continue;
|
|
|
|
found_ok_skb:
|
|
/* Ok so how much can we use? */
|
|
used = skb->len - offset;
|
|
if (len < used)
|
|
used = len;
|
|
|
|
/* Do we have urgent data here? */
|
|
if (unlikely(tp->urg_data)) {
|
|
u32 urg_offset = tp->urg_seq - *seq;
|
|
if (urg_offset < used) {
|
|
if (!urg_offset) {
|
|
if (!sock_flag(sk, SOCK_URGINLINE)) {
|
|
WRITE_ONCE(*seq, *seq + 1);
|
|
urg_hole++;
|
|
offset++;
|
|
used--;
|
|
if (!used)
|
|
goto skip_copy;
|
|
}
|
|
} else
|
|
used = urg_offset;
|
|
}
|
|
}
|
|
|
|
if (!(flags & MSG_TRUNC)) {
|
|
err = skb_copy_datagram_msg(skb, offset, msg, used);
|
|
if (err) {
|
|
/* Exception. Bailout! */
|
|
if (!copied)
|
|
copied = -EFAULT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
WRITE_ONCE(*seq, *seq + used);
|
|
copied += used;
|
|
len -= used;
|
|
|
|
tcp_rcv_space_adjust(sk);
|
|
|
|
skip_copy:
|
|
if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
|
|
WRITE_ONCE(tp->urg_data, 0);
|
|
tcp_fast_path_check(sk);
|
|
}
|
|
|
|
if (TCP_SKB_CB(skb)->has_rxtstamp) {
|
|
tcp_update_recv_tstamps(skb, tss);
|
|
*cmsg_flags |= TCP_CMSG_TS;
|
|
}
|
|
|
|
if (used + offset < skb->len)
|
|
continue;
|
|
|
|
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
|
|
goto found_fin_ok;
|
|
if (!(flags & MSG_PEEK))
|
|
tcp_eat_recv_skb(sk, skb);
|
|
continue;
|
|
|
|
found_fin_ok:
|
|
/* Process the FIN. */
|
|
WRITE_ONCE(*seq, *seq + 1);
|
|
if (!(flags & MSG_PEEK))
|
|
tcp_eat_recv_skb(sk, skb);
|
|
break;
|
|
} while (len > 0);
|
|
|
|
/* According to UNIX98, msg_name/msg_namelen are ignored
|
|
* on connected socket. I was just happy when found this 8) --ANK
|
|
*/
|
|
|
|
/* Clean up data we have read: This will do ACK frames. */
|
|
tcp_cleanup_rbuf(sk, copied);
|
|
return copied;
|
|
|
|
out:
|
|
return err;
|
|
|
|
recv_urg:
|
|
err = tcp_recv_urg(sk, msg, len, flags);
|
|
goto out;
|
|
|
|
recv_sndq:
|
|
err = tcp_peek_sndq(sk, msg, len);
|
|
goto out;
|
|
}
|
|
|
|
int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
|
|
int *addr_len)
|
|
{
|
|
int cmsg_flags = 0, ret;
|
|
struct scm_timestamping_internal tss;
|
|
|
|
if (unlikely(flags & MSG_ERRQUEUE))
|
|
return inet_recv_error(sk, msg, len, addr_len);
|
|
|
|
if (sk_can_busy_loop(sk) &&
|
|
skb_queue_empty_lockless(&sk->sk_receive_queue) &&
|
|
sk->sk_state == TCP_ESTABLISHED)
|
|
sk_busy_loop(sk, flags & MSG_DONTWAIT);
|
|
|
|
lock_sock(sk);
|
|
ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
|
|
release_sock(sk);
|
|
|
|
if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
|
|
if (cmsg_flags & TCP_CMSG_TS)
|
|
tcp_recv_timestamp(msg, sk, &tss);
|
|
if (msg->msg_get_inq) {
|
|
msg->msg_inq = tcp_inq_hint(sk);
|
|
if (cmsg_flags & TCP_CMSG_INQ)
|
|
put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
|
|
sizeof(msg->msg_inq), &msg->msg_inq);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(tcp_recvmsg);
|
|
|
|
void tcp_set_state(struct sock *sk, int state)
|
|
{
|
|
int oldstate = sk->sk_state;
|
|
|
|
/* We defined a new enum for TCP states that are exported in BPF
|
|
* so as not force the internal TCP states to be frozen. The
|
|
* following checks will detect if an internal state value ever
|
|
* differs from the BPF value. If this ever happens, then we will
|
|
* need to remap the internal value to the BPF value before calling
|
|
* tcp_call_bpf_2arg.
|
|
*/
|
|
BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
|
|
BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
|
|
BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
|
|
BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
|
|
BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
|
|
BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
|
|
BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
|
|
BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
|
|
BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
|
|
BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
|
|
BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
|
|
BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
|
|
BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
|
|
|
|
/* bpf uapi header bpf.h defines an anonymous enum with values
|
|
* BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
|
|
* is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
|
|
* But clang built vmlinux does not have this enum in DWARF
|
|
* since clang removes the above code before generating IR/debuginfo.
|
|
* Let us explicitly emit the type debuginfo to ensure the
|
|
* above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
|
|
* regardless of which compiler is used.
|
|
*/
|
|
BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
|
|
|
|
if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
|
|
tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
|
|
|
|
switch (state) {
|
|
case TCP_ESTABLISHED:
|
|
if (oldstate != TCP_ESTABLISHED)
|
|
TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
|
|
break;
|
|
|
|
case TCP_CLOSE:
|
|
if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
|
|
TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
|
|
|
|
sk->sk_prot->unhash(sk);
|
|
if (inet_csk(sk)->icsk_bind_hash &&
|
|
!(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
|
|
inet_put_port(sk);
|
|
fallthrough;
|
|
default:
|
|
if (oldstate == TCP_ESTABLISHED)
|
|
TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
|
|
}
|
|
|
|
/* Change state AFTER socket is unhashed to avoid closed
|
|
* socket sitting in hash tables.
|
|
*/
|
|
inet_sk_state_store(sk, state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tcp_set_state);
|
|
|
|
/*
|
|
* State processing on a close. This implements the state shift for
|
|
* sending our FIN frame. Note that we only send a FIN for some
|
|
* states. A shutdown() may have already sent the FIN, or we may be
|
|
* closed.
|
|
*/
|
|
|
|
static const unsigned char new_state[16] = {
|
|
/* current state: new state: action: */
|
|
[0 /* (Invalid) */] = TCP_CLOSE,
|
|
[TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
|
|
[TCP_SYN_SENT] = TCP_CLOSE,
|
|
[TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
|
|
[TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
|
|
[TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
|
|
[TCP_TIME_WAIT] = TCP_CLOSE,
|
|
[TCP_CLOSE] = TCP_CLOSE,
|
|
[TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
|
|
[TCP_LAST_ACK] = TCP_LAST_ACK,
|
|
[TCP_LISTEN] = TCP_CLOSE,
|
|
[TCP_CLOSING] = TCP_CLOSING,
|
|
[TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
|
|
};
|
|
|
|
static int tcp_close_state(struct sock *sk)
|
|
{
|
|
int next = (int)new_state[sk->sk_state];
|
|
int ns = next & TCP_STATE_MASK;
|
|
|
|
tcp_set_state(sk, ns);
|
|
|
|
return next & TCP_ACTION_FIN;
|
|
}
|
|
|
|
/*
|
|
* Shutdown the sending side of a connection. Much like close except
|
|
* that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
|
|
*/
|
|
|
|
void tcp_shutdown(struct sock *sk, int how)
|
|
{
|
|
/* We need to grab some memory, and put together a FIN,
|
|
* and then put it into the queue to be sent.
|
|
* Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
|
|
*/
|
|
if (!(how & SEND_SHUTDOWN))
|
|
return;
|
|
|
|
/* If we've already sent a FIN, or it's a closed state, skip this. */
|
|
if ((1 << sk->sk_state) &
|
|
(TCPF_ESTABLISHED | TCPF_SYN_SENT |
|
|
TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
|
|
/* Clear out any half completed packets. FIN if needed. */
|
|
if (tcp_close_state(sk))
|
|
tcp_send_fin(sk);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(tcp_shutdown);
|
|
|
|
int tcp_orphan_count_sum(void)
|
|
{
|
|
int i, total = 0;
|
|
|
|
for_each_possible_cpu(i)
|
|
total += per_cpu(tcp_orphan_count, i);
|
|
|
|
return max(total, 0);
|
|
}
|
|
|
|
static int tcp_orphan_cache;
|
|
static struct timer_list tcp_orphan_timer;
|
|
#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
|
|
|
|
static void tcp_orphan_update(struct timer_list *unused)
|
|
{
|
|
WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
|
|
mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
|
|
}
|
|
|
|
static bool tcp_too_many_orphans(int shift)
|
|
{
|
|
return READ_ONCE(tcp_orphan_cache) << shift >
|
|
READ_ONCE(sysctl_tcp_max_orphans);
|
|
}
|
|
|
|
bool tcp_check_oom(struct sock *sk, int shift)
|
|
{
|
|
bool too_many_orphans, out_of_socket_memory;
|
|
|
|
too_many_orphans = tcp_too_many_orphans(shift);
|
|
out_of_socket_memory = tcp_out_of_memory(sk);
|
|
|
|
if (too_many_orphans)
|
|
net_info_ratelimited("too many orphaned sockets\n");
|
|
if (out_of_socket_memory)
|
|
net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
|
|
return too_many_orphans || out_of_socket_memory;
|
|
}
|
|
|
|
void __tcp_close(struct sock *sk, long timeout)
|
|
{
|
|
struct sk_buff *skb;
|
|
int data_was_unread = 0;
|
|
int state;
|
|
|
|
WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
|
|
|
|
if (sk->sk_state == TCP_LISTEN) {
|
|
tcp_set_state(sk, TCP_CLOSE);
|
|
|
|
/* Special case. */
|
|
inet_csk_listen_stop(sk);
|
|
|
|
goto adjudge_to_death;
|
|
}
|
|
|
|
/* We need to flush the recv. buffs. We do this only on the
|
|
* descriptor close, not protocol-sourced closes, because the
|
|
* reader process may not have drained the data yet!
