mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-17 01:04:19 +08:00
0ee5dc676a
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
3090 lines
82 KiB
C
3090 lines
82 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/crc32c.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <asm/unaligned.h>
|
|
#include "compat.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "volumes.h"
|
|
#include "print-tree.h"
|
|
#include "async-thread.h"
|
|
#include "locking.h"
|
|
#include "tree-log.h"
|
|
#include "free-space-cache.h"
|
|
#include "inode-map.h"
|
|
|
|
static struct extent_io_ops btree_extent_io_ops;
|
|
static void end_workqueue_fn(struct btrfs_work *work);
|
|
static void free_fs_root(struct btrfs_root *root);
|
|
static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
|
|
int read_only);
|
|
static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
|
|
static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
|
|
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
|
|
struct btrfs_root *root);
|
|
static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
|
|
static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
|
|
static int btrfs_destroy_marked_extents(struct btrfs_root *root,
|
|
struct extent_io_tree *dirty_pages,
|
|
int mark);
|
|
static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
|
|
struct extent_io_tree *pinned_extents);
|
|
static int btrfs_cleanup_transaction(struct btrfs_root *root);
|
|
|
|
/*
|
|
* end_io_wq structs are used to do processing in task context when an IO is
|
|
* complete. This is used during reads to verify checksums, and it is used
|
|
* by writes to insert metadata for new file extents after IO is complete.
|
|
*/
|
|
struct end_io_wq {
|
|
struct bio *bio;
|
|
bio_end_io_t *end_io;
|
|
void *private;
|
|
struct btrfs_fs_info *info;
|
|
int error;
|
|
int metadata;
|
|
struct list_head list;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
/*
|
|
* async submit bios are used to offload expensive checksumming
|
|
* onto the worker threads. They checksum file and metadata bios
|
|
* just before they are sent down the IO stack.
|
|
*/
|
|
struct async_submit_bio {
|
|
struct inode *inode;
|
|
struct bio *bio;
|
|
struct list_head list;
|
|
extent_submit_bio_hook_t *submit_bio_start;
|
|
extent_submit_bio_hook_t *submit_bio_done;
|
|
int rw;
|
|
int mirror_num;
|
|
unsigned long bio_flags;
|
|
/*
|
|
* bio_offset is optional, can be used if the pages in the bio
|
|
* can't tell us where in the file the bio should go
|
|
*/
|
|
u64 bio_offset;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
/* These are used to set the lockdep class on the extent buffer locks.
|
|
* The class is set by the readpage_end_io_hook after the buffer has
|
|
* passed csum validation but before the pages are unlocked.
|
|
*
|
|
* The lockdep class is also set by btrfs_init_new_buffer on freshly
|
|
* allocated blocks.
|
|
*
|
|
* The class is based on the level in the tree block, which allows lockdep
|
|
* to know that lower nodes nest inside the locks of higher nodes.
|
|
*
|
|
* We also add a check to make sure the highest level of the tree is
|
|
* the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
|
|
* code needs update as well.
|
|
*/
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
# if BTRFS_MAX_LEVEL != 8
|
|
# error
|
|
# endif
|
|
static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
|
|
static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
|
|
/* leaf */
|
|
"btrfs-extent-00",
|
|
"btrfs-extent-01",
|
|
"btrfs-extent-02",
|
|
"btrfs-extent-03",
|
|
"btrfs-extent-04",
|
|
"btrfs-extent-05",
|
|
"btrfs-extent-06",
|
|
"btrfs-extent-07",
|
|
/* highest possible level */
|
|
"btrfs-extent-08",
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* extents on the btree inode are pretty simple, there's one extent
|
|
* that covers the entire device
|
|
*/
|
|
static struct extent_map *btree_get_extent(struct inode *inode,
|
|
struct page *page, size_t pg_offset, u64 start, u64 len,
|
|
int create)
|
|
{
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_map *em;
|
|
int ret;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (em) {
|
|
em->bdev =
|
|
BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
|
|
read_unlock(&em_tree->lock);
|
|
goto out;
|
|
}
|
|
read_unlock(&em_tree->lock);
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
em = ERR_PTR(-ENOMEM);
|
|
goto out;
|
|
}
|
|
em->start = 0;
|
|
em->len = (u64)-1;
|
|
em->block_len = (u64)-1;
|
|
em->block_start = 0;
|
|
em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
|
|
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em);
|
|
if (ret == -EEXIST) {
|
|
u64 failed_start = em->start;
|
|
u64 failed_len = em->len;
|
|
|
|
free_extent_map(em);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (em) {
|
|
ret = 0;
|
|
} else {
|
|
em = lookup_extent_mapping(em_tree, failed_start,
|
|
failed_len);
|
|
ret = -EIO;
|
|
}
|
|
} else if (ret) {
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
}
|
|
write_unlock(&em_tree->lock);
|
|
|
|
if (ret)
|
|
em = ERR_PTR(ret);
|
|
out:
|
|
return em;
|
|
}
|
|
|
|
u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
|
|
{
|
|
return crc32c(seed, data, len);
|
|
}
|
|
|
|
void btrfs_csum_final(u32 crc, char *result)
|
|
{
|
|
put_unaligned_le32(~crc, result);
|
|
}
|
|
|
|
/*
|
|
* compute the csum for a btree block, and either verify it or write it
|
|
* into the csum field of the block.
|
|
*/
|
|
static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
|
|
int verify)
|
|
{
|
|
u16 csum_size =
|
|
btrfs_super_csum_size(&root->fs_info->super_copy);
|
|
char *result = NULL;
|
|
unsigned long len;
|
|
unsigned long cur_len;
|
|
unsigned long offset = BTRFS_CSUM_SIZE;
|
|
char *map_token = NULL;
|
|
char *kaddr;
|
|
unsigned long map_start;
|
|
unsigned long map_len;
|
|
int err;
|
|
u32 crc = ~(u32)0;
|
|
unsigned long inline_result;
|
|
|
|
len = buf->len - offset;
|
|
while (len > 0) {
|
|
err = map_private_extent_buffer(buf, offset, 32,
|
|
&map_token, &kaddr,
|
|
&map_start, &map_len, KM_USER0);
|
|
if (err)
|
|
return 1;
|
|
cur_len = min(len, map_len - (offset - map_start));
|
|
crc = btrfs_csum_data(root, kaddr + offset - map_start,
|
|
crc, cur_len);
|
|
len -= cur_len;
|
|
offset += cur_len;
|
|
unmap_extent_buffer(buf, map_token, KM_USER0);
|
|
}
|
|
if (csum_size > sizeof(inline_result)) {
|
|
result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
|
|
if (!result)
|
|
return 1;
|
|
} else {
|
|
result = (char *)&inline_result;
|
|
}
|
|
|
|
btrfs_csum_final(crc, result);
|
|
|
|
if (verify) {
|
|
if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
|
|
u32 val;
|
|
u32 found = 0;
|
|
memcpy(&found, result, csum_size);
|
|
|
|
read_extent_buffer(buf, &val, 0, csum_size);
|
|
printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
|
|
"failed on %llu wanted %X found %X "
|
|
"level %d\n",
|
|
root->fs_info->sb->s_id,
|
|
(unsigned long long)buf->start, val, found,
|
|
btrfs_header_level(buf));
|
|
if (result != (char *)&inline_result)
|
|
kfree(result);
|
|
return 1;
|
|
}
|
|
} else {
|
|
write_extent_buffer(buf, result, 0, csum_size);
|
|
}
|
|
if (result != (char *)&inline_result)
|
|
kfree(result);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* we can't consider a given block up to date unless the transid of the
|
|
* block matches the transid in the parent node's pointer. This is how we
|
|
* detect blocks that either didn't get written at all or got written
|
|
* in the wrong place.
|
|
*/
|
|
static int verify_parent_transid(struct extent_io_tree *io_tree,
|
|
struct extent_buffer *eb, u64 parent_transid)
|
|
{
|
|
struct extent_state *cached_state = NULL;
|
|
int ret;
|
|
|
|
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
|
|
return 0;
|
|
|
|
lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
|
|
0, &cached_state, GFP_NOFS);
|
|
if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
|
|
btrfs_header_generation(eb) == parent_transid) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
printk_ratelimited("parent transid verify failed on %llu wanted %llu "
|
|
"found %llu\n",
|
|
(unsigned long long)eb->start,
|
|
(unsigned long long)parent_transid,
|
|
(unsigned long long)btrfs_header_generation(eb));
|
|
ret = 1;
|
|
clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
|
|
out:
|
|
unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
|
|
&cached_state, GFP_NOFS);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to read a given tree block, doing retries as required when
|
|
* the checksums don't match and we have alternate mirrors to try.
|
|
*/
|
|
static int btree_read_extent_buffer_pages(struct btrfs_root *root,
|
|
struct extent_buffer *eb,
|
|
u64 start, u64 parent_transid)
|
|
{
|
|
struct extent_io_tree *io_tree;
|
|
int ret;
|
|
int num_copies = 0;
|
|
int mirror_num = 0;
|
|
|
|
clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
|
|
io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
|
|
while (1) {
|
|
ret = read_extent_buffer_pages(io_tree, eb, start, 1,
|
|
btree_get_extent, mirror_num);
|
|
if (!ret &&
|
|
!verify_parent_transid(io_tree, eb, parent_transid))
|
|
return ret;
|
|
|
|
/*
|
|
* This buffer's crc is fine, but its contents are corrupted, so
|
|
* there is no reason to read the other copies, they won't be
|
|
* any less wrong.
|
|
*/
|
|
if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
|
|
return ret;
|
|
|
|
num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
|
|
eb->start, eb->len);
|
|
if (num_copies == 1)
|
|
return ret;
|
|
|
|
mirror_num++;
|
|
if (mirror_num > num_copies)
|
|
return ret;
|
|
}
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* checksum a dirty tree block before IO. This has extra checks to make sure
|
|
* we only fill in the checksum field in the first page of a multi-page block
|
|
*/
|
|
|
|
static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
|
|
u64 found_start;
|
|
unsigned long len;
|
|
struct extent_buffer *eb;
|
|
int ret;
|
|
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
|
|
if (page->private == EXTENT_PAGE_PRIVATE) {
|
|
WARN_ON(1);
|
|
goto out;
|
|
}
|
|
if (!page->private) {
|
|
WARN_ON(1);
|
|
goto out;
|
|
}
|
|
len = page->private >> 2;
|
|
WARN_ON(len == 0);
|
|
|
|
eb = alloc_extent_buffer(tree, start, len, page);
|
|
if (eb == NULL) {
|
|
WARN_ON(1);
|
|
goto out;
|
|
}
|
|
ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
|
|
btrfs_header_generation(eb));
|
|
BUG_ON(ret);
|
|
WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
|
|
|
|
found_start = btrfs_header_bytenr(eb);
|
|
if (found_start != start) {
|
|
WARN_ON(1);
|
|
goto err;
|
|
}
|
|
if (eb->first_page != page) {
|
|
WARN_ON(1);
|
|
goto err;
|
|
}
|
|
if (!PageUptodate(page)) {
|
|
WARN_ON(1);
|
|
goto err;
|
|
}
|
|
csum_tree_block(root, eb, 0);
|
|
err:
|
|
free_extent_buffer(eb);
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
static int check_tree_block_fsid(struct btrfs_root *root,
|
|
struct extent_buffer *eb)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
|
|
u8 fsid[BTRFS_UUID_SIZE];
|
|
int ret = 1;
|
|
|
|
read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
|
|
BTRFS_FSID_SIZE);
|
|
while (fs_devices) {
|
|
if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
fs_devices = fs_devices->seed;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define CORRUPT(reason, eb, root, slot) \
|
|
printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
|
|
"root=%llu, slot=%d\n", reason, \
|
|
(unsigned long long)btrfs_header_bytenr(eb), \
|
|
(unsigned long long)root->objectid, slot)
|
|
|
|
static noinline int check_leaf(struct btrfs_root *root,
|
|
struct extent_buffer *leaf)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_key leaf_key;
|
|
u32 nritems = btrfs_header_nritems(leaf);
|
|
int slot;
|
|
|
|
if (nritems == 0)
|
|
return 0;
|
|
|
|
/* Check the 0 item */
|
|
if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
|
|
BTRFS_LEAF_DATA_SIZE(root)) {
|
|
CORRUPT("invalid item offset size pair", leaf, root, 0);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Check to make sure each items keys are in the correct order and their
|
|
* offsets make sense. We only have to loop through nritems-1 because
|
|
* we check the current slot against the next slot, which verifies the
|
|
* next slot's offset+size makes sense and that the current's slot
|
|
* offset is correct.
|
|
*/
|
|
for (slot = 0; slot < nritems - 1; slot++) {
|
|
btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
|
|
btrfs_item_key_to_cpu(leaf, &key, slot + 1);
|
|
|
|
/* Make sure the keys are in the right order */
|
|
if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
|
|
CORRUPT("bad key order", leaf, root, slot);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Make sure the offset and ends are right, remember that the
|
|
* item data starts at the end of the leaf and grows towards the
|
|
* front.
|
|
*/
|
|
if (btrfs_item_offset_nr(leaf, slot) !=
|
|
btrfs_item_end_nr(leaf, slot + 1)) {
|
|
CORRUPT("slot offset bad", leaf, root, slot);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Check to make sure that we don't point outside of the leaf,
|
|
* just incase all the items are consistent to eachother, but
|
|
* all point outside of the leaf.
|
|
*/
|
|
if (btrfs_item_end_nr(leaf, slot) >
|
|
BTRFS_LEAF_DATA_SIZE(root)) {
|
|
CORRUPT("slot end outside of leaf", leaf, root, slot);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
|
|
{
|
|
lockdep_set_class_and_name(&eb->lock,
|
|
&btrfs_eb_class[level],
|
|
btrfs_eb_name[level]);
|
|
}
|
|
#endif
|
|
|
|
static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
|
|
struct extent_state *state)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
u64 found_start;
|
|
int found_level;
|
|
unsigned long len;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
|
|
int ret = 0;
|
|
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
if (page->private == EXTENT_PAGE_PRIVATE)
|
|
goto out;
|
|
if (!page->private)
|
|
goto out;
|
|
|
|
len = page->private >> 2;
|
|
WARN_ON(len == 0);
|
|
|
|
eb = alloc_extent_buffer(tree, start, len, page);
|
|
if (eb == NULL) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
found_start = btrfs_header_bytenr(eb);
|
|
if (found_start != start) {
|
|
printk_ratelimited(KERN_INFO "btrfs bad tree block start "
|
|
"%llu %llu\n",
|
|
(unsigned long long)found_start,
|
|
(unsigned long long)eb->start);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
if (eb->first_page != page) {
|
|
printk(KERN_INFO "btrfs bad first page %lu %lu\n",
|
|
eb->first_page->index, page->index);
|
|
WARN_ON(1);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
if (check_tree_block_fsid(root, eb)) {
|
|
printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
|
|
(unsigned long long)eb->start);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
found_level = btrfs_header_level(eb);
|
|
|
|
btrfs_set_buffer_lockdep_class(eb, found_level);
|
|
|
|
ret = csum_tree_block(root, eb, 1);
|
|
if (ret) {
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* If this is a leaf block and it is corrupt, set the corrupt bit so
|
|
* that we don't try and read the other copies of this block, just
|
|
* return -EIO.
|
|
*/
|
|
if (found_level == 0 && check_leaf(root, eb)) {
|
|
set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
|
|
ret = -EIO;
|
|
}
|
|
|
|
end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
|
|
end = eb->start + end - 1;
|
|
err:
|
|
free_extent_buffer(eb);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void end_workqueue_bio(struct bio *bio, int err)
|
|
{
|
|
struct end_io_wq *end_io_wq = bio->bi_private;
|
|
struct btrfs_fs_info *fs_info;
|
|
|
|
fs_info = end_io_wq->info;
|
|
end_io_wq->error = err;
|
|
end_io_wq->work.func = end_workqueue_fn;
|
|
end_io_wq->work.flags = 0;
|
|
|
|
if (bio->bi_rw & REQ_WRITE) {
|
|
if (end_io_wq->metadata == 1)
|
|
btrfs_queue_worker(&fs_info->endio_meta_write_workers,
|
|
&end_io_wq->work);
|
|
else if (end_io_wq->metadata == 2)
|
|
btrfs_queue_worker(&fs_info->endio_freespace_worker,
|
|
&end_io_wq->work);
|
|
else
|
|
btrfs_queue_worker(&fs_info->endio_write_workers,
|
|
&end_io_wq->work);
|
|
} else {
|
|
if (end_io_wq->metadata)
|
|
btrfs_queue_worker(&fs_info->endio_meta_workers,
|
|
&end_io_wq->work);
|
|
else
|
|
btrfs_queue_worker(&fs_info->endio_workers,
|
|
&end_io_wq->work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For the metadata arg you want
|
|
*
|
|
* 0 - if data
|
|
* 1 - if normal metadta
|
|
* 2 - if writing to the free space cache area
|
|
*/
|
|
int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
|
|
int metadata)
|
|
{
|
|
struct end_io_wq *end_io_wq;
|
|
end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
|
|
if (!end_io_wq)
|
|
return -ENOMEM;
|
|
|
|
end_io_wq->private = bio->bi_private;
|
|
end_io_wq->end_io = bio->bi_end_io;
|
|
end_io_wq->info = info;
|
|
end_io_wq->error = 0;
|
|
end_io_wq->bio = bio;
|
|
end_io_wq->metadata = metadata;
|
|
|
|
bio->bi_private = end_io_wq;
|
|
bio->bi_end_io = end_workqueue_bio;
|
|
return 0;
|
|
}
|
|
|
|
unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
|
|
{
|
|
unsigned long limit = min_t(unsigned long,
|
|
info->workers.max_workers,
|
|
info->fs_devices->open_devices);
|
|
return 256 * limit;
|
|
}
|
|
|
|
static void run_one_async_start(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
async->submit_bio_start(async->inode, async->rw, async->bio,
|
|
async->mirror_num, async->bio_flags,
|
|
async->bio_offset);
|
|
}
|
|
|
|
static void run_one_async_done(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
struct async_submit_bio *async;
|
|
int limit;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
fs_info = BTRFS_I(async->inode)->root->fs_info;
|
|
|
|
limit = btrfs_async_submit_limit(fs_info);
|
|
limit = limit * 2 / 3;
|
|
|
|
atomic_dec(&fs_info->nr_async_submits);
|
|
|
|
if (atomic_read(&fs_info->nr_async_submits) < limit &&
|
|
waitqueue_active(&fs_info->async_submit_wait))
|
|
wake_up(&fs_info->async_submit_wait);
|
|
|
|
async->submit_bio_done(async->inode, async->rw, async->bio,
|
|
async->mirror_num, async->bio_flags,
|
|
async->bio_offset);
|
|
}
|
|
|
|
static void run_one_async_free(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
kfree(async);
|
|
}
|
|
|
|
int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
|
|
int rw, struct bio *bio, int mirror_num,
|
|
unsigned long bio_flags,
|
|
u64 bio_offset,
|
|
extent_submit_bio_hook_t *submit_bio_start,
|
|
extent_submit_bio_hook_t *submit_bio_done)
|
|
{
|
|
struct async_submit_bio *async;
|
|
|
|
async = kmalloc(sizeof(*async), GFP_NOFS);
|
|
if (!async)
|
|
return -ENOMEM;
|
|
|
|
async->inode = inode;
|
|
async->rw = rw;
|
|
async->bio = bio;
|
|
async->mirror_num = mirror_num;
|
|
async->submit_bio_start = submit_bio_start;
|
|
async->submit_bio_done = submit_bio_done;
|
|
|
|
async->work.func = run_one_async_start;
|
|
async->work.ordered_func = run_one_async_done;
|
|
async->work.ordered_free = run_one_async_free;
|
|
|
|
async->work.flags = 0;
|
|
async->bio_flags = bio_flags;
|
|
async->bio_offset = bio_offset;
|
|
|
|
atomic_inc(&fs_info->nr_async_submits);
|
|
|
|
if (rw & REQ_SYNC)
|
|
btrfs_set_work_high_prio(&async->work);
|
|
|
|
btrfs_queue_worker(&fs_info->workers, &async->work);
|
|
|
|
while (atomic_read(&fs_info->async_submit_draining) &&
|
|
atomic_read(&fs_info->nr_async_submits)) {
|
|
wait_event(fs_info->async_submit_wait,
|
|
(atomic_read(&fs_info->nr_async_submits) == 0));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btree_csum_one_bio(struct bio *bio)
|
|
{
|
|
struct bio_vec *bvec = bio->bi_io_vec;
|
|
int bio_index = 0;
|
|
struct btrfs_root *root;
|
|
|
|
WARN_ON(bio->bi_vcnt <= 0);
|
|
while (bio_index < bio->bi_vcnt) {
|
|
root = BTRFS_I(bvec->bv_page->mapping->host)->root;
|
|
csum_dirty_buffer(root, bvec->bv_page);
|
|
bio_index++;
|
|
bvec++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __btree_submit_bio_start(struct inode *inode, int rw,
|
|
struct bio *bio, int mirror_num,
|
|
unsigned long bio_flags,
|
|
u64 bio_offset)
|
|
{
|
|
/*
|
|
* when we're called for a write, we're already in the async
|
|
* submission context. Just jump into btrfs_map_bio
|
|
*/
|
|
btree_csum_one_bio(bio);
|
|
return 0;
|
|
}
|
|
|
|
static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
|
|
int mirror_num, unsigned long bio_flags,
|
|
u64 bio_offset)
|
|
{
|
|
/*
|
|
* when we're called for a write, we're already in the async
|
|
* submission context. Just jump into btrfs_map_bio
|
|
*/
|
|
return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
|
|
}
|
|
|
|
static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
|
|
int mirror_num, unsigned long bio_flags,
|
|
u64 bio_offset)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
|
|
bio, 1);
|
|
BUG_ON(ret);
|
|
|
|
if (!(rw & REQ_WRITE)) {
|
|
/*
|
|
* called for a read, do the setup so that checksum validation
|
|
* can happen in the async kernel threads
|
|
*/
|
|
return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
|
|
mirror_num, 0);
|
|
}
|
|
|
|
/*
|
|
* kthread helpers are used to submit writes so that checksumming
|
|
* can happen in parallel across all CPUs
|
|
*/
|
|
return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
|
|
inode, rw, bio, mirror_num, 0,
|
|
bio_offset,
|
|
__btree_submit_bio_start,
|
|
__btree_submit_bio_done);
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
static int btree_migratepage(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
/*
|
|
* we can't safely write a btree page from here,
|
|
* we haven't done the locking hook
|
|
*/
|
|
if (PageDirty(page))
|
|
return -EAGAIN;
|
|
/*
|
|
* Buffers may be managed in a filesystem specific way.