|
|
*/
|
|
while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
|
|
u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
|
|
|
|
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
|
|
len--;
|
|
data_was_unread += len;
|
|
__kfree_skb(skb);
|
|
}
|
|
|
|
/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
|
|
if (sk->sk_state == TCP_CLOSE)
|
|
goto adjudge_to_death;
|
|
|
|
/* As outlined in RFC 2525, section 2.17, we send a RST here because
|
|
* data was lost. To witness the awful effects of the old behavior of
|
|
* always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
|
|
* GET in an FTP client, suspend the process, wait for the client to
|
|
* advertise a zero window, then kill -9 the FTP client, wheee...
|
|
* Note: timeout is always zero in such a case.
|
|
*/
|
|
if (unlikely(tcp_sk(sk)->repair)) {
|
|
sk->sk_prot->disconnect(sk, 0);
|
|
} else if (data_was_unread) {
|
|
/* Unread data was tossed, zap the connection. */
|
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
|
|
tcp_set_state(sk, TCP_CLOSE);
|
|
tcp_send_active_reset(sk, sk->sk_allocation);
|
|
} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
|
|
/* Check zero linger _after_ checking for unread data. */
|
|
sk->sk_prot->disconnect(sk, 0);
|
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
|
|
} else if (tcp_close_state(sk)) {
|
|
/* We FIN if the application ate all the data before
|
|
* zapping the connection.
|
|
*/
|
|
|
|
/* RED-PEN. Formally speaking, we have broken TCP state
|
|
* machine. State transitions:
|
|
*
|
|
* TCP_ESTABLISHED -> TCP_FIN_WAIT1
|
|
* TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
|
|
* TCP_CLOSE_WAIT -> TCP_LAST_ACK
|
|
*
|
|
* are legal only when FIN has been sent (i.e. in window),
|
|
* rather than queued out of window. Purists blame.
|
|
*
|
|
* F.e. "RFC state" is ESTABLISHED,
|
|
* if Linux state is FIN-WAIT-1, but FIN is still not sent.
|
|
*
|
|
* The visible declinations are that sometimes
|
|
* we enter time-wait state, when it is not required really
|
|
* (harmless), do not send active resets, when they are
|
|
* required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
|
|
* they look as CLOSING or LAST_ACK for Linux)
|
|
* Probably, I missed some more holelets.
|
|
* --ANK
|
|
* XXX (TFO) - To start off we don't support SYN+ACK+FIN
|
|
* in a single packet! (May consider it later but will
|
|
* probably need API support or TCP_CORK SYN-ACK until
|
|
* data is written and socket is closed.)
|
|
*/
|
|
tcp_send_fin(sk);
|
|
}
|
|
|
|
sk_stream_wait_close(sk, timeout);
|
|
|
|
adjudge_to_death:
|
|
state = sk->sk_state;
|
|
sock_hold(sk);
|
|
sock_orphan(sk);
|
|
|
|
local_bh_disable();
|
|
bh_lock_sock(sk);
|
|
/* remove backlog if any, without releasing ownership. */
|
|
__release_sock(sk);
|
|
|
|
this_cpu_inc(tcp_orphan_count);
|
|
|
|
/* Have we already been destroyed by a softirq or backlog? */
|
|
if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
|
|
goto out;
|
|
|
|
/* This is a (useful) BSD violating of the RFC. There is a
|
|
* problem with TCP as specified in that the other end could
|
|
* keep a socket open forever with no application left this end.
|
|
* We use a 1 minute timeout (about the same as BSD) then kill
|
|
* our end. If they send after that then tough - BUT: long enough
|
|
* that we won't make the old 4*rto = almost no time - whoops
|
|
* reset mistake.
|
|
*
|
|
* Nope, it was not mistake. It is really desired behaviour
|
|
* f.e. on http servers, when such sockets are useless, but
|
|
* consume significant resources. Let's do it with special
|
|
* linger2 option. --ANK
|
|
*/
|
|
|
|
if (sk->sk_state == TCP_FIN_WAIT2) {
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
if (READ_ONCE(tp->linger2) < 0) {
|
|
tcp_set_state(sk, TCP_CLOSE);
|
|
tcp_send_active_reset(sk, GFP_ATOMIC);
|
|
__NET_INC_STATS(sock_net(sk),
|
|
LINUX_MIB_TCPABORTONLINGER);
|
|
} else {
|
|
const int tmo = tcp_fin_time(sk);
|
|
|
|
if (tmo > TCP_TIMEWAIT_LEN) {
|
|
inet_csk_reset_keepalive_timer(sk,
|
|
tmo - TCP_TIMEWAIT_LEN);
|
|
} else {
|
|
tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
if (sk->sk_state != TCP_CLOSE) {
|
|
if (tcp_check_oom(sk, 0)) {
|
|
tcp_set_state(sk, TCP_CLOSE);
|
|
tcp_send_active_reset(sk, GFP_ATOMIC);
|
|
__NET_INC_STATS(sock_net(sk),
|
|
LINUX_MIB_TCPABORTONMEMORY);
|
|
} else if (!check_net(sock_net(sk))) {
|
|
/* Not possible to send reset; just close */
|
|
tcp_set_state(sk, TCP_CLOSE);
|
|
}
|
|
}
|
|
|
|
if (sk->sk_state == TCP_CLOSE) {
|
|
struct request_sock *req;
|
|
|
|
req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
|
|
lockdep_sock_is_held(sk));
|
|
/* We could get here with a non-NULL req if the socket is
|
|
* aborted (e.g., closed with unread data) before 3WHS
|
|
* finishes.
|
|
*/
|
|
if (req)
|
|
reqsk_fastopen_remove(sk, req, false);
|
|
inet_csk_destroy_sock(sk);
|
|
}
|
|
/* Otherwise, socket is reprieved until protocol close. */
|
|
|
|
out:
|
|
bh_unlock_sock(sk);
|
|
local_bh_enable();
|
|
}
|
|
|
|
void tcp_close(struct sock *sk, long timeout)
|
|
{
|
|
lock_sock(sk);
|
|
__tcp_close(sk, timeout);
|
|
release_sock(sk);
|
|
sock_put(sk);
|
|
}
|
|
EXPORT_SYMBOL(tcp_close);
|
|
|
|
/* These states need RST on ABORT according to RFC793 */
|
|
|
|
static inline bool tcp_need_reset(int state)
|
|
{
|
|
return (1 << state) &
|
|
(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
|
|
TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
|
|
}
|
|
|
|
static void tcp_rtx_queue_purge(struct sock *sk)
|
|
{
|
|
struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
|
|
|
|
tcp_sk(sk)->highest_sack = NULL;
|
|
while (p) {
|
|
struct sk_buff *skb = rb_to_skb(p);
|
|
|
|
p = rb_next(p);
|
|
/* Since we are deleting whole queue, no need to
|
|
* list_del(&skb->tcp_tsorted_anchor)
|
|
*/
|
|
tcp_rtx_queue_unlink(skb, sk);
|
|
tcp_wmem_free_skb(sk, skb);
|
|
}
|
|
}
|
|
|
|
void tcp_write_queue_purge(struct sock *sk)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
|
|
while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
|
|
tcp_skb_tsorted_anchor_cleanup(skb);
|
|
tcp_wmem_free_skb(sk, skb);
|
|
}
|
|
tcp_rtx_queue_purge(sk);
|
|
INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
|
|
tcp_clear_all_retrans_hints(tcp_sk(sk));
|
|
tcp_sk(sk)->packets_out = 0;
|
|
inet_csk(sk)->icsk_backoff = 0;
|
|
}
|
|
|
|
int tcp_disconnect(struct sock *sk, int flags)
|
|
{
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
int old_state = sk->sk_state;
|
|
u32 seq;
|
|
|
|
if (old_state != TCP_CLOSE)
|
|
tcp_set_state(sk, TCP_CLOSE);
|
|
|
|
/* ABORT function of RFC793 */
|
|
if (old_state == TCP_LISTEN) {
|
|
inet_csk_listen_stop(sk);
|
|
} else if (unlikely(tp->repair)) {
|
|
WRITE_ONCE(sk->sk_err, ECONNABORTED);
|
|
} else if (tcp_need_reset(old_state) ||
|
|
(tp->snd_nxt != tp->write_seq &&
|
|
(1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
|
|
/* The last check adjusts for discrepancy of Linux wrt. RFC