|
|
* We must have no buffers or drop them.
|
|
*/
|
|
if (page_has_private(page) &&
|
|
!try_to_release_page(page, GFP_KERNEL))
|
|
return -EAGAIN;
|
|
return migrate_page(mapping, newpage, page);
|
|
}
|
|
#endif
|
|
|
|
static int btree_writepage(struct page *page, struct writeback_control *wbc)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
|
|
struct extent_buffer *eb;
|
|
int was_dirty;
|
|
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
if (!(current->flags & PF_MEMALLOC)) {
|
|
return extent_write_full_page(tree, page,
|
|
btree_get_extent, wbc);
|
|
}
|
|
|
|
redirty_page_for_writepage(wbc, page);
|
|
eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
|
|
WARN_ON(!eb);
|
|
|
|
was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
|
|
if (!was_dirty) {
|
|
spin_lock(&root->fs_info->delalloc_lock);
|
|
root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
|
|
spin_unlock(&root->fs_info->delalloc_lock);
|
|
}
|
|
free_extent_buffer(eb);
|
|
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
static int btree_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
tree = &BTRFS_I(mapping->host)->io_tree;
|
|
if (wbc->sync_mode == WB_SYNC_NONE) {
|
|
struct btrfs_root *root = BTRFS_I(mapping->host)->root;
|
|
u64 num_dirty;
|
|
unsigned long thresh = 32 * 1024 * 1024;
|
|
|
|
if (wbc->for_kupdate)
|
|
return 0;
|
|
|
|
/* this is a bit racy, but that's ok */
|
|
num_dirty = root->fs_info->dirty_metadata_bytes;
|
|
if (num_dirty < thresh)
|
|
return 0;
|
|
}
|
|
return extent_writepages(tree, mapping, btree_get_extent, wbc);
|
|
}
|
|
|
|
static int btree_readpage(struct file *file, struct page *page)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
return extent_read_full_page(tree, page, btree_get_extent);
|
|
}
|
|
|
|
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
struct extent_map_tree *map;
|
|
int ret;
|
|
|
|
if (PageWriteback(page) || PageDirty(page))
|
|
return 0;
|
|
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
map = &BTRFS_I(page->mapping->host)->extent_tree;
|
|
|
|
ret = try_release_extent_state(map, tree, page, gfp_flags);
|
|
if (!ret)
|
|
return 0;
|
|
|
|
ret = try_release_extent_buffer(tree, page);
|
|
if (ret == 1) {
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
page_cache_release(page);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btree_invalidatepage(struct page *page, unsigned long offset)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
extent_invalidatepage(tree, page, offset);
|
|
btree_releasepage(page, GFP_NOFS);
|
|
if (PagePrivate(page)) {
|
|
printk(KERN_WARNING "btrfs warning page private not zero "
|
|
"on page %llu\n", (unsigned long long)page_offset(page));
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
page_cache_release(page);
|
|
}
|
|
}
|
|
|
|
static const struct address_space_operations btree_aops = {
|
|
.readpage = btree_readpage,
|
|
.writepage = btree_writepage,
|
|
.writepages = btree_writepages,
|
|
.releasepage = btree_releasepage,
|
|
.invalidatepage = btree_invalidatepage,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = btree_migratepage,
|
|
#endif
|
|
};
|
|
|
|
int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
|
|
u64 parent_transid)
|
|
{
|
|
struct extent_buffer *buf = NULL;
|
|
struct inode *btree_inode = root->fs_info->btree_inode;
|
|
int ret = 0;
|
|
|
|
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
|
|
if (!buf)
|
|
return 0;
|
|
read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
|
|
buf, 0, 0, btree_get_extent, 0);
|
|
free_extent_buffer(buf);
|
|
return ret;
|
|
}
|
|
|
|
struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
|
|
u64 bytenr, u32 blocksize)
|
|
{
|
|
struct inode *btree_inode = root->fs_info->btree_inode;
|
|
struct extent_buffer *eb;
|
|
eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
|
|
bytenr, blocksize);
|
|
return eb;
|
|
}
|
|
|
|
struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
|
|
u64 bytenr, u32 blocksize)
|
|
{
|
|
struct inode *btree_inode = root->fs_info->btree_inode;
|
|
struct extent_buffer *eb;
|
|
|
|
eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
|
|
bytenr, blocksize, NULL);
|
|
return eb;
|
|
}
|
|
|
|
|
|
int btrfs_write_tree_block(struct extent_buffer *buf)
|
|
{
|
|
return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
|
|
buf->start + buf->len - 1);
|
|
}
|
|
|
|
int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
|
|
{
|
|
return filemap_fdatawait_range(buf->first_page->mapping,
|
|
buf->start, buf->start + buf->len - 1);
|
|
}
|
|
|
|
struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
|
|
u32 blocksize, u64 parent_transid)
|
|
{
|
|
struct extent_buffer *buf = NULL;
|
|
int ret;
|
|
|
|
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
|
|
|
|
if (ret == 0)
|
|
set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
|
|
return buf;
|
|
|
|
}
|
|
|
|
int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct extent_buffer *buf)
|
|
{
|
|
struct inode *btree_inode = root->fs_info->btree_inode;
|
|
if (btrfs_header_generation(buf) ==
|
|
root->fs_info->running_transaction->transid) {
|
|
btrfs_assert_tree_locked(buf);
|
|
|
|
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
|
|
spin_lock(&root->fs_info->delalloc_lock);
|
|
if (root->fs_info->dirty_metadata_bytes >= buf->len)
|
|
root->fs_info->dirty_metadata_bytes -= buf->len;
|
|
else
|
|
WARN_ON(1);
|
|
spin_unlock(&root->fs_info->delalloc_lock);
|
|
}
|
|
|
|
/* ugh, clear_extent_buffer_dirty needs to lock the page */
|
|
btrfs_set_lock_blocking(buf);
|
|
clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
|
|
buf);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
|
|
u32 stripesize, struct btrfs_root *root,
|
|
struct btrfs_fs_info *fs_info,
|
|
u64 objectid)
|
|
{
|
|
root->node = NULL;
|
|
root->commit_root = NULL;
|
|
root->sectorsize = sectorsize;
|
|
root->nodesize = nodesize;
|
|
root->leafsize = leafsize;
|
|
root->stripesize = stripesize;
|
|
root->ref_cows = 0;
|
|
root->track_dirty = 0;
|
|
root->in_radix = 0;
|
|
root->orphan_item_inserted = 0;
|
|
root->orphan_cleanup_state = 0;
|
|
|
|
root->fs_info = fs_info;
|
|
root->objectid = objectid;
|
|
root->last_trans = 0;
|
|
root->highest_objectid = 0;
|
|
root->name = NULL;
|
|
root->inode_tree = RB_ROOT;
|
|
INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
|
|
root->block_rsv = NULL;
|
|
root->orphan_block_rsv = NULL;
|
|
|
|
INIT_LIST_HEAD(&root->dirty_list);
|
|
INIT_LIST_HEAD(&root->orphan_list);
|
|
INIT_LIST_HEAD(&root->root_list);
|
|
spin_lock_init(&root->orphan_lock);
|
|
spin_lock_init(&root->inode_lock);
|
|
spin_lock_init(&root->accounting_lock);
|
|
mutex_init(&root->objectid_mutex);
|
|
mutex_init(&root->log_mutex);
|
|
init_waitqueue_head(&root->log_writer_wait);
|
|
init_waitqueue_head(&root->log_commit_wait[0]);
|
|
init_waitqueue_head(&root->log_commit_wait[1]);
|
|
atomic_set(&root->log_commit[0], 0);
|
|
atomic_set(&root->log_commit[1], 0);
|
|
atomic_set(&root->log_writers, 0);
|
|
root->log_batch = 0;
|
|
root->log_transid = 0;
|
|
root->last_log_commit = 0;
|
|
extent_io_tree_init(&root->dirty_log_pages,
|
|
fs_info->btree_inode->i_mapping);
|
|
|
|
memset(&root->root_key, 0, sizeof(root->root_key));
|
|
memset(&root->root_item, 0, sizeof(root->root_item));
|
|
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
|
|
memset(&root->root_kobj, 0, sizeof(root->root_kobj));
|
|
root->defrag_trans_start = fs_info->generation;
|
|
init_completion(&root->kobj_unregister);
|
|
root->defrag_running = 0;
|
|
root->root_key.objectid = objectid;
|
|
root->anon_dev = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int find_and_setup_root(struct btrfs_root *tree_root,
|
|
struct btrfs_fs_info *fs_info,
|
|
u64 objectid,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
u32 blocksize;
|
|
u64 generation;
|
|
|
|
__setup_root(tree_root->nodesize, tree_root->leafsize,
|
|
tree_root->sectorsize, tree_root->stripesize,
|
|
root, fs_info, objectid);
|
|
ret = btrfs_find_last_root(tree_root, objectid,
|
|
&root->root_item, &root->root_key);
|
|
if (ret > 0)
|
|
return -ENOENT;
|
|
BUG_ON(ret);
|
|
|
|
generation = btrfs_root_generation(&root->root_item);
|
|
blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
|
|
root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
|
|
blocksize, generation);
|
|
if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
|
|
free_extent_buffer(root->node);
|
|
return -EIO;
|
|
}
|
|
root->commit_root = btrfs_root_node(root);
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct extent_buffer *leaf;
|
|
|
|
root = kzalloc(sizeof(*root), GFP_NOFS);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
__setup_root(tree_root->nodesize, tree_root->leafsize,
|
|
tree_root->sectorsize, tree_root->stripesize,
|
|
root, fs_info, BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
|
|
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
|
|
/*
|
|
* log trees do not get reference counted because they go away
|
|
* before a real commit is actually done. They do store pointers
|
|
* to file data extents, and those reference counts still get
|
|
* updated (along with back refs to the log tree).
|
|
*/
|
|
root->ref_cows = 0;
|
|
|
|
leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
|
|
BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
|
|
if (IS_ERR(leaf)) {
|
|
kfree(root);
|
|
return ERR_CAST(leaf);
|
|
}
|
|
|
|
memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
|
|
btrfs_set_header_bytenr(leaf, leaf->start);
|
|
btrfs_set_header_generation(leaf, trans->transid);
|
|
btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
|
|
root->node = leaf;
|
|
|
|
write_extent_buffer(root->node, root->fs_info->fsid,
|
|
(unsigned long)btrfs_header_fsid(root->node),
|
|
BTRFS_FSID_SIZE);
|
|
btrfs_mark_buffer_dirty(root->node);
|
|
btrfs_tree_unlock(root->node);
|
|
return root;
|
|
}
|
|
|
|
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *log_root;
|
|
|
|
log_root = alloc_log_tree(trans, fs_info);
|
|
if (IS_ERR(log_root))
|
|
return PTR_ERR(log_root);
|
|
WARN_ON(fs_info->log_root_tree);
|
|
fs_info->log_root_tree = log_root;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root *log_root;
|
|
struct btrfs_inode_item *inode_item;
|
|
|
|
log_root = alloc_log_tree(trans, root->fs_info);
|
|
if (IS_ERR(log_root))
|
|
return PTR_ERR(log_root);
|
|
|
|
log_root->last_trans = trans->transid;
|
|
log_root->root_key.offset = root->root_key.objectid;
|
|
|
|
inode_item = &log_root->root_item.inode;
|
|
inode_item->generation = cpu_to_le64(1);
|
|
inode_item->size = cpu_to_le64(3);
|
|
inode_item->nlink = cpu_to_le32(1);
|
|
inode_item->nbytes = cpu_to_le64(root->leafsize);
|
|
inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
|
|
|
|
btrfs_set_root_node(&log_root->root_item, log_root->node);
|
|
|
|
WARN_ON(root->log_root);
|
|
root->log_root = log_root;
|
|
root->log_transid = 0;
|
|
root->last_log_commit = 0;
|
|
return 0;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
|
|
struct btrfs_key *location)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_fs_info *fs_info = tree_root->fs_info;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *l;
|
|
u64 generation;
|
|
u32 blocksize;
|
|
int ret = 0;
|
|
|
|
root = kzalloc(sizeof(*root), GFP_NOFS);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
if (location->offset == (u64)-1) {
|
|
ret = find_and_setup_root(tree_root, fs_info,
|
|
location->objectid, root);
|
|
if (ret) {
|
|
kfree(root);
|
|
return ERR_PTR(ret);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
__setup_root(tree_root->nodesize, tree_root->leafsize,
|
|
tree_root->sectorsize, tree_root->stripesize,
|
|
root, fs_info, location->objectid);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
kfree(root);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
|
|
if (ret == 0) {
|
|
l = path->nodes[0];
|
|
read_extent_buffer(l, &root->root_item,
|
|
btrfs_item_ptr_offset(l, path->slots[0]),
|
|
sizeof(root->root_item));
|
|
memcpy(&root->root_key, location, sizeof(*location));
|
|
}
|
|
btrfs_free_path(path);
|
|
if (ret) {
|
|
kfree(root);
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
generation = btrfs_root_generation(&root->root_item);
|
|
blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
|
|
root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
|
|
blocksize, generation);
|
|
root->commit_root = btrfs_root_node(root);
|
|
BUG_ON(!root->node);
|
|
out:
|
|
if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
root->ref_cows = 1;
|
|
btrfs_check_and_init_root_item(&root->root_item);
|
|
}
|
|
|
|
return root;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_key *location)
|
|
{
|
|
struct btrfs_root *root;
|
|
int ret;
|
|
|
|
if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
|
|
return fs_info->tree_root;
|
|
if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
|
|
return fs_info->extent_root;
|
|
if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
|
|
return fs_info->chunk_root;
|
|
if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
|
|
return fs_info->dev_root;
|
|
if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
|
|
return fs_info->csum_root;
|
|
again:
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
root = radix_tree_lookup(&fs_info->fs_roots_radix,
|
|
(unsigned long)location->objectid);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
if (root)
|
|
return root;
|
|
|
|
root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
|
|
if (IS_ERR(root))
|
|
return root;
|
|
|
|
root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
|
|
root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
|
|
GFP_NOFS);
|
|
if (!root->free_ino_pinned || !root->free_ino_ctl) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
btrfs_init_free_ino_ctl(root);
|
|
mutex_init(&root->fs_commit_mutex);
|
|
spin_lock_init(&root->cache_lock);
|
|
init_waitqueue_head(&root->cache_wait);
|
|
|
|
ret = get_anon_bdev(&root->anon_dev);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
if (btrfs_root_refs(&root->root_item) == 0) {
|
|
ret = -ENOENT;
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret == 0)
|
|
root->orphan_item_inserted = 1;
|
|
|
|
ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
ret = radix_tree_insert(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
root);
|
|
if (ret == 0)
|
|
root->in_radix = 1;
|
|
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
radix_tree_preload_end();
|
|
if (ret) {
|
|
if (ret == -EEXIST) {
|
|
free_fs_root(root);
|
|
goto again;
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_find_dead_roots(fs_info->tree_root,
|
|
root->root_key.objectid);
|
|
WARN_ON(ret);
|
|
return root;
|
|
fail:
|
|
free_fs_root(root);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int btrfs_congested_fn(void *congested_data, int bdi_bits)
|
|
{
|
|
struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
|
|
int ret = 0;
|
|
struct btrfs_device *device;
|
|
struct backing_dev_info *bdi;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
|
|
if (!device->bdev)
|
|
continue;
|
|
bdi = blk_get_backing_dev_info(device->bdev);
|
|
if (bdi && bdi_congested(bdi, bdi_bits)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If this fails, caller must call bdi_destroy() to get rid of the
|
|
* bdi again.
|
|
*/
|
|
static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
|
|
{
|
|
int err;
|
|
|
|
bdi->capabilities = BDI_CAP_MAP_COPY;
|
|
err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
|
|
if (err)
|
|
return err;
|
|
|
|
bdi->ra_pages = default_backing_dev_info.ra_pages;
|
|
bdi->congested_fn = btrfs_congested_fn;
|
|
bdi->congested_data = info;
|
|
return 0;
|
|
}
|
|
|
|
static int bio_ready_for_csum(struct bio *bio)
|
|
{
|
|
u64 length = 0;
|
|
u64 buf_len = 0;
|
|
u64 start = 0;
|
|
struct page *page;
|
|
struct extent_io_tree *io_tree = NULL;
|
|
struct bio_vec *bvec;
|
|
int i;
|
|
int ret;
|
|
|
|
bio_for_each_segment(bvec, bio, i) {
|
|
page = bvec->bv_page;
|
|
if (page->private == EXTENT_PAGE_PRIVATE) {
|
|
length += bvec->bv_len;
|
|
continue;
|
|
}
|
|
if (!page->private) {
|
|
length += bvec->bv_len;
|
|
continue;
|
|
}
|
|
length = bvec->bv_len;
|
|
buf_len = page->private >> 2;
|
|
start = page_offset(page) + bvec->bv_offset;
|
|
io_tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
}
|
|
/* are we fully contained in this bio? */
|
|
if (buf_len <= length)
|
|
return 1;
|
|
|
|
ret = extent_range_uptodate(io_tree, start + length,
|
|
start + buf_len - 1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* called by the kthread helper functions to finally call the bio end_io
|
|
* functions. This is where read checksum verification actually happens
|
|
*/
|
|
static void end_workqueue_fn(struct btrfs_work *work)
|
|
{
|
|
struct bio *bio;
|
|
struct end_io_wq *end_io_wq;
|
|
struct btrfs_fs_info *fs_info;
|
|
int error;
|
|
|
|
end_io_wq = container_of(work, struct end_io_wq, work);
|
|
bio = end_io_wq->bio;
|
|
fs_info = end_io_wq->info;
|
|
|
|
/* metadata bio reads are special because the whole tree block must
|
|
* be checksummed at once. This makes sure the entire block is in
|
|
* ram and up to date before trying to verify things. For
|
|
* blocksize <= pagesize, it is basically a noop
|
|
*/
|
|
if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
|
|
!bio_ready_for_csum(bio)) {
|
|
btrfs_queue_worker(&fs_info->endio_meta_workers,
|
|
&end_io_wq->work);
|
|
return;
|
|
}
|
|
error = end_io_wq->error;
|
|
bio->bi_private = end_io_wq->private;
|
|
bio->bi_end_io = end_io_wq->end_io;
|
|
kfree(end_io_wq);
|
|
bio_endio(bio, error);
|
|
}
|
|
|
|
static int cleaner_kthread(void *arg)
|
|
{
|
|
struct btrfs_root *root = arg;
|
|
|
|
do {
|
|
vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
|
|
|
|
if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
|
|
mutex_trylock(&root->fs_info->cleaner_mutex)) {
|
|
btrfs_run_delayed_iputs(root);
|
|
btrfs_clean_old_snapshots(root);
|
|
mutex_unlock(&root->fs_info->cleaner_mutex);
|
|
btrfs_run_defrag_inodes(root->fs_info);
|
|
}
|
|
|
|