|
|
* states
|
|
*/
|
|
tcp_send_active_reset(sk, gfp_any());
|
|
WRITE_ONCE(sk->sk_err, ECONNRESET);
|
|
} else if (old_state == TCP_SYN_SENT)
|
|
WRITE_ONCE(sk->sk_err, ECONNRESET);
|
|
|
|
tcp_clear_xmit_timers(sk);
|
|
__skb_queue_purge(&sk->sk_receive_queue);
|
|
WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
|
|
WRITE_ONCE(tp->urg_data, 0);
|
|
tcp_write_queue_purge(sk);
|
|
tcp_fastopen_active_disable_ofo_check(sk);
|
|
skb_rbtree_purge(&tp->out_of_order_queue);
|
|
|
|
inet->inet_dport = 0;
|
|
|
|
inet_bhash2_reset_saddr(sk);
|
|
|
|
WRITE_ONCE(sk->sk_shutdown, 0);
|
|
sock_reset_flag(sk, SOCK_DONE);
|
|
tp->srtt_us = 0;
|
|
tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
|
|
tp->rcv_rtt_last_tsecr = 0;
|
|
|
|
seq = tp->write_seq + tp->max_window + 2;
|
|
if (!seq)
|
|
seq = 1;
|
|
WRITE_ONCE(tp->write_seq, seq);
|
|
|
|
icsk->icsk_backoff = 0;
|
|
icsk->icsk_probes_out = 0;
|
|
icsk->icsk_probes_tstamp = 0;
|
|
icsk->icsk_rto = TCP_TIMEOUT_INIT;
|
|
icsk->icsk_rto_min = TCP_RTO_MIN;
|
|
icsk->icsk_delack_max = TCP_DELACK_MAX;
|
|
tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
|
|
tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
|
|
tp->snd_cwnd_cnt = 0;
|
|
tp->is_cwnd_limited = 0;
|
|
tp->max_packets_out = 0;
|
|
tp->window_clamp = 0;
|
|
tp->delivered = 0;
|
|
tp->delivered_ce = 0;
|
|
if (icsk->icsk_ca_ops->release)
|
|
icsk->icsk_ca_ops->release(sk);
|
|
memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
|
|
icsk->icsk_ca_initialized = 0;
|
|
tcp_set_ca_state(sk, TCP_CA_Open);
|
|
tp->is_sack_reneg = 0;
|
|
tcp_clear_retrans(tp);
|
|
tp->total_retrans = 0;
|
|
inet_csk_delack_init(sk);
|
|
/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
|
|
* issue in __tcp_select_window()
|
|
*/
|
|
icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
|
|
memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
|
|
__sk_dst_reset(sk);
|
|
dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
|
|
tcp_saved_syn_free(tp);
|
|
tp->compressed_ack = 0;
|
|
tp->segs_in = 0;
|
|
tp->segs_out = 0;
|
|
tp->bytes_sent = 0;
|
|
tp->bytes_acked = 0;
|
|
tp->bytes_received = 0;
|
|
tp->bytes_retrans = 0;
|
|
tp->data_segs_in = 0;
|
|
tp->data_segs_out = 0;
|
|
tp->duplicate_sack[0].start_seq = 0;
|
|
tp->duplicate_sack[0].end_seq = 0;
|
|
tp->dsack_dups = 0;
|
|
tp->reord_seen = 0;
|
|
tp->retrans_out = 0;
|
|
tp->sacked_out = 0;
|
|
tp->tlp_high_seq = 0;
|
|
tp->last_oow_ack_time = 0;
|
|
tp->plb_rehash = 0;
|
|
/* There's a bubble in the pipe until at least the first ACK. */
|
|
tp->app_limited = ~0U;
|
|
tp->rate_app_limited = 1;
|
|
tp->rack.mstamp = 0;
|
|
tp->rack.advanced = 0;
|
|
tp->rack.reo_wnd_steps = 1;
|
|
tp->rack.last_delivered = 0;
|
|
tp->rack.reo_wnd_persist = 0;
|
|
tp->rack.dsack_seen = 0;
|
|
tp->syn_data_acked = 0;
|
|
tp->rx_opt.saw_tstamp = 0;
|
|
tp->rx_opt.dsack = 0;
|
|
tp->rx_opt.num_sacks = 0;
|
|
tp->rcv_ooopack = 0;
|
|
|
|
|
|
/* Clean up fastopen related fields */
|
|
tcp_free_fastopen_req(tp);
|
|
inet_clear_bit(DEFER_CONNECT, sk);
|
|
tp->fastopen_client_fail = 0;
|
|
|
|
WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
|
|
|
|
if (sk->sk_frag.page) {
|
|
put_page(sk->sk_frag.page);
|
|
sk->sk_frag.page = NULL;
|
|
sk->sk_frag.offset = 0;
|
|
}
|
|
sk_error_report(sk);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tcp_disconnect);
|
|
|
|
static inline bool tcp_can_repair_sock(const struct sock *sk)
|
|
{
|
|
return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
|
|
(sk->sk_state != TCP_LISTEN);
|
|
}
|
|
|
|
static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
|
|
{
|
|
struct tcp_repair_window opt;
|
|
|
|
if (!tp->repair)
|
|
return -EPERM;
|
|
|
|
if (len != sizeof(opt))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
|
|
return -EFAULT;
|
|
|
|
if (opt.max_window < opt.snd_wnd)
|
|
return -EINVAL;
|
|
|
|
if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
|
|
return -EINVAL;
|
|
|
|
if (after(opt.rcv_wup, tp->rcv_nxt))
|
|
return -EINVAL;
|
|
|
|
tp->snd_wl1 = opt.snd_wl1;
|
|
tp->snd_wnd = opt.snd_wnd;
|
|
tp->max_window = opt.max_window;
|
|
|
|
tp->rcv_wnd = opt.rcv_wnd;
|
|
tp->rcv_wup = opt.rcv_wup;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
|
|
unsigned int len)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct tcp_repair_opt opt;
|
|
size_t offset = 0;
|
|
|
|
while (len >= sizeof(opt)) {
|
|
if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
|
|
return -EFAULT;
|
|
|
|
offset += sizeof(opt);
|
|
len -= sizeof(opt);
|
|
|
|
switch (opt.opt_code) {
|
|
case TCPOPT_MSS:
|
|
tp->rx_opt.mss_clamp = opt.opt_val;
|
|
tcp_mtup_init(sk);
|
|
break;
|
|
case TCPOPT_WINDOW:
|
|
{
|
|
u16 snd_wscale = opt.opt_val & 0xFFFF;
|
|
u16 rcv_wscale = opt.opt_val >> 16;
|
|
|
|
if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
|
|
return -EFBIG;
|
|
|
|
tp->rx_opt.snd_wscale = snd_wscale;
|
|
tp->rx_opt.rcv_wscale = rcv_wscale;
|
|
tp->rx_opt.wscale_ok = 1;
|
|
}
|
|
break;
|
|
case TCPOPT_SACK_PERM:
|
|
if (opt.opt_val != 0)
|
|
return -EINVAL;
|
|
|
|
tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
|
|
break;
|
|
case TCPOPT_TIMESTAMP:
|
|
if (opt.opt_val != 0)
|
|
return -EINVAL;
|
|
|
|
tp->rx_opt.tstamp_ok = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
|
|
EXPORT_SYMBOL(tcp_tx_delay_enabled);
|
|
|
|
static void tcp_enable_tx_delay(void)
|
|
{
|
|
if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
|
|
static int __tcp_tx_delay_enabled = 0;
|
|
|
|
if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
|
|
static_branch_enable(&tcp_tx_delay_enabled);
|
|
pr_info("TCP_TX_DELAY enabled\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* When set indicates to always queue non-full frames. Later the user clears
|
|
* this option and we transmit any pending partial frames in the queue. This is
|
|
* meant to be used alongside sendfile() to get properly filled frames when the
|
|
* user (for example) must write out headers with a write() call first and then
|
|
* use sendfile to send out the data parts.
|
|
*
|
|
* TCP_CORK can be set together with TCP_NODELAY and it is stronger than
|
|
* TCP_NODELAY.
|
|
*/
|
|
void __tcp_sock_set_cork(struct sock *sk, bool on)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (on) {
|
|
tp->nonagle |= TCP_NAGLE_CORK;
|
|
} else {
|
|
tp->nonagle &= ~TCP_NAGLE_CORK;
|
|
if (tp->nonagle & TCP_NAGLE_OFF)
|
|
tp->nonagle |= TCP_NAGLE_PUSH;
|
|
tcp_push_pending_frames(sk);
|
|
}
|
|
}
|
|
|
|
void tcp_sock_set_cork(struct sock *sk, bool on)
|
|
{
|
|
lock_sock(sk);
|
|
__tcp_sock_set_cork(sk, on);
|
|
release_sock(sk);
|
|
}
|
|
EXPORT_SYMBOL(tcp_sock_set_cork);
|
|
|
|
/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
|
|
* remembered, but it is not activated until cork is cleared.
|
|
*
|
|
* However, when TCP_NODELAY is set we make an explicit push, which overrides
|
|
* even TCP_CORK for currently queued segments.