if (freezing(current)) {
|
|
refrigerator();
|
|
} else {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (!kthread_should_stop())
|
|
schedule();
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
} while (!kthread_should_stop());
|
|
return 0;
|
|
}
|
|
|
|
static int transaction_kthread(void *arg)
|
|
{
|
|
struct btrfs_root *root = arg;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_transaction *cur;
|
|
u64 transid;
|
|
unsigned long now;
|
|
unsigned long delay;
|
|
int ret;
|
|
|
|
do {
|
|
delay = HZ * 30;
|
|
vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
|
|
mutex_lock(&root->fs_info->transaction_kthread_mutex);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
cur = root->fs_info->running_transaction;
|
|
if (!cur) {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
goto sleep;
|
|
}
|
|
|
|
now = get_seconds();
|
|
if (!cur->blocked &&
|
|
(now < cur->start_time || now - cur->start_time < 30)) {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
delay = HZ * 5;
|
|
goto sleep;
|
|
}
|
|
transid = cur->transid;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
BUG_ON(IS_ERR(trans));
|
|
if (transid == trans->transid) {
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
BUG_ON(ret);
|
|
} else {
|
|
btrfs_end_transaction(trans, root);
|
|
}
|
|
sleep:
|
|
wake_up_process(root->fs_info->cleaner_kthread);
|
|
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
|
|
|
|
if (freezing(current)) {
|
|
refrigerator();
|
|
} else {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (!kthread_should_stop() &&
|
|
!btrfs_transaction_blocked(root->fs_info))
|
|
schedule_timeout(delay);
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
} while (!kthread_should_stop());
|
|
return 0;
|
|
}
|
|
|
|
struct btrfs_root *open_ctree(struct super_block *sb,
|
|
struct btrfs_fs_devices *fs_devices,
|
|
char *options)
|
|
{
|
|
u32 sectorsize;
|
|
u32 nodesize;
|
|
u32 leafsize;
|
|
u32 blocksize;
|
|
u32 stripesize;
|
|
u64 generation;
|
|
u64 features;
|
|
struct btrfs_key location;
|
|
struct buffer_head *bh;
|
|
struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
|
|
GFP_NOFS);
|
|
struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
|
|
GFP_NOFS);
|
|
struct btrfs_root *tree_root = btrfs_sb(sb);
|
|
struct btrfs_fs_info *fs_info = NULL;
|
|
struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
|
|
GFP_NOFS);
|
|
struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
|
|
GFP_NOFS);
|
|
struct btrfs_root *log_tree_root;
|
|
|
|
int ret;
|
|
int err = -EINVAL;
|
|
|
|
struct btrfs_super_block *disk_super;
|
|
|
|
if (!extent_root || !tree_root || !tree_root->fs_info ||
|
|
!chunk_root || !dev_root || !csum_root) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
fs_info = tree_root->fs_info;
|
|
|
|
ret = init_srcu_struct(&fs_info->subvol_srcu);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail;
|
|
}
|
|
|
|
ret = setup_bdi(fs_info, &fs_info->bdi);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_srcu;
|
|
}
|
|
|
|
fs_info->btree_inode = new_inode(sb);
|
|
if (!fs_info->btree_inode) {
|
|
err = -ENOMEM;
|
|
goto fail_bdi;
|
|
}
|
|
|
|
fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS;
|
|
|
|
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
|
|
INIT_LIST_HEAD(&fs_info->trans_list);
|
|
INIT_LIST_HEAD(&fs_info->dead_roots);
|
|
INIT_LIST_HEAD(&fs_info->delayed_iputs);
|
|
INIT_LIST_HEAD(&fs_info->hashers);
|
|
INIT_LIST_HEAD(&fs_info->delalloc_inodes);
|
|
INIT_LIST_HEAD(&fs_info->ordered_operations);
|
|
INIT_LIST_HEAD(&fs_info->caching_block_groups);
|
|
spin_lock_init(&fs_info->delalloc_lock);
|
|
spin_lock_init(&fs_info->trans_lock);
|
|
spin_lock_init(&fs_info->ref_cache_lock);
|
|
spin_lock_init(&fs_info->fs_roots_radix_lock);
|
|
spin_lock_init(&fs_info->delayed_iput_lock);
|
|
spin_lock_init(&fs_info->defrag_inodes_lock);
|
|
mutex_init(&fs_info->reloc_mutex);
|
|
|
|
init_completion(&fs_info->kobj_unregister);
|
|
fs_info->tree_root = tree_root;
|
|
fs_info->extent_root = extent_root;
|
|
fs_info->csum_root = csum_root;
|
|
fs_info->chunk_root = chunk_root;
|
|
fs_info->dev_root = dev_root;
|
|
fs_info->fs_devices = fs_devices;
|
|
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
|
|
INIT_LIST_HEAD(&fs_info->space_info);
|
|
btrfs_mapping_init(&fs_info->mapping_tree);
|
|
btrfs_init_block_rsv(&fs_info->global_block_rsv);
|
|
btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
|
|
btrfs_init_block_rsv(&fs_info->trans_block_rsv);
|
|
btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
|
|
btrfs_init_block_rsv(&fs_info->empty_block_rsv);
|
|
INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
|
|
mutex_init(&fs_info->durable_block_rsv_mutex);
|
|
atomic_set(&fs_info->nr_async_submits, 0);
|
|
atomic_set(&fs_info->async_delalloc_pages, 0);
|
|
atomic_set(&fs_info->async_submit_draining, 0);
|
|
atomic_set(&fs_info->nr_async_bios, 0);
|
|
atomic_set(&fs_info->defrag_running, 0);
|
|
fs_info->sb = sb;
|
|
fs_info->max_inline = 8192 * 1024;
|
|
fs_info->metadata_ratio = 0;
|
|
fs_info->defrag_inodes = RB_ROOT;
|
|
fs_info->trans_no_join = 0;
|
|
|
|
fs_info->thread_pool_size = min_t(unsigned long,
|
|
num_online_cpus() + 2, 8);
|
|
|
|
INIT_LIST_HEAD(&fs_info->ordered_extents);
|
|
spin_lock_init(&fs_info->ordered_extent_lock);
|
|
fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
|
|
GFP_NOFS);
|
|
if (!fs_info->delayed_root) {
|
|
err = -ENOMEM;
|
|
goto fail_iput;
|
|
}
|
|
btrfs_init_delayed_root(fs_info->delayed_root);
|
|
|
|
mutex_init(&fs_info->scrub_lock);
|
|
atomic_set(&fs_info->scrubs_running, 0);
|
|
atomic_set(&fs_info->scrub_pause_req, 0);
|
|
atomic_set(&fs_info->scrubs_paused, 0);
|
|
atomic_set(&fs_info->scrub_cancel_req, 0);
|
|
init_waitqueue_head(&fs_info->scrub_pause_wait);
|
|
init_rwsem(&fs_info->scrub_super_lock);
|
|
fs_info->scrub_workers_refcnt = 0;
|
|
|
|
sb->s_blocksize = 4096;
|
|
sb->s_blocksize_bits = blksize_bits(4096);
|
|
sb->s_bdi = &fs_info->bdi;
|
|
|
|
fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
|
|
fs_info->btree_inode->i_nlink = 1;
|
|
/*
|
|
* we set the i_size on the btree inode to the max possible int.
|
|
* the real end of the address space is determined by all of
|
|
* the devices in the system
|
|
*/
|
|
fs_info->btree_inode->i_size = OFFSET_MAX;
|
|
fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
|
|
fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
|
|
|
|
RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
|
|
extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
|
|
fs_info->btree_inode->i_mapping);
|
|
extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
|
|
|
|
BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
|
|
|
|
BTRFS_I(fs_info->btree_inode)->root = tree_root;
|
|
memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
|
|
sizeof(struct btrfs_key));
|
|
BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
|
|
insert_inode_hash(fs_info->btree_inode);
|
|
|
|
spin_lock_init(&fs_info->block_group_cache_lock);
|
|
fs_info->block_group_cache_tree = RB_ROOT;
|
|
|
|
extent_io_tree_init(&fs_info->freed_extents[0],
|
|
fs_info->btree_inode->i_mapping);
|
|
extent_io_tree_init(&fs_info->freed_extents[1],
|
|
fs_info->btree_inode->i_mapping);
|
|
fs_info->pinned_extents = &fs_info->freed_extents[0];
|
|
fs_info->do_barriers = 1;
|
|
|
|
|
|
mutex_init(&fs_info->ordered_operations_mutex);
|
|
mutex_init(&fs_info->tree_log_mutex);
|
|
mutex_init(&fs_info->chunk_mutex);
|
|
mutex_init(&fs_info->transaction_kthread_mutex);
|
|
mutex_init(&fs_info->cleaner_mutex);
|
|
mutex_init(&fs_info->volume_mutex);
|
|
init_rwsem(&fs_info->extent_commit_sem);
|
|
init_rwsem(&fs_info->cleanup_work_sem);
|
|
init_rwsem(&fs_info->subvol_sem);
|
|
|
|
btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
|
|
btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
|
|
|
|
init_waitqueue_head(&fs_info->transaction_throttle);
|
|
init_waitqueue_head(&fs_info->transaction_wait);
|
|
init_waitqueue_head(&fs_info->transaction_blocked_wait);
|
|
init_waitqueue_head(&fs_info->async_submit_wait);
|
|
|
|
__setup_root(4096, 4096, 4096, 4096, tree_root,
|
|
fs_info, BTRFS_ROOT_TREE_OBJECTID);
|
|
|
|
bh = btrfs_read_dev_super(fs_devices->latest_bdev);
|
|
if (!bh) {
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
|
|
memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
|
|
sizeof(fs_info->super_for_commit));
|
|
brelse(bh);
|
|
|
|
memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
|
|
|
|
disk_super = &fs_info->super_copy;
|
|
if (!btrfs_super_root(disk_super))
|
|
goto fail_alloc;
|
|
|
|
/* check FS state, whether FS is broken. */
|
|
fs_info->fs_state |= btrfs_super_flags(disk_super);
|
|
|
|
btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
|
|
|
|
/*
|
|
* In the long term, we'll store the compression type in the super
|
|
* block, and it'll be used for per file compression control.
|
|
*/
|
|
fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
|
|
|
|
ret = btrfs_parse_options(tree_root, options);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
features = btrfs_super_incompat_flags(disk_super) &
|
|
~BTRFS_FEATURE_INCOMPAT_SUPP;
|
|
if (features) {
|
|
printk(KERN_ERR "BTRFS: couldn't mount because of "
|
|
"unsupported optional features (%Lx).\n",
|
|
(unsigned long long)features);
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
features = btrfs_super_incompat_flags(disk_super);
|
|
features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
|
|
if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
|
|
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
|
|
btrfs_set_super_incompat_flags(disk_super, features);
|
|
|
|
features = btrfs_super_compat_ro_flags(disk_super) &
|
|
~BTRFS_FEATURE_COMPAT_RO_SUPP;
|
|
if (!(sb->s_flags & MS_RDONLY) && features) {
|
|
printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
|
|
"unsupported option features (%Lx).\n",
|
|
(unsigned long long)features);
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
btrfs_init_workers(&fs_info->generic_worker,
|
|
"genwork", 1, NULL);
|
|
|
|
btrfs_init_workers(&fs_info->workers, "worker",
|
|
fs_info->thread_pool_size,
|
|
&fs_info->generic_worker);
|
|
|
|
btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
|
|
fs_info->thread_pool_size,
|
|
&fs_info->generic_worker);
|
|
|
|
btrfs_init_workers(&fs_info->submit_workers, "submit",
|
|
min_t(u64, fs_devices->num_devices,
|
|
fs_info->thread_pool_size),
|
|
&fs_info->generic_worker);
|
|
|
|
/* a higher idle thresh on the submit workers makes it much more
|
|
* likely that bios will be send down in a sane order to the
|
|
* devices
|
|
*/
|
|
fs_info->submit_workers.idle_thresh = 64;
|
|
|
|
fs_info->workers.idle_thresh = 16;
|
|
fs_info->workers.ordered = 1;
|
|
|
|
fs_info->delalloc_workers.idle_thresh = 2;
|
|
fs_info->delalloc_workers.ordered = 1;
|
|
|
|
btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
|
|
&fs_info->generic_worker);
|
|
btrfs_init_workers(&fs_info->endio_workers, "endio",
|
|
fs_info->thread_pool_size,
|
|
&fs_info->generic_worker);
|
|
btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
|
|
fs_info->thread_pool_size,
|
|
&fs_info->generic_worker);
|
|
btrfs_init_workers(&fs_info->endio_meta_write_workers,
|
|
"endio-meta-write", fs_info->thread_pool_size,
|
|
&fs_info->generic_worker);
|
|
btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
|
|
fs_info->thread_pool_size,
|
|
&fs_info->generic_worker);
|
|
btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
|
|
1, &fs_info->generic_worker);
|
|
btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
|
|
fs_info->thread_pool_size,
|
|
&fs_info->generic_worker);
|
|
|
|
/*
|
|
* endios are largely parallel and should have a very
|
|
* low idle thresh
|
|
*/
|
|
fs_info->endio_workers.idle_thresh = 4;
|
|
fs_info->endio_meta_workers.idle_thresh = 4;
|
|
|
|
fs_info->endio_write_workers.idle_thresh = 2;
|
|
fs_info->endio_meta_write_workers.idle_thresh = 2;
|
|
|
|
btrfs_start_workers(&fs_info->workers, 1);
|
|
btrfs_start_workers(&fs_info->generic_worker, 1);
|
|
btrfs_start_workers(&fs_info->submit_workers, 1);
|
|
btrfs_start_workers(&fs_info->delalloc_workers, 1);
|
|
btrfs_start_workers(&fs_info->fixup_workers, 1);
|
|
btrfs_start_workers(&fs_info->endio_workers, 1);
|
|
btrfs_start_workers(&fs_info->endio_meta_workers, 1);
|
|
btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
|
|
btrfs_start_workers(&fs_info->endio_write_workers, 1);
|
|
btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
|
|
btrfs_start_workers(&fs_info->delayed_workers, 1);
|
|
|
|
fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
|
|
fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
|
|
4 * 1024 * 1024 / PAGE_CACHE_SIZE);
|
|
|
|
nodesize = btrfs_super_nodesize(disk_super);
|
|
leafsize = btrfs_super_leafsize(disk_super);
|
|
sectorsize = btrfs_super_sectorsize(disk_super);
|
|
stripesize = btrfs_super_stripesize(disk_super);
|
|
tree_root->nodesize = nodesize;
|
|
tree_root->leafsize = leafsize;
|
|
tree_root->sectorsize = sectorsize;
|
|
tree_root->stripesize = stripesize;
|
|
|
|
sb->s_blocksize = sectorsize;
|
|
sb->s_blocksize_bits = blksize_bits(sectorsize);
|
|
|
|
if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
|
|
sizeof(disk_super->magic))) {
|
|
printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
|
|
goto fail_sb_buffer;
|
|
}
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
ret = btrfs_read_sys_array(tree_root);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
if (ret) {
|
|
printk(KERN_WARNING "btrfs: failed to read the system "
|
|
"array on %s\n", sb->s_id);
|
|
goto fail_sb_buffer;
|
|
}
|
|
|
|
blocksize = btrfs_level_size(tree_root,
|
|
btrfs_super_chunk_root_level(disk_super));
|
|
generation = btrfs_super_chunk_root_generation(disk_super);
|
|
|
|
__setup_root(nodesize, leafsize, sectorsize, stripesize,
|
|
chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
|
|
|
|
chunk_root->node = read_tree_block(chunk_root,
|
|
btrfs_super_chunk_root(disk_super),
|
|
blocksize, generation);
|
|
BUG_ON(!chunk_root->node);
|
|
if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
|
|
printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
|
|
sb->s_id);
|
|
goto fail_chunk_root;
|
|
}
|
|
btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
|
|
chunk_root->commit_root = btrfs_root_node(chunk_root);
|
|
|
|
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
|
|
(unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
|
|
BTRFS_UUID_SIZE);
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
ret = btrfs_read_chunk_tree(chunk_root);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
if (ret) {
|
|
printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
|
|
sb->s_id);
|
|
goto fail_chunk_root;
|
|
}
|
|
|
|
btrfs_close_extra_devices(fs_devices);
|
|
|
|
blocksize = btrfs_level_size(tree_root,
|
|
btrfs_super_root_level(disk_super));
|
|
generation = btrfs_super_generation(disk_super);
|
|
|
|
tree_root->node = read_tree_block(tree_root,
|
|
btrfs_super_root(disk_super),
|
|
blocksize, generation);
|
|
if (!tree_root->node)
|
|
goto fail_chunk_root;
|
|
if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
|
|
printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
|
|
sb->s_id);
|
|
goto fail_tree_root;
|
|
}
|
|
btrfs_set_root_node(&tree_root->root_item, tree_root->node);
|
|
tree_root->commit_root = btrfs_root_node(tree_root);
|
|
|
|
ret = find_and_setup_root(tree_root, fs_info,
|
|
BTRFS_EXTENT_TREE_OBJECTID, extent_root);
|
|
if (ret)
|
|
goto fail_tree_root;
|
|
extent_root->track_dirty = 1;
|
|
|
|
ret = find_and_setup_root(tree_root, fs_info,
|
|
BTRFS_DEV_TREE_OBJECTID, dev_root);
|
|
if (ret)
|
|
goto fail_extent_root;
|
|
dev_root->track_dirty = 1;
|
|
|
|
ret = find_and_setup_root(tree_root, fs_info,
|
|
BTRFS_CSUM_TREE_OBJECTID, csum_root);
|
|
if (ret)
|
|
goto fail_dev_root;
|
|
|
|
csum_root->track_dirty = 1;
|
|
|
|
fs_info->generation = generation;
|
|
fs_info->last_trans_committed = generation;
|
|
fs_info->data_alloc_profile = (u64)-1;
|
|
fs_info->metadata_alloc_profile = (u64)-1;
|
|
fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
|
|
|
|
ret = btrfs_init_space_info(fs_info);
|
|
if (ret) {
|
|
printk(KERN_ERR "Failed to initial space info: %d\n", ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
ret = btrfs_read_block_groups(extent_root);
|
|
if (ret) {
|
|
printk(KERN_ERR "Failed to read block groups: %d\n", ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
|
|
"btrfs-cleaner");
|
|
if (IS_ERR(fs_info->cleaner_kthread))
|
|
goto fail_block_groups;
|
|
|
|
fs_info->transaction_kthread = kthread_run(transaction_kthread,
|
|
tree_root,
|
|
"btrfs-transaction");
|
|
if (IS_ERR(fs_info->transaction_kthread))
|
|
goto fail_cleaner;
|
|
|
|
if (!btrfs_test_opt(tree_root, SSD) &&
|
|
!btrfs_test_opt(tree_root, NOSSD) &&
|
|
!fs_info->fs_devices->rotating) {
|
|
printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
|
|
"mode\n");
|
|
btrfs_set_opt(fs_info->mount_opt, SSD);
|
|
}
|
|
|
|
/* do not make disk changes in broken FS */
|
|
if (btrfs_super_log_root(disk_super) != 0 &&
|
|
!(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
|
|
u64 bytenr = btrfs_super_log_root(disk_super);
|
|
|
|
if (fs_devices->rw_devices == 0) {
|
|
printk(KERN_WARNING "Btrfs log replay required "
|
|
"on RO media\n");
|
|
err = -EIO;
|
|
goto fail_trans_kthread;
|
|
}
|
|
blocksize =
|
|
btrfs_level_size(tree_root,
|
|
btrfs_super_log_root_level(disk_super));
|
|
|
|
log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
|
|
if (!log_tree_root) {
|
|
err = -ENOMEM;
|
|
goto fail_trans_kthread;
|
|
}
|
|
|
|
__setup_root(nodesize, leafsize, sectorsize, stripesize,
|
|
log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
log_tree_root->node = read_tree_block(tree_root, bytenr,
|
|
blocksize,
|
|
generation + 1);
|
|
ret = btrfs_recover_log_trees(log_tree_root);
|
|
BUG_ON(ret);
|
|
|
|
if (sb->s_flags & MS_RDONLY) {
|
|
ret = btrfs_commit_super(tree_root);
|
|
BUG_ON(ret);
|
|
}
|
|
}
|
|
|
|
ret = btrfs_find_orphan_roots(tree_root);
|
|
BUG_ON(ret);
|
|
|
|
if (!(sb->s_flags & MS_RDONLY)) {
|
|
ret = btrfs_cleanup_fs_roots(fs_info);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_recover_relocation(tree_root);
|
|
if (ret < 0) {
|
|
printk(KERN_WARNING
|
|
"btrfs: failed to recover relocation\n");
|
|
err = -EINVAL;
|
|
goto fail_trans_kthread;
|
|
}
|
|
}
|
|
|
|
location.objectid = BTRFS_FS_TREE_OBJECTID;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
location.offset = (u64)-1;
|
|
|
|
fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
|
|
if (!fs_info->fs_root)
|
|
goto fail_trans_kthread;
|
|
if (IS_ERR(fs_info->fs_root)) {
|
|
err = PTR_ERR(fs_info->fs_root);
|
|
goto fail_trans_kthread;
|
|
}
|
|
|
|
if (!(sb->s_flags & MS_RDONLY)) {
|
|
down_read(&fs_info->cleanup_work_sem);
|
|
err = btrfs_orphan_cleanup(fs_info->fs_root);
|
|
if (!err)
|
|
err = btrfs_orphan_cleanup(fs_info->tree_root);
|
|
up_read(&fs_info->cleanup_work_sem);
|
|
if (err) {
|
|
close_ctree(tree_root);
|
|
return ERR_PTR(err);
|
|
}
|
|
}
|
|
|
|
return tree_root;
|
|
|
|
fail_trans_kthread:
|
|
kthread_stop(fs_info->transaction_kthread);
|
|
fail_cleaner:
|
|
kthread_stop(fs_info->cleaner_kthread);
|
|
|
|
/*
|
|
* make sure we're done with the btree inode before we stop our
|
|
* kthreads
|
|
*/
|
|
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
|
|
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
|
|
|
|
fail_block_groups:
|
|
btrfs_free_block_groups(fs_info);
|
|
free_extent_buffer(csum_root->node);
|
|
free_extent_buffer(csum_root->commit_root);
|
|
fail_dev_root:
|
|
free_extent_buffer(dev_root->node);
|
|
free_extent_buffer(dev_root->commit_root);
|
|
fail_extent_root:
|
|
free_extent_buffer(extent_root->node);
|
|
free_extent_buffer(extent_root->commit_root);
|
|
fail_tree_root:
|
|
free_extent_buffer(tree_root->node);
|
|
free_extent_buffer(tree_root->commit_root);
|
|
fail_chunk_root:
|
|
free_extent_buffer(chunk_root->node);
|
|
free_extent_buffer(chunk_root->commit_root);
|
|
fail_sb_buffer:
|
|
btrfs_stop_workers(&fs_info->generic_worker);
|
|
btrfs_stop_workers(&fs_info->fixup_workers);
|
|
btrfs_stop_workers(&fs_info->delalloc_workers);
|
|
btrfs_stop_workers(&fs_info->workers);
|
|
btrfs_stop_workers(&fs_info->endio_workers);
|
|
btrfs_stop_workers(&fs_info->endio_meta_workers);
|
|
btrfs_stop_workers(&fs_info->endio_meta_write_workers);
|
|
btrfs_stop_workers(&fs_info->endio_write_workers);
|
|
btrfs_stop_workers(&fs_info->endio_freespace_worker);
|
|
btrfs_stop_workers(&fs_info->submit_workers);
|
|
btrfs_stop_workers(&fs_info->delayed_workers);
|
|
fail_alloc:
|
|
kfree(fs_info->delayed_root);
|
|
fail_iput:
|
|
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
|
|
iput(fs_info->btree_inode);
|
|
|
|
btrfs_close_devices(fs_info->fs_devices);
|
|
btrfs_mapping_tree_free(&fs_info->mapping_tree);
|
|
fail_bdi:
|
|
bdi_destroy(&fs_info->bdi);
|
|
fail_srcu:
|
|
cleanup_srcu_struct(&fs_info->subvol_srcu);
|
|
fail:
|
|
kfree(extent_root);
|
|
kfree(tree_root);
|
|
kfree(fs_info);
|
|
kfree(chunk_root);
|
|
kfree(dev_root);
|
|
kfree(csum_root);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
|
|
{
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
if (uptodate) {
|
|
set_buffer_uptodate(bh);
|
|
} else {
|
|
printk_ratelimited(KERN_WARNING "lost page write due to "
|
|
"I/O error on %s\n",
|
|
bdevname(bh->b_bdev, b));
|
|
/* note, we dont' set_buffer_write_io_error because we have
|
|
* our own ways of dealing with the IO errors
|
|
*/
|
|
clear_buffer_uptodate(bh);
|
|
}
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
}
|
|
|
|
struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct buffer_head *latest = NULL;
|
|
struct btrfs_super_block *super;
|
|
int i;
|
|
u64 transid = 0;
|
|
u64 bytenr;
|
|
|
|
/* we would like to check all the supers, but that would make
|
|
* a btrfs mount succeed after a mkfs from a different FS.