|
|
*/
|
|
void __tcp_sock_set_nodelay(struct sock *sk, bool on)
|
|
{
|
|
if (on) {
|
|
tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
|
|
tcp_push_pending_frames(sk);
|
|
} else {
|
|
tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
|
|
}
|
|
}
|
|
|
|
void tcp_sock_set_nodelay(struct sock *sk)
|
|
{
|
|
lock_sock(sk);
|
|
__tcp_sock_set_nodelay(sk, true);
|
|
release_sock(sk);
|
|
}
|
|
EXPORT_SYMBOL(tcp_sock_set_nodelay);
|
|
|
|
static void __tcp_sock_set_quickack(struct sock *sk, int val)
|
|
{
|
|
if (!val) {
|
|
inet_csk_enter_pingpong_mode(sk);
|
|
return;
|
|
}
|
|
|
|
inet_csk_exit_pingpong_mode(sk);
|
|
if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
|
|
inet_csk_ack_scheduled(sk)) {
|
|
inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
|
|
tcp_cleanup_rbuf(sk, 1);
|
|
if (!(val & 1))
|
|
inet_csk_enter_pingpong_mode(sk);
|
|
}
|
|
}
|
|
|
|
void tcp_sock_set_quickack(struct sock *sk, int val)
|
|
{
|
|
lock_sock(sk);
|
|
__tcp_sock_set_quickack(sk, val);
|
|
release_sock(sk);
|
|
}
|
|
EXPORT_SYMBOL(tcp_sock_set_quickack);
|
|
|
|
int tcp_sock_set_syncnt(struct sock *sk, int val)
|
|
{
|
|
if (val < 1 || val > MAX_TCP_SYNCNT)
|
|
return -EINVAL;
|
|
|
|
WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tcp_sock_set_syncnt);
|
|
|
|
int tcp_sock_set_user_timeout(struct sock *sk, int val)
|
|
{
|
|
/* Cap the max time in ms TCP will retry or probe the window
|
|
* before giving up and aborting (ETIMEDOUT) a connection.
|
|
*/
|
|
if (val < 0)
|
|
return -EINVAL;
|
|
|
|
WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tcp_sock_set_user_timeout);
|
|
|
|
int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (val < 1 || val > MAX_TCP_KEEPIDLE)
|
|
return -EINVAL;
|
|
|
|
/* Paired with WRITE_ONCE() in keepalive_time_when() */
|
|
WRITE_ONCE(tp->keepalive_time, val * HZ);
|
|
if (sock_flag(sk, SOCK_KEEPOPEN) &&
|
|
!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
|
|
u32 elapsed = keepalive_time_elapsed(tp);
|
|
|
|
if (tp->keepalive_time > elapsed)
|
|
elapsed = tp->keepalive_time - elapsed;
|
|
else
|
|
elapsed = 0;
|
|
inet_csk_reset_keepalive_timer(sk, elapsed);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int tcp_sock_set_keepidle(struct sock *sk, int val)
|
|
{
|
|
int err;
|
|
|
|
lock_sock(sk);
|
|
err = tcp_sock_set_keepidle_locked(sk, val);
|
|
release_sock(sk);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(tcp_sock_set_keepidle);
|
|
|
|
int tcp_sock_set_keepintvl(struct sock *sk, int val)
|
|
{
|
|
if (val < 1 || val > MAX_TCP_KEEPINTVL)
|
|
return -EINVAL;
|
|
|
|
WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tcp_sock_set_keepintvl);
|
|
|
|
int tcp_sock_set_keepcnt(struct sock *sk, int val)
|
|
{
|
|
if (val < 1 || val > MAX_TCP_KEEPCNT)
|
|
return -EINVAL;
|
|
|
|
/* Paired with READ_ONCE() in keepalive_probes() */
|
|
WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tcp_sock_set_keepcnt);
|
|
|
|
int tcp_set_window_clamp(struct sock *sk, int val)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (!val) {
|
|
if (sk->sk_state != TCP_CLOSE)
|
|
return -EINVAL;
|
|
tp->window_clamp = 0;
|
|
} else {
|
|
tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
|
|
SOCK_MIN_RCVBUF / 2 : val;
|
|
tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Socket option code for TCP.
|
|
*/
|
|
int do_tcp_setsockopt(struct sock *sk, int level, int optname,
|
|
sockptr_t optval, unsigned int optlen)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct net *net = sock_net(sk);
|
|
int val;
|
|
int err = 0;
|
|
|
|
/* These are data/string values, all the others are ints */
|
|
switch (optname) {
|
|
case TCP_CONGESTION: {
|
|
char name[TCP_CA_NAME_MAX];
|
|
|
|
if (optlen < 1)
|
|
return -EINVAL;
|
|
|
|
val = strncpy_from_sockptr(name, optval,
|
|
min_t(long, TCP_CA_NAME_MAX-1, optlen));
|
|
if (val < 0)
|
|
return -EFAULT;
|
|
name[val] = 0;
|
|
|
|
sockopt_lock_sock(sk);
|
|
err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
|
|
sockopt_ns_capable(sock_net(sk)->user_ns,
|
|
CAP_NET_ADMIN));
|
|
sockopt_release_sock(sk);
|
|
return err;
|
|
}
|
|
case TCP_ULP: {
|
|
char name[TCP_ULP_NAME_MAX];
|
|
|
|
if (optlen < 1)
|
|
return -EINVAL;
|
|
|
|
val = strncpy_from_sockptr(name, optval,
|
|
min_t(long, TCP_ULP_NAME_MAX - 1,
|
|
optlen));
|
|
if (val < 0)
|
|
return -EFAULT;
|
|
name[val] = 0;
|
|
|
|
sockopt_lock_sock(sk);
|
|
err = tcp_set_ulp(sk, name);
|
|
sockopt_release_sock(sk);
|
|
return err;
|
|
}
|
|
case TCP_FASTOPEN_KEY: {
|
|
__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
|
|
__u8 *backup_key = NULL;
|
|
|
|
/* Allow a backup key as well to facilitate key rotation
|
|
* First key is the active one.
|
|
*/
|
|
if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
|
|
optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
|
|
return -EINVAL;
|
|
|
|
if (copy_from_sockptr(key, optval, optlen))
|
|
return -EFAULT;
|
|
|
|
if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
|
|
backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
|
|
|
|
return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
|
|
}
|
|
default:
|
|
/* fallthru */
|
|
break;
|
|
}
|
|
|
|
if (optlen < sizeof(int))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_sockptr(&val, optval, sizeof(val)))
|
|
return -EFAULT;
|
|
|
|
/* Handle options that can be set without locking the socket. */
|
|
switch (optname) {
|
|
case TCP_SYNCNT:
|
|
return tcp_sock_set_syncnt(sk, val);
|
|
case TCP_USER_TIMEOUT:
|
|
return tcp_sock_set_user_timeout(sk, val);
|
|
case TCP_KEEPINTVL:
|
|
return tcp_sock_set_keepintvl(sk, val);
|
|
case TCP_KEEPCNT:
|
|
return tcp_sock_set_keepcnt(sk, val);
|
|
case TCP_LINGER2:
|
|
if (val < 0)
|
|
WRITE_ONCE(tp->linger2, -1);
|
|
else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
|
|
WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
|
|
else
|
|
WRITE_ONCE(tp->linger2, val * HZ);
|
|
return 0;
|
|
case TCP_DEFER_ACCEPT:
|
|
/* Translate value in seconds to number of retransmits */
|
|
WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
|
|
secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
|
|
TCP_RTO_MAX / HZ));
|
|
return 0;
|
|
}
|
|
|
|
sockopt_lock_sock(sk);
|
|
|
|
switch (optname) {
|
|
case TCP_MAXSEG:
|
|
/* Values greater than interface MTU won't take effect. However
|
|
* at the point when this call is done we typically don't yet
|
|
* know which interface is going to be used
|
|
*/
|
|
if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
tp->rx_opt.user_mss = val;
|
|
break;
|
|
|
|
case TCP_NODELAY:
|
|
__tcp_sock_set_nodelay(sk, val);
|
|
break;
|
|
|
|
case TCP_THIN_LINEAR_TIMEOUTS:
|
|
if (val < 0 || val > 1)
|
|
err = -EINVAL;
|
|
else
|
|
tp->thin_lto = val;
|
|
break;
|
|
|
|
case TCP_THIN_DUPACK:
|
|
if (val < 0 || val > 1)
|
|
err = -EINVAL;
|
|
break;
|
|
|
|
case TCP_REPAIR:
|
|
if (!tcp_can_repair_sock(sk))
|
|
err = -EPERM;
|
|
else if (val == TCP_REPAIR_ON) {
|
|
tp->repair = 1;
|
|
sk->sk_reuse = SK_FORCE_REUSE;
|
|
tp->repair_queue = TCP_NO_QUEUE;
|
|
} else if (val == TCP_REPAIR_OFF) {
|
|
tp->repair = 0;
|
|
sk->sk_reuse = SK_NO_REUSE;
|
|
tcp_send_window_probe(sk);
|
|
} else if (val == TCP_REPAIR_OFF_NO_WP) {
|
|
tp->repair = 0;
|
|
sk->sk_reuse = SK_NO_REUSE;
|
|
} else
|
|
err = -EINVAL;
|
|
|
|
break;
|
|
|
|
case TCP_REPAIR_QUEUE:
|
|
if (!tp->repair)
|
|
err = -EPERM;
|
|
else if ((unsigned int)val < TCP_QUEUES_NR)
|
|
tp->repair_queue = val;
|
|
else
|
|
err = -EINVAL;
|
|
break;
|
|
|
|
case TCP_QUEUE_SEQ:
|
|
if (sk->sk_state != TCP_CLOSE) {
|
|
err = -EPERM;
|
|
} else if (tp->repair_queue == TCP_SEND_QUEUE) {
|
|
if (!tcp_rtx_queue_empty(sk))
|
|
err = -EPERM;
|
|
else
|
|
WRITE_ONCE(tp->write_seq, val);
|
|
} else if (tp->repair_queue == TCP_RECV_QUEUE) {
|
|
if (tp->rcv_nxt != tp->copied_seq) {
|
|
err = -EPERM;
|
|
} else {
|
|
WRITE_ONCE(tp->rcv_nxt, val);
|
|
WRITE_ONCE(tp->copied_seq, val);
|
|
}
|
|
} else {
|
|
err = -EINVAL;
|
|
}
|
|
break;
|
|
|
|
case TCP_REPAIR_OPTIONS:
|
|
if (!tp->repair)
|
|
err = -EINVAL;
|
|
else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
|
|
err = tcp_repair_options_est(sk, optval, optlen);
|
|
else
|
|
err = -EPERM;
|
|
break;
|
|
|
|
case TCP_CORK:
|
|
__tcp_sock_set_cork(sk, val);
|
|
break;
|
|
|
|
case TCP_KEEPIDLE:
|
|
err = tcp_sock_set_keepidle_locked(sk, val);
|
|
break;
|
|
case TCP_SAVE_SYN:
|
|
/* 0: disable, 1: enable, 2: start from ether_header */
|
|
if (val < 0 || val > 2)
|
|
err = -EINVAL;
|
|
else
|
|
tp->save_syn = val;
|
|
break;
|
|
|
|
case TCP_WINDOW_CLAMP:
|
|
err = tcp_set_window_clamp(sk, val);
|
|
break;
|
|
|
|
case TCP_QUICKACK:
|
|
__tcp_sock_set_quickack(sk, val);
|
|
break;
|
|
|
|
case TCP_AO_REPAIR:
|
|
err = tcp_ao_set_repair(sk, optval, optlen);
|
|
break;
|
|
#ifdef CONFIG_TCP_AO
|
|
case TCP_AO_ADD_KEY:
|
|
case TCP_AO_DEL_KEY:
|
|
case TCP_AO_INFO: {
|
|
/* If this is the first TCP-AO setsockopt() on the socket,
|
|
* sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
|
|
* in any state.
|
|
*/
|
|
if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
|
|
goto ao_parse;
|
|
if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
|
|
lockdep_sock_is_held(sk)))
|
|
goto ao_parse;
|
|
if (tp->repair)
|
|
goto ao_parse;
|
|
err = -EISCONN;
|
|
break;
|
|
ao_parse:
|
|
err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
case TCP_MD5SIG:
|
|
case TCP_MD5SIG_EXT:
|
|
err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
|
|
break;
|
|
#endif
|
|
case TCP_FASTOPEN:
|
|
if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
|
|
TCPF_LISTEN))) {
|
|
tcp_fastopen_init_key_once(net);
|
|
|
|
fastopen_queue_tune(sk, val);
|
|
} else {
|
|
err = -EINVAL;
|
|
}
|
|
break;
|
|
case TCP_FASTOPEN_CONNECT:
|
|
if (val > 1 || val < 0) {
|
|
err = -EINVAL;
|
|
} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
|
|
TFO_CLIENT_ENABLE) {
|
|
if (sk->sk_state == TCP_CLOSE)
|
|
tp->fastopen_connect = val;
|
|
else
|
|
err = -EINVAL;
|
|
} else {
|
|
err = -EOPNOTSUPP;
|
|
}
|
|
break;
|
|
case TCP_FASTOPEN_NO_COOKIE:
|
|
if (val > 1 || val < 0)
|
|
err = -EINVAL;
|
|
else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
|
|
err = -EINVAL;
|
|
else
|
|
tp->fastopen_no_cookie = val;
|
|
break;
|
|
case TCP_TIMESTAMP:
|
|
if (!tp->repair) {
|
|
err = -EPERM;
|
|
break;
|
|
}
|
|
/* val is an opaque field,
|
|
* and low order bit contains usec_ts enable bit.
|
|
* Its a best effort, and we do not care if user makes an error.
|
|
*/
|
|
tp->tcp_usec_ts = val & 1;
|
|
WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
|
|
break;
|
|
case TCP_REPAIR_WINDOW:
|
|
err = tcp_repair_set_window(tp, optval, optlen);
|
|
break;
|
|
case TCP_NOTSENT_LOWAT:
|
|
WRITE_ONCE(tp->notsent_lowat, val);
|
|
sk->sk_write_space(sk);
|
|
break;
|
|
case TCP_INQ:
|
|
if (val > 1 || val < 0)
|
|
err = -EINVAL;
|
|
else
|
|
tp->recvmsg_inq = val;
|
|
break;
|
|
case TCP_TX_DELAY:
|
|
if (val)
|
|
tcp_enable_tx_delay();
|
|
WRITE_ONCE(tp->tcp_tx_delay, val);
|
|
break;
|
|
default:
|
|
err = -ENOPROTOOPT;
|
|
break;
|
|
}
|
|
|
|
sockopt_release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
|
|
unsigned int optlen)
|
|
{
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
if (level != SOL_TCP)
|
|
/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
|
|
return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
|
|
optval, optlen);
|
|
return do_tcp_setsockopt(sk, level, optname, optval, optlen);
|
|
}
|
|
EXPORT_SYMBOL(tcp_setsockopt);
|
|
|
|
static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
|
|
struct tcp_info *info)
|
|
{
|
|
u64 stats[__TCP_CHRONO_MAX], total = 0;
|
|
enum tcp_chrono i;
|
|
|
|
for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
|
|
stats[i] = tp->chrono_stat[i - 1];
|
|
if (i == tp->chrono_type)
|
|
stats[i] += tcp_jiffies32 - tp->chrono_start;
|
|
stats[i] *= USEC_PER_SEC / HZ;
|
|
total += stats[i];
|
|
}
|
|
|
|
info->tcpi_busy_time = total;
|
|
info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
|
|
info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
|
|
}
|
|
|
|
/* Return information about state of tcp endpoint in API format. */
|
|
void tcp_get_info(struct sock *sk, struct tcp_info *info)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
unsigned long rate;
|
|
u32 now;
|
|
u64 rate64;
|
|
bool slow;
|
|
|
|
memset(info, 0, sizeof(*info));
|
|
if (sk->sk_type != SOCK_STREAM)
|
|
return;
|
|
|
|
info->tcpi_state = inet_sk_state_load(sk);
|
|
|
|
/* Report meaningful fields for all TCP states, including listeners */
|
|
rate = READ_ONCE(sk->sk_pacing_rate);
|
|
rate64 = (rate != ~0UL) ? rate : ~0ULL;
|
|
info->tcpi_pacing_rate = rate64;
|
|
|
|
rate = READ_ONCE(sk->sk_max_pacing_rate);
|
|
rate64 = (rate != ~0UL) ? rate : ~0ULL;
|
|
info->tcpi_max_pacing_rate = rate64;
|
|
|
|
info->tcpi_reordering = tp->reordering;
|
|
info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
|
|
|
|
if (info->tcpi_state == TCP_LISTEN) {
|
|
/* listeners aliased fields :
|
|
* tcpi_unacked -> Number of children ready for accept()
|
|
* tcpi_sacked -> max backlog
|
|
*/
|
|
info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
|
|
info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
|
|
return;
|
|
}
|
|
|
|
slow = lock_sock_fast(sk);
|
|
|
|
info->tcpi_ca_state = icsk->icsk_ca_state;
|
|
info->tcpi_retransmits = icsk->icsk_retransmits;
|
|
info->tcpi_probes = icsk->icsk_probes_out;
|
|
info->tcpi_backoff = icsk->icsk_backoff;
|
|
|
|
if (tp->rx_opt.tstamp_ok)
|
|
info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
|
|
if (tcp_is_sack(tp))
|
|
info->tcpi_options |= TCPI_OPT_SACK;
|
|
if (tp->rx_opt.wscale_ok) {
|
|
info->tcpi_options |= TCPI_OPT_WSCALE;
|
|
info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
|
|
info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
|
|
}
|
|
|
|
if (tp->ecn_flags & TCP_ECN_OK)
|
|
info->tcpi_options |= TCPI_OPT_ECN;
|
|
if (tp->ecn_flags & TCP_ECN_SEEN)
|
|
info->tcpi_options |= TCPI_OPT_ECN_SEEN;
|
|
if (tp->syn_data_acked)
|
|
info->tcpi_options |= TCPI_OPT_SYN_DATA;
|
|
if (tp->tcp_usec_ts)
|
|
info->tcpi_options |= TCPI_OPT_USEC_TS;
|
|
|
|
info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
|
|
info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
|
|
tcp_delack_max(sk)));
|
|
info->tcpi_snd_mss = tp->mss_cache;
|
|
info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
|
|
|
|
info->tcpi_unacked = tp->packets_out;
|
|
info->tcpi_sacked = tp->sacked_out;
|
|
|
|
info->tcpi_lost = tp->lost_out;
|
|
info->tcpi_retrans = tp->retrans_out;
|
|
|
|
now = tcp_jiffies32;
|
|
info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
|
|
info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
|
|
info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
|
|
|
|
info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
|
|
info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
|
|
info->tcpi_rtt = tp->srtt_us >> 3;
|
|
info->tcpi_rttvar = tp->mdev_us >> 2;
|
|
info->tcpi_snd_ssthresh = tp->snd_ssthresh;
|
|
info->tcpi_advmss = tp->advmss;
|
|
|
|
info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
|
|
info->tcpi_rcv_space = tp->rcvq_space.space;
|
|
|
|
info->tcpi_total_retrans = tp->total_retrans;
|
|
|
|
info->tcpi_bytes_acked = tp->bytes_acked;
|
|
info->tcpi_bytes_received = tp->bytes_received;
|
|
info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
|
|
tcp_get_info_chrono_stats(tp, info);
|
|
|
|
info->tcpi_segs_out = tp->segs_out;
|
|
|
|
/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
|
|
info->tcpi_segs_in = READ_ONCE(tp->segs_in);
|
|
info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
|
|
|
|
info->tcpi_min_rtt = tcp_min_rtt(tp);
|
|
info->tcpi_data_segs_out = tp->data_segs_out;
|
|
|
|
info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
|
|
rate64 = tcp_compute_delivery_rate(tp);
|
|
if (rate64)
|
|
info->tcpi_delivery_rate = rate64;
|
|
info->tcpi_delivered = tp->delivered;
|
|
info->tcpi_delivered_ce = tp->delivered_ce;
|
|
info->tcpi_bytes_sent = tp->bytes_sent;
|
|
info->tcpi_bytes_retrans = tp->bytes_retrans;
|
|
info->tcpi_dsack_dups = tp->dsack_dups;
|
|
info->tcpi_reord_seen = tp->reord_seen;
|
|
info->tcpi_rcv_ooopack = tp->rcv_ooopack;
|
|
info->tcpi_snd_wnd = tp->snd_wnd;
|
|
info->tcpi_rcv_wnd = tp->rcv_wnd;
|
|
info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
|
|
info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
|
|
|
|
info->tcpi_total_rto = tp->total_rto;
|
|
info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
|
|
info->tcpi_total_rto_time = tp->total_rto_time;
|
|
if (tp->rto_stamp)
|
|
info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
|
|
|
|
unlock_sock_fast(sk, slow);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tcp_get_info);