|
|
* So, we need to add a special mount option to scan for
|
|
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
|
|
*/
|
|
for (i = 0; i < 1; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
|
|
break;
|
|
bh = __bread(bdev, bytenr / 4096, 4096);
|
|
if (!bh)
|
|
continue;
|
|
|
|
super = (struct btrfs_super_block *)bh->b_data;
|
|
if (btrfs_super_bytenr(super) != bytenr ||
|
|
strncmp((char *)(&super->magic), BTRFS_MAGIC,
|
|
sizeof(super->magic))) {
|
|
brelse(bh);
|
|
continue;
|
|
}
|
|
|
|
if (!latest || btrfs_super_generation(super) > transid) {
|
|
brelse(latest);
|
|
latest = bh;
|
|
transid = btrfs_super_generation(super);
|
|
} else {
|
|
brelse(bh);
|
|
}
|
|
}
|
|
return latest;
|
|
}
|
|
|
|
/*
|
|
* this should be called twice, once with wait == 0 and
|
|
* once with wait == 1. When wait == 0 is done, all the buffer heads
|
|
* we write are pinned.
|
|
*
|
|
* They are released when wait == 1 is done.
|
|
* max_mirrors must be the same for both runs, and it indicates how
|
|
* many supers on this one device should be written.
|
|
*
|
|
* max_mirrors == 0 means to write them all.
|
|
*/
|
|
static int write_dev_supers(struct btrfs_device *device,
|
|
struct btrfs_super_block *sb,
|
|
int do_barriers, int wait, int max_mirrors)
|
|
{
|
|
struct buffer_head *bh;
|
|
int i;
|
|
int ret;
|
|
int errors = 0;
|
|
u32 crc;
|
|
u64 bytenr;
|
|
int last_barrier = 0;
|
|
|
|
if (max_mirrors == 0)
|
|
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
|
|
|
|
/* make sure only the last submit_bh does a barrier */
|
|
if (do_barriers) {
|
|
for (i = 0; i < max_mirrors; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
|
|
device->total_bytes)
|
|
break;
|
|
last_barrier = i;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < max_mirrors; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
|
|
break;
|
|
|
|
if (wait) {
|
|
bh = __find_get_block(device->bdev, bytenr / 4096,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
BUG_ON(!bh);
|
|
wait_on_buffer(bh);
|
|
if (!buffer_uptodate(bh))
|
|
errors++;
|
|
|
|
/* drop our reference */
|
|
brelse(bh);
|
|
|
|
/* drop the reference from the wait == 0 run */
|
|
brelse(bh);
|
|
continue;
|
|
} else {
|
|
btrfs_set_super_bytenr(sb, bytenr);
|
|
|
|
crc = ~(u32)0;
|
|
crc = btrfs_csum_data(NULL, (char *)sb +
|
|
BTRFS_CSUM_SIZE, crc,
|
|
BTRFS_SUPER_INFO_SIZE -
|
|
BTRFS_CSUM_SIZE);
|
|
btrfs_csum_final(crc, sb->csum);
|
|
|
|
/*
|
|
* one reference for us, and we leave it for the
|
|
* caller
|
|
*/
|
|
bh = __getblk(device->bdev, bytenr / 4096,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
|
|
|
|
/* one reference for submit_bh */
|
|
get_bh(bh);
|
|
|
|
set_buffer_uptodate(bh);
|
|
lock_buffer(bh);
|
|
bh->b_end_io = btrfs_end_buffer_write_sync;
|
|
}
|
|
|
|
if (i == last_barrier && do_barriers)
|
|
ret = submit_bh(WRITE_FLUSH_FUA, bh);
|
|
else
|
|
ret = submit_bh(WRITE_SYNC, bh);
|
|
|
|
if (ret)
|
|
errors++;
|
|
}
|
|
return errors < i ? 0 : -1;
|
|
}
|
|
|
|
int write_all_supers(struct btrfs_root *root, int max_mirrors)
|
|
{
|
|
struct list_head *head;
|
|
struct btrfs_device *dev;
|
|
struct btrfs_super_block *sb;
|
|
struct btrfs_dev_item *dev_item;
|
|
int ret;
|
|
int do_barriers;
|
|
int max_errors;
|
|
int total_errors = 0;
|
|
u64 flags;
|
|
|
|
max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
|
|
do_barriers = !btrfs_test_opt(root, NOBARRIER);
|
|
|
|
sb = &root->fs_info->super_for_commit;
|
|
dev_item = &sb->dev_item;
|
|
|
|
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
|
|
head = &root->fs_info->fs_devices->devices;
|
|
list_for_each_entry_rcu(dev, head, dev_list) {
|
|
if (!dev->bdev) {
|
|
total_errors++;
|
|
continue;
|
|
}
|
|
if (!dev->in_fs_metadata || !dev->writeable)
|
|
continue;
|
|
|
|
btrfs_set_stack_device_generation(dev_item, 0);
|
|
btrfs_set_stack_device_type(dev_item, dev->type);
|
|
btrfs_set_stack_device_id(dev_item, dev->devid);
|
|
btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
|
|
btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
|
|
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
|
|
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
|
|
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
|
|
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
|
|
memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
|
|
|
|
flags = btrfs_super_flags(sb);
|
|
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
|
|
|
|
ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
|
|
if (ret)
|
|
total_errors++;
|
|
}
|
|
if (total_errors > max_errors) {
|
|
printk(KERN_ERR "btrfs: %d errors while writing supers\n",
|
|
total_errors);
|
|
BUG();
|
|
}
|
|
|
|
total_errors = 0;
|
|
list_for_each_entry_rcu(dev, head, dev_list) {
|
|
if (!dev->bdev)
|
|
continue;
|
|
if (!dev->in_fs_metadata || !dev->writeable)
|
|
continue;
|
|
|
|
ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
|
|
if (ret)
|
|
total_errors++;
|
|
}
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
if (total_errors > max_errors) {
|
|
printk(KERN_ERR "btrfs: %d errors while writing supers\n",
|
|
total_errors);
|
|
BUG();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int write_ctree_super(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, int max_mirrors)
|
|
{
|
|
int ret;
|
|
|
|
ret = write_all_supers(root, max_mirrors);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
|
|
{
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
radix_tree_delete(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
|
|
if (btrfs_root_refs(&root->root_item) == 0)
|
|
synchronize_srcu(&fs_info->subvol_srcu);
|
|
|
|
__btrfs_remove_free_space_cache(root->free_ino_pinned);
|
|
__btrfs_remove_free_space_cache(root->free_ino_ctl);
|
|
free_fs_root(root);
|
|
return 0;
|
|
}
|
|
|
|
static void free_fs_root(struct btrfs_root *root)
|
|
{
|
|
iput(root->cache_inode);
|
|
WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
|
|
if (root->anon_dev)
|
|
free_anon_bdev(root->anon_dev);
|
|
free_extent_buffer(root->node);
|
|
free_extent_buffer(root->commit_root);
|
|
kfree(root->free_ino_ctl);
|
|
kfree(root->free_ino_pinned);
|
|
kfree(root->name);
|
|
kfree(root);
|
|
}
|
|
|
|
static int del_fs_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *gang[8];
|
|
int i;
|
|
|
|
while (!list_empty(&fs_info->dead_roots)) {
|
|
gang[0] = list_entry(fs_info->dead_roots.next,
|
|
struct btrfs_root, root_list);
|
|
list_del(&gang[0]->root_list);
|
|
|
|
if (gang[0]->in_radix) {
|
|
btrfs_free_fs_root(fs_info, gang[0]);
|
|
} else {
|
|
free_extent_buffer(gang[0]->node);
|
|
free_extent_buffer(gang[0]->commit_root);
|
|
kfree(gang[0]);
|
|
}
|
|
}
|
|
|
|
while (1) {
|
|
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
|
|
(void **)gang, 0,
|
|
ARRAY_SIZE(gang));
|
|
if (!ret)
|
|
break;
|
|
for (i = 0; i < ret; i++)
|
|
btrfs_free_fs_root(fs_info, gang[i]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
u64 root_objectid = 0;
|
|
struct btrfs_root *gang[8];
|
|
int i;
|
|
int ret;
|
|
|
|
while (1) {
|
|
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
|
|
(void **)gang, root_objectid,
|
|
ARRAY_SIZE(gang));
|
|
if (!ret)
|
|
break;
|
|
|
|
root_objectid = gang[ret - 1]->root_key.objectid + 1;
|
|
for (i = 0; i < ret; i++) {
|
|
int err;
|
|
|
|
root_objectid = gang[i]->root_key.objectid;
|
|
err = btrfs_orphan_cleanup(gang[i]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
root_objectid++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_commit_super(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
mutex_lock(&root->fs_info->cleaner_mutex);
|
|
btrfs_run_delayed_iputs(root);
|
|
btrfs_clean_old_snapshots(root);
|
|
mutex_unlock(&root->fs_info->cleaner_mutex);
|
|
|
|
/* wait until ongoing cleanup work done */
|
|
down_write(&root->fs_info->cleanup_work_sem);
|
|
up_write(&root->fs_info->cleanup_work_sem);
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
BUG_ON(ret);
|
|
/* run commit again to drop the original snapshot */
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
btrfs_commit_transaction(trans, root);
|
|
ret = btrfs_write_and_wait_transaction(NULL, root);
|
|
BUG_ON(ret);
|
|
|
|
ret = write_ctree_super(NULL, root, 0);
|
|
return ret;
|
|
}
|
|
|
|
int close_ctree(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
|
|
fs_info->closing = 1;
|
|
smp_mb();
|
|
|
|
btrfs_scrub_cancel(root);
|
|
|
|
/* wait for any defraggers to finish */
|
|
wait_event(fs_info->transaction_wait,
|
|
(atomic_read(&fs_info->defrag_running) == 0));
|
|
|
|
/* clear out the rbtree of defraggable inodes */
|
|
btrfs_run_defrag_inodes(root->fs_info);
|
|
|
|
btrfs_put_block_group_cache(fs_info);
|
|
|
|
/*
|
|
* Here come 2 situations when btrfs is broken to flip readonly:
|
|
*
|
|
* 1. when btrfs flips readonly somewhere else before
|
|
* btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
|
|
* and btrfs will skip to write sb directly to keep
|
|
* ERROR state on disk.