|
|
|
|
static size_t tcp_opt_stats_get_size(void)
|
|
{
|
|
return
|
|
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
|
|
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
|
|
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
|
|
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
|
|
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
|
|
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
|
|
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
|
|
nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
|
|
nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
|
|
nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
|
|
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
|
|
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
|
|
nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
|
|
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
|
|
nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
|
|
nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
|
|
0;
|
|
}
|
|
|
|
/* Returns TTL or hop limit of an incoming packet from skb. */
|
|
static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
|
|
{
|
|
if (skb->protocol == htons(ETH_P_IP))
|
|
return ip_hdr(skb)->ttl;
|
|
else if (skb->protocol == htons(ETH_P_IPV6))
|
|
return ipv6_hdr(skb)->hop_limit;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
|
|
const struct sk_buff *orig_skb,
|
|
const struct sk_buff *ack_skb)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *stats;
|
|
struct tcp_info info;
|
|
unsigned long rate;
|
|
u64 rate64;
|
|
|
|
stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
|
|
if (!stats)
|
|
return NULL;
|
|
|
|
tcp_get_info_chrono_stats(tp, &info);
|
|
nla_put_u64_64bit(stats, TCP_NLA_BUSY,
|
|
info.tcpi_busy_time, TCP_NLA_PAD);
|
|
nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
|
|
info.tcpi_rwnd_limited, TCP_NLA_PAD);
|
|
nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
|
|
info.tcpi_sndbuf_limited, TCP_NLA_PAD);
|
|
nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
|
|
tp->data_segs_out, TCP_NLA_PAD);
|
|
nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
|
|
tp->total_retrans, TCP_NLA_PAD);
|
|
|
|
rate = READ_ONCE(sk->sk_pacing_rate);
|
|
rate64 = (rate != ~0UL) ? rate : ~0ULL;
|
|
nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
|
|
|
|
rate64 = tcp_compute_delivery_rate(tp);
|
|
nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
|
|
|
|
nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
|
|
nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
|
|
nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
|
|
|
|
nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
|
|
nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
|
|
nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
|
|
nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
|
|
nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
|
|
|
|
nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
|
|
nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
|
|
|
|
nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
|
|
TCP_NLA_PAD);
|
|
nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
|
|
TCP_NLA_PAD);
|
|
nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
|
|
nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
|
|
nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
|
|
nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
|
|
nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
|
|
max_t(int, 0, tp->write_seq - tp->snd_nxt));
|
|
nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
|
|
TCP_NLA_PAD);
|
|
if (ack_skb)
|
|
nla_put_u8(stats, TCP_NLA_TTL,
|
|
tcp_skb_ttl_or_hop_limit(ack_skb));
|
|
|
|
nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
|
|
return stats;
|
|
}
|
|
|
|
int do_tcp_getsockopt(struct sock *sk, int level,
|
|
int optname, sockptr_t optval, sockptr_t optlen)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct net *net = sock_net(sk);
|
|
int val, len;
|
|
|
|
if (copy_from_sockptr(&len, optlen, sizeof(int)))
|
|
return -EFAULT;
|
|
|
|
len = min_t(unsigned int, len, sizeof(int));
|
|
|
|
if (len < 0)
|
|
return -EINVAL;
|
|
|
|
switch (optname) {
|
|
case TCP_MAXSEG:
|
|
val = tp->mss_cache;
|
|
if (tp->rx_opt.user_mss &&
|
|
((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
|
|
val = tp->rx_opt.user_mss;
|
|
if (tp->repair)
|
|
val = tp->rx_opt.mss_clamp;
|
|
break;
|
|
case TCP_NODELAY:
|
|
val = !!(tp->nonagle&TCP_NAGLE_OFF);
|
|
break;
|
|
case TCP_CORK:
|
|
val = !!(tp->nonagle&TCP_NAGLE_CORK);
|
|
break;
|
|
case TCP_KEEPIDLE:
|
|
val = keepalive_time_when(tp) / HZ;
|
|
break;
|
|
case TCP_KEEPINTVL:
|
|
val = keepalive_intvl_when(tp) / HZ;
|
|
break;
|
|
case TCP_KEEPCNT:
|
|
val = keepalive_probes(tp);
|
|
break;
|
|
case TCP_SYNCNT:
|
|
val = READ_ONCE(icsk->icsk_syn_retries) ? :
|
|
READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
|
|
break;
|
|
case TCP_LINGER2:
|
|
val = READ_ONCE(tp->linger2);
|
|
if (val >= 0)
|
|
val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
|
|
break;
|
|
case TCP_DEFER_ACCEPT:
|
|
val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
|
|
val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
|
|
TCP_RTO_MAX / HZ);
|
|
break;
|
|
case TCP_WINDOW_CLAMP:
|
|
val = tp->window_clamp;
|
|
break;
|
|
case TCP_INFO: {
|
|
struct tcp_info info;
|
|
|
|
if (copy_from_sockptr(&len, optlen, sizeof(int)))
|
|
return -EFAULT;
|
|
|
|
tcp_get_info(sk, &info);
|
|
|
|
len = min_t(unsigned int, len, sizeof(info));
|
|
if (copy_to_sockptr(optlen, &len, sizeof(int)))
|
|
return -EFAULT;
|
|
if (copy_to_sockptr(optval, &info, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case TCP_CC_INFO: {
|
|
const struct tcp_congestion_ops *ca_ops;
|
|
union tcp_cc_info info;
|
|
size_t sz = 0;
|
|
int attr;
|
|
|
|
if (copy_from_sockptr(&len, optlen, sizeof(int)))
|
|
return -EFAULT;
|
|
|
|
ca_ops = icsk->icsk_ca_ops;
|
|
if (ca_ops && ca_ops->get_info)
|
|
sz = ca_ops->get_info(sk, ~0U, &attr, &info);
|
|
|
|
len = min_t(unsigned int, len, sz);
|
|
if (copy_to_sockptr(optlen, &len, sizeof(int)))
|
|
return -EFAULT;
|
|
if (copy_to_sockptr(optval, &info, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case TCP_QUICKACK:
|
|
val = !inet_csk_in_pingpong_mode(sk);
|
|
break;
|
|
|
|
case TCP_CONGESTION:
|
|
if (copy_from_sockptr(&len, optlen, sizeof(int)))
|
|
return -EFAULT;
|
|
len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
|
|
if (copy_to_sockptr(optlen, &len, sizeof(int)))
|
|
return -EFAULT;
|
|
if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
|
|
case TCP_ULP:
|
|
if (copy_from_sockptr(&len, optlen, sizeof(int)))
|
|
return -EFAULT;
|
|
len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
|
|
if (!icsk->icsk_ulp_ops) {
|
|
len = 0;
|
|
if (copy_to_sockptr(optlen, &len, sizeof(int)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
if (copy_to_sockptr(optlen, &len, sizeof(int)))
|
|
return -EFAULT;
|
|
if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
|
|
case TCP_FASTOPEN_KEY: {
|
|
u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
|
|
unsigned int key_len;
|
|
|
|
if (copy_from_sockptr(&len, optlen, sizeof(int)))
|
|
return -EFAULT;
|
|
|
|
key_len = tcp_fastopen_get_cipher(net, icsk, key) *
|
|
TCP_FASTOPEN_KEY_LENGTH;
|
|
len = min_t(unsigned int, len, key_len);
|
|
if (copy_to_sockptr(optlen, &len, sizeof(int)))
|
|
return -EFAULT;
|
|
if (copy_to_sockptr(optval, key, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case TCP_THIN_LINEAR_TIMEOUTS:
|
|
val = tp->thin_lto;
|
|
break;
|
|
|
|
case TCP_THIN_DUPACK:
|
|
val = 0;
|
|
break;
|
|
|
|
case TCP_REPAIR:
|
|
val = tp->repair;
|
|
break;
|
|
|
|
case TCP_REPAIR_QUEUE:
|
|
if (tp->repair)
|
|
val = tp->repair_queue;
|
|
else
|
|
return -EINVAL;
|
|
break;
|
|
|
|
case TCP_REPAIR_WINDOW: {
|
|
struct tcp_repair_window opt;
|
|
|
|
if (copy_from_sockptr(&len, optlen, sizeof(int)))
|
|
return -EFAULT;
|
|
|
|
if (len != sizeof(opt))
|
|
return -EINVAL;
|
|
|
|
if (!tp->repair)
|
|
return -EPERM;
|
|
|
|
opt.snd_wl1 = tp->snd_wl1;
|
|
opt.snd_wnd = tp->snd_wnd;
|
|
opt.max_window = tp->max_window;
|
|
opt.rcv_wnd = tp->rcv_wnd;
|
|
opt.rcv_wup = tp->rcv_wup;
|
|
|
|
if (copy_to_sockptr(optval, &opt, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case TCP_QUEUE_SEQ:
|
|
if (tp->repair_queue == TCP_SEND_QUEUE)
|
|
val = tp->write_seq;
|
|
else if (tp->repair_queue == TCP_RECV_QUEUE)
|
|
val = tp->rcv_nxt;
|
|
else
|
|
return -EINVAL;
|
|
break;
|
|
|
|
case TCP_USER_TIMEOUT:
|
|
val = READ_ONCE(icsk->icsk_user_timeout);
|
|
break;
|
|
|
|
case TCP_FASTOPEN:
|
|
val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
|
|
break;
|
|
|
|
case TCP_FASTOPEN_CONNECT:
|
|
val = tp->fastopen_connect;
|
|
break;
|
|
|
|
case TCP_FASTOPEN_NO_COOKIE:
|
|
val = tp->fastopen_no_cookie;
|
|
break;
|
|
|
|
case TCP_TX_DELAY:
|
|
val = READ_ONCE(tp->tcp_tx_delay);
|
|
break;
|
|
|
|
case TCP_TIMESTAMP:
|
|
val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
|
|
if (tp->tcp_usec_ts)
|
|
val |= 1;
|
|
else
|
|
val &= ~1;
|
|
break;
|
|
case TCP_NOTSENT_LOWAT:
|
|
val = READ_ONCE(tp->notsent_lowat);
|
|
break;
|
|
case TCP_INQ:
|
|
val = tp->recvmsg_inq;
|
|
break;
|
|
case TCP_SAVE_SYN:
|
|
val = tp->save_syn;
|
|
break;
|
|
case TCP_SAVED_SYN: {
|
|
if (copy_from_sockptr(&len, optlen, sizeof(int)))
|
|
return -EFAULT;
|
|
|
|
sockopt_lock_sock(sk);
|
|
if (tp->saved_syn) {
|
|
if (len < tcp_saved_syn_len(tp->saved_syn)) {
|
|
len = tcp_saved_syn_len(tp->saved_syn);
|
|
if (copy_to_sockptr(optlen, &len, sizeof(int))) {
|
|
sockopt_release_sock(sk);
|
|
return -EFAULT;
|
|
}
|
|
sockopt_release_sock(sk);
|
|
return -EINVAL;
|
|
}
|
|
len = tcp_saved_syn_len(tp->saved_syn);
|
|
if (copy_to_sockptr(optlen, &len, sizeof(int))) {
|
|
sockopt_release_sock(sk);
|
|
return -EFAULT;
|
|
}
|
|
if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
|
|
sockopt_release_sock(sk);
|
|
return -EFAULT;
|
|
}
|
|
tcp_saved_syn_free(tp);
|
|
sockopt_release_sock(sk);
|
|
} else {
|
|
sockopt_release_sock(sk);
|
|
len = 0;
|
|
if (copy_to_sockptr(optlen, &len, sizeof(int)))
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
#ifdef CONFIG_MMU
|
|
case TCP_ZEROCOPY_RECEIVE: {
|
|
struct scm_timestamping_internal tss;
|
|
struct tcp_zerocopy_receive zc = {};
|
|
int err;
|
|
|
|
if (copy_from_sockptr(&len, optlen, sizeof(int)))
|
|
return -EFAULT;
|
|
if (len < 0 ||
|
|
len < offsetofend(struct tcp_zerocopy_receive, length))
|
|
return -EINVAL;
|
|
if (unlikely(len > sizeof(zc))) {
|
|
err = check_zeroed_sockptr(optval, sizeof(zc),
|
|
len - sizeof(zc));
|
|
if (err < 1)
|
|
return err == 0 ? -EINVAL : err;
|
|
len = sizeof(zc);
|
|
if (copy_to_sockptr(optlen, &len, sizeof(int)))
|
|
return -EFAULT;
|
|
}
|
|
if (copy_from_sockptr(&zc, optval, len))
|
|
return -EFAULT;
|
|
if (zc.reserved)
|
|
return -EINVAL;
|
|
if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
|
|
return -EINVAL;
|
|
sockopt_lock_sock(sk);
|
|
err = tcp_zerocopy_receive(sk, &zc, &tss);
|
|
err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
|
|
&zc, &len, err);
|
|
sockopt_release_sock(sk);
|
|
if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
|
|
goto zerocopy_rcv_cmsg;
|
|
switch (len) {
|
|
case offsetofend(struct tcp_zerocopy_receive, msg_flags):
|
|
goto zerocopy_rcv_cmsg;
|
|
case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
|
|
case offsetofend(struct tcp_zerocopy_receive, msg_control):
|
|
case offsetofend(struct tcp_zerocopy_receive, flags):
|
|
case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
|
|
case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
|
|
case offsetofend(struct tcp_zerocopy_receive, err):
|
|
goto zerocopy_rcv_sk_err;
|
|
case offsetofend(struct tcp_zerocopy_receive, inq):
|
|
goto zerocopy_rcv_inq;
|
|
case offsetofend(struct tcp_zerocopy_receive, length):
|
|
default:
|
|
goto zerocopy_rcv_out;
|
|
}
|
|
zerocopy_rcv_cmsg:
|
|
if (zc.msg_flags & TCP_CMSG_TS)
|
|
tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
|
|
else
|
|
zc.msg_flags = 0;
|
|
zerocopy_rcv_sk_err:
|
|
if (!err)
|
|
zc.err = sock_error(sk);
|
|
zerocopy_rcv_inq:
|
|
zc.inq = tcp_inq_hint(sk);
|
|
zerocopy_rcv_out:
|
|
if (!err && copy_to_sockptr(optval, &zc, len))
|
|
err = -EFAULT;
|
|
return err;
|
|
}
|
|
#endif
|
|
case TCP_AO_REPAIR:
|
|
return tcp_ao_get_repair(sk, optval, optlen);
|
|
case TCP_AO_GET_KEYS:
|
|
case TCP_AO_INFO: {
|
|
int err;
|
|
|
|
sockopt_lock_sock(sk);
|
|
if (optname == TCP_AO_GET_KEYS)
|
|
err = tcp_ao_get_mkts(sk, optval, optlen);
|
|
else
|
|
err = tcp_ao_get_sock_info(sk, optval, optlen);
|
|
sockopt_release_sock(sk);
|
|
|
|
return err;
|
|
}
|
|
default:
|
|
return -ENOPROTOOPT;
|
|
}
|
|
|
|
if (copy_to_sockptr(optlen, &len, sizeof(int)))
|
|
return -EFAULT;
|
|
if (copy_to_sockptr(optval, &val, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
bool tcp_bpf_bypass_getsockopt(int level, int optname)
|
|
{
|
|
/* TCP do_tcp_getsockopt has optimized getsockopt implementation
|
|
* to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
|
|
*/
|
|
if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
|
|
|
|
int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
|
|
int __user *optlen)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
if (level != SOL_TCP)
|
|
/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
|
|
return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
|
|
optval, optlen);
|
|
return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
|
|
USER_SOCKPTR(optlen));
|
|
}
|
|
EXPORT_SYMBOL(tcp_getsockopt);
|
|
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
int tcp_md5_sigpool_id = -1;
|
|
EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
|
|
|
|
int tcp_md5_alloc_sigpool(void)
|
|
{
|
|
size_t scratch_size;
|
|
int ret;
|
|
|
|
scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
|
|
ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
|
|
if (ret >= 0) {
|
|
/* As long as any md5 sigpool was allocated, the return
|
|
* id would stay the same. Re-write the id only for the case
|
|
* when previously all MD5 keys were deleted and this call
|
|
* allocates the first MD5 key, which may return a different
|
|
* sigpool id than was used previously.
|
|
*/
|
|
WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
|
|
return 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void tcp_md5_release_sigpool(void)
|
|
{
|
|
tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
|
|
}
|
|
|
|
void tcp_md5_add_sigpool(void)
|
|
{
|
|
tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
|
|
}
|
|
|
|
int tcp_md5_hash_key(struct tcp_sigpool *hp,
|
|
const struct tcp_md5sig_key *key)
|
|
{
|
|
u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
|
|
struct scatterlist sg;
|
|
|
|
sg_init_one(&sg, key->key, keylen);
|
|
ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
|
|
|
|
/* We use data_race() because tcp_md5_do_add() might change
|
|
* key->key under us
|
|
*/
|
|
return data_race(crypto_ahash_update(hp->req));
|
|
}
|
|
EXPORT_SYMBOL(tcp_md5_hash_key);
|
|
|
|
/* Called with rcu_read_lock() */
|
|
enum skb_drop_reason
|
|
tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
|
|
const void *saddr, const void *daddr,
|
|
int family, int l3index, const __u8 *hash_location)
|
|
{
|
|
/* This gets called for each TCP segment that has TCP-MD5 option.
|
|
* We have 3 drop cases:
|
|
* o No MD5 hash and one expected.
|
|
* o MD5 hash and we're not expecting one.
|
|
* o MD5 hash and its wrong.
|
|
*/
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
struct tcp_md5sig_key *key;
|
|
u8 newhash[16];
|
|
int genhash;
|
|
|
|
key = tcp_md5_do_lookup(sk, l3index, saddr, family);
|
|
|
|
if (!key && hash_location) {
|
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
|
|
tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
|
|
return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
|
|
}
|
|
|
|
/* Check the signature.
|
|
* To support dual stack listeners, we need to handle
|
|
* IPv4-mapped case.
|
|
*/
|
|
if (family == AF_INET)
|
|
genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
|
|
else
|
|
genhash = tp->af_specific->calc_md5_hash(newhash, key,
|
|
NULL, skb);
|
|
if (genhash || memcmp(hash_location, newhash, 16) != 0) {
|
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
|
|
if (family == AF_INET) {
|
|
tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
|
|
genhash ? "tcp_v4_calc_md5_hash failed"
|
|
: "", l3index);
|
|
} else {
|
|
if (genhash) {
|
|
tcp_hash_fail("MD5 Hash failed",
|
|
AF_INET6, skb, "L3 index %d",
|
|
l3index);
|
|
} else {
|
|
tcp_hash_fail("MD5 Hash mismatch",
|
|
AF_INET6, skb, "L3 index %d",
|
|
l3index);
|
|
}
|
|
}
|
|
return SKB_DROP_REASON_TCP_MD5FAILURE;
|
|
}
|
|
return SKB_NOT_DROPPED_YET;
|
|
}
|
|
EXPORT_SYMBOL(tcp_inbound_md5_hash);
|
|
|
|
#endif
|
|
|
|
void tcp_done(struct sock *sk)
|
|
{
|
|
struct request_sock *req;
|
|
|
|
/* We might be called with a new socket, after
|
|
* inet_csk_prepare_forced_close() has been called
|
|
* so we can not use lockdep_sock_is_held(sk)
|
|
*/
|
|
req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
|
|
|
|
if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
|
|
TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
|
|
|
|
tcp_set_state(sk, TCP_CLOSE);
|
|
tcp_clear_xmit_timers(sk);
|
|
if (req)
|
|
reqsk_fastopen_remove(sk, req, false);
|
|
|
|
WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
|
|
|
|
if (!sock_flag(sk, SOCK_DEAD))
|
|
sk->sk_state_change(sk);
|
|
else
|
|
inet_csk_destroy_sock(sk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tcp_done);
|
|
|
|
int tcp_abort(struct sock *sk, int err)
|
|
{
|
|
int state = inet_sk_state_load(sk);
|
|
|
|
if (state == TCP_NEW_SYN_RECV) {
|
|
struct request_sock *req = inet_reqsk(sk);
|
|
|
|
local_bh_disable();
|
|
inet_csk_reqsk_queue_drop(req->rsk_listener, req);
|
|
local_bh_enable();
|
|
return 0;
|
|
}
|
|
if (state == TCP_TIME_WAIT) {
|
|
struct inet_timewait_sock *tw = inet_twsk(sk);
|
|
|
|
refcount_inc(&tw->tw_refcnt);
|
|
local_bh_disable();
|
|
inet_twsk_deschedule_put(tw);
|
|
local_bh_enable();
|
|
return 0;
|
|
}
|
|
|
|
/* BPF context ensures sock locking. */
|
|
if (!has_current_bpf_ctx())
|
|
/* Don't race with userspace socket closes such as tcp_close. */
|
|
lock_sock(sk);
|
|
|
|
if (sk->sk_state == TCP_LISTEN) {
|
|
tcp_set_state(sk, TCP_CLOSE);
|
|
inet_csk_listen_stop(sk);
|
|
}
|
|
|
|
/* Don't race with BH socket closes such as inet_csk_listen_stop. */
|
|
local_bh_disable();
|
|
bh_lock_sock(sk);
|
|
|
|
if (!sock_flag(sk, SOCK_DEAD)) {
|
|
WRITE_ONCE(sk->sk_err, err);
|
|
/* This barrier is coupled with smp_rmb() in tcp_poll() */
|
|
smp_wmb();
|
|
sk_error_report(sk);
|
|
if (tcp_need_reset(sk->sk_state))
|
|
tcp_send_active_reset(sk, GFP_ATOMIC);
|
|
tcp_done(sk);
|
|
}
|
|
|
|
bh_unlock_sock(sk);
|
|
local_bh_enable();
|
|
tcp_write_queue_purge(sk);
|
|
if (!has_current_bpf_ctx())
|
|
release_sock(sk);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tcp_abort);
|
|
|
|
extern struct tcp_congestion_ops tcp_reno;
|
|
|
|
static __initdata unsigned long thash_entries;
|
|
static int __init set_thash_entries(char *str)
|
|
{
|
|
ssize_t ret;
|
|
|
|
if (!str)
|
|
return 0;
|
|
|
|
ret = kstrtoul(str, 0, &thash_entries);
|
|
if (ret)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
__setup("thash_entries=", set_thash_entries);
|
|
|
|
static void __init tcp_init_mem(void)
|
|
{
|
|
unsigned long limit = nr_free_buffer_pages() / 16;
|
|
|
|
limit = max(limit, 128UL);
|
|
sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
|
|
sysctl_tcp_mem[1] = limit; /* 6.25 % */
|
|
sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
|
|
}
|
|
|
|
void __init tcp_init(void)
|
|
{
|
|
int max_rshare, max_wshare, cnt;
|
|
unsigned long limit;
|
|
unsigned int i;
|
|
|
|
BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
|
|
BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
|
|
sizeof_field(struct sk_buff, cb));
|
|
|
|
percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
|
|
|
|
timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
|
|
mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
|
|
|
|
inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
|
|
thash_entries, 21, /* one slot per 2 MB*/
|
|
0, 64 * 1024);
|
|
tcp_hashinfo.bind_bucket_cachep =
|
|
kmem_cache_create("tcp_bind_bucket",
|
|
sizeof(struct inet_bind_bucket), 0,
|
|
SLAB_HWCACHE_ALIGN | SLAB_PANIC |
|
|
SLAB_ACCOUNT,
|
|
NULL);
|
|
tcp_hashinfo.bind2_bucket_cachep =
|
|
kmem_cache_create("tcp_bind2_bucket",
|
|
sizeof(struct inet_bind2_bucket), 0,
|
|
SLAB_HWCACHE_ALIGN | SLAB_PANIC |
|
|
SLAB_ACCOUNT,
|
|
NULL);
|
|
|
|
/* Size and allocate the main established and bind bucket
|
|
* hash tables.
|
|
*
|
|
* The methodology is similar to that of the buffer cache.
|
|
*/
|
|
tcp_hashinfo.ehash =
|
|
alloc_large_system_hash("TCP established",
|
|
sizeof(struct inet_ehash_bucket),
|
|
thash_entries,
|
|
17, /* one slot per 128 KB of memory */
|
|
0,
|
|
NULL,
|
|
&tcp_hashinfo.ehash_mask,
|
|
0,
|
|
thash_entries ? 0 : 512 * 1024);
|
|
for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
|
|
INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
|
|
|
|
if (inet_ehash_locks_alloc(&tcp_hashinfo))
|
|
panic("TCP: failed to alloc ehash_locks");
|
|
tcp_hashinfo.bhash =
|
|
alloc_large_system_hash("TCP bind",
|
|
2 * sizeof(struct inet_bind_hashbucket),
|
|
tcp_hashinfo.ehash_mask + 1,
|
|
17, /* one slot per 128 KB of memory */
|
|
0,
|
|
&tcp_hashinfo.bhash_size,
|
|
NULL,
|
|
0,
|
|
64 * 1024);
|
|
tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
|
|
tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
|
|
for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
|
|
spin_lock_init(&tcp_hashinfo.bhash[i].lock);
|
|
INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
|
|
spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
|
|
INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
|
|
}
|
|
|
|
tcp_hashinfo.pernet = false;
|
|
|
|
cnt = tcp_hashinfo.ehash_mask + 1;
|
|
sysctl_tcp_max_orphans = cnt / 2;
|
|
|
|
tcp_init_mem();
|
|
/* Set per-socket limits to no more than 1/128 the pressure threshold */
|
|
limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
|
|
max_wshare = min(4UL*1024*1024, limit);
|
|
max_rshare = min(6UL*1024*1024, limit);
|
|
|
|
init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
|
|
init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
|
|
init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
|
|
|
|
init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
|
|
init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
|
|
init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
|
|
|
|
pr_info("Hash tables configured (established %u bind %u)\n",
|
|
tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
|
|
|
|
tcp_v4_init();
|
|
tcp_metrics_init();
|
|
BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
|
|
tcp_tasklet_init();
|
|
mptcp_init();
|
|
}
|