|
|
*
|
|
* 2. when btrfs flips readonly just in btrfs_commit_super,
|
|
* and in such case, btrfs cannot write sb via btrfs_commit_super,
|
|
* and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
|
|
* btrfs will cleanup all FS resources first and write sb then.
|
|
*/
|
|
if (!(fs_info->sb->s_flags & MS_RDONLY)) {
|
|
ret = btrfs_commit_super(root);
|
|
if (ret)
|
|
printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
|
|
}
|
|
|
|
if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
|
|
ret = btrfs_error_commit_super(root);
|
|
if (ret)
|
|
printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
|
|
}
|
|
|
|
kthread_stop(root->fs_info->transaction_kthread);
|
|
kthread_stop(root->fs_info->cleaner_kthread);
|
|
|
|
fs_info->closing = 2;
|
|
smp_mb();
|
|
|
|
if (fs_info->delalloc_bytes) {
|
|
printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
|
|
(unsigned long long)fs_info->delalloc_bytes);
|
|
}
|
|
if (fs_info->total_ref_cache_size) {
|
|
printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
|
|
(unsigned long long)fs_info->total_ref_cache_size);
|
|
}
|
|
|
|
free_extent_buffer(fs_info->extent_root->node);
|
|
free_extent_buffer(fs_info->extent_root->commit_root);
|
|
free_extent_buffer(fs_info->tree_root->node);
|
|
free_extent_buffer(fs_info->tree_root->commit_root);
|
|
free_extent_buffer(root->fs_info->chunk_root->node);
|
|
free_extent_buffer(root->fs_info->chunk_root->commit_root);
|
|
free_extent_buffer(root->fs_info->dev_root->node);
|
|
free_extent_buffer(root->fs_info->dev_root->commit_root);
|
|
free_extent_buffer(root->fs_info->csum_root->node);
|
|
free_extent_buffer(root->fs_info->csum_root->commit_root);
|
|
|
|
btrfs_free_block_groups(root->fs_info);
|
|
|
|
del_fs_roots(fs_info);
|
|
|
|
iput(fs_info->btree_inode);
|
|
kfree(fs_info->delayed_root);
|
|
|
|
btrfs_stop_workers(&fs_info->generic_worker);
|
|
btrfs_stop_workers(&fs_info->fixup_workers);
|
|
btrfs_stop_workers(&fs_info->delalloc_workers);
|
|
btrfs_stop_workers(&fs_info->workers);
|
|
btrfs_stop_workers(&fs_info->endio_workers);
|
|
btrfs_stop_workers(&fs_info->endio_meta_workers);
|
|
btrfs_stop_workers(&fs_info->endio_meta_write_workers);
|
|
btrfs_stop_workers(&fs_info->endio_write_workers);
|
|
btrfs_stop_workers(&fs_info->endio_freespace_worker);
|
|
btrfs_stop_workers(&fs_info->submit_workers);
|
|
btrfs_stop_workers(&fs_info->delayed_workers);
|
|
|
|
btrfs_close_devices(fs_info->fs_devices);
|
|
btrfs_mapping_tree_free(&fs_info->mapping_tree);
|
|
|
|
bdi_destroy(&fs_info->bdi);
|
|
cleanup_srcu_struct(&fs_info->subvol_srcu);
|
|
|
|
kfree(fs_info->extent_root);
|
|
kfree(fs_info->tree_root);
|
|
kfree(fs_info->chunk_root);
|
|
kfree(fs_info->dev_root);
|
|
kfree(fs_info->csum_root);
|
|
kfree(fs_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
|
|
{
|
|
int ret;
|
|
struct inode *btree_inode = buf->first_page->mapping->host;
|
|
|
|
ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
|
|
NULL);
|
|
if (!ret)
|
|
return ret;
|
|
|
|
ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
|
|
parent_transid);
|
|
return !ret;
|
|
}
|
|
|
|
int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
|
|
{
|
|
struct inode *btree_inode = buf->first_page->mapping->host;
|
|
return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
|
|
buf);
|
|
}
|
|
|
|
void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
|
|
u64 transid = btrfs_header_generation(buf);
|
|
struct inode *btree_inode = root->fs_info->btree_inode;
|
|
int was_dirty;
|
|
|
|
btrfs_assert_tree_locked(buf);
|
|
if (transid != root->fs_info->generation) {
|
|
printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
|
|
"found %llu running %llu\n",
|
|
(unsigned long long)buf->start,
|
|
(unsigned long long)transid,
|
|
(unsigned long long)root->fs_info->generation);
|
|
WARN_ON(1);
|
|
}
|
|
was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
|
|
buf);
|
|
if (!was_dirty) {
|
|
spin_lock(&root->fs_info->delalloc_lock);
|
|
root->fs_info->dirty_metadata_bytes += buf->len;
|
|
spin_unlock(&root->fs_info->delalloc_lock);
|
|
}
|
|
}
|
|
|
|
void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
|
|
{
|
|
/*
|
|
* looks as though older kernels can get into trouble with
|
|
* this code, they end up stuck in balance_dirty_pages forever
|
|
*/
|
|
u64 num_dirty;
|
|
unsigned long thresh = 32 * 1024 * 1024;
|
|
|
|
if (current->flags & PF_MEMALLOC)
|
|
return;
|
|
|
|
btrfs_balance_delayed_items(root);
|
|
|
|
num_dirty = root->fs_info->dirty_metadata_bytes;
|
|
|
|
if (num_dirty > thresh) {
|
|
balance_dirty_pages_ratelimited_nr(
|
|
root->fs_info->btree_inode->i_mapping, 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
|
|
{
|
|
/*
|
|
* looks as though older kernels can get into trouble with
|
|
* this code, they end up stuck in balance_dirty_pages forever
|
|
*/
|
|
u64 num_dirty;
|
|
unsigned long thresh = 32 * 1024 * 1024;
|
|
|
|
if (current->flags & PF_MEMALLOC)
|
|
return;
|
|
|
|
num_dirty = root->fs_info->dirty_metadata_bytes;
|
|
|
|
if (num_dirty > thresh) {
|
|
balance_dirty_pages_ratelimited_nr(
|
|
root->fs_info->btree_inode->i_mapping, 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
|
|
int ret;
|
|
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
|
|
if (ret == 0)
|
|
set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
|
|
return ret;
|
|
}
|
|
|
|
int btree_lock_page_hook(struct page *page)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_buffer *eb;
|
|
unsigned long len;
|
|
u64 bytenr = page_offset(page);
|
|
|
|
if (page->private == EXTENT_PAGE_PRIVATE)
|
|
goto out;
|
|
|
|
len = page->private >> 2;
|
|
eb = find_extent_buffer(io_tree, bytenr, len);
|
|
if (!eb)
|
|
goto out;
|
|
|
|
btrfs_tree_lock(eb);
|
|
btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
|
|
|
|
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
|
|
spin_lock(&root->fs_info->delalloc_lock);
|
|
if (root->fs_info->dirty_metadata_bytes >= eb->len)
|
|
root->fs_info->dirty_metadata_bytes -= eb->len;
|
|
else
|
|
WARN_ON(1);
|
|
spin_unlock(&root->fs_info->delalloc_lock);
|
|
}
|
|
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
out:
|
|
lock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
|
|
int read_only)
|
|
{
|
|
if (read_only)
|
|
return;
|
|
|
|
if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
|
|
printk(KERN_WARNING "warning: mount fs with errors, "
|
|
"running btrfsck is recommended\n");
|
|
}
|
|
|
|
int btrfs_error_commit_super(struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&root->fs_info->cleaner_mutex);
|
|
btrfs_run_delayed_iputs(root);
|
|
mutex_unlock(&root->fs_info->cleaner_mutex);
|
|
|
|
down_write(&root->fs_info->cleanup_work_sem);
|
|
up_write(&root->fs_info->cleanup_work_sem);
|
|
|
|
/* cleanup FS via transaction */
|
|
btrfs_cleanup_transaction(root);
|
|
|
|
ret = write_ctree_super(NULL, root, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_inode *btrfs_inode;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
mutex_lock(&root->fs_info->ordered_operations_mutex);
|
|
spin_lock(&root->fs_info->ordered_extent_lock);
|
|
|
|
list_splice_init(&root->fs_info->ordered_operations, &splice);
|
|
while (!list_empty(&splice)) {
|
|
btrfs_inode = list_entry(splice.next, struct btrfs_inode,
|
|
ordered_operations);
|
|
|
|
list_del_init(&btrfs_inode->ordered_operations);
|
|
|
|
btrfs_invalidate_inodes(btrfs_inode->root);
|
|
}
|
|
|
|
spin_unlock(&root->fs_info->ordered_extent_lock);
|
|
mutex_unlock(&root->fs_info->ordered_operations_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
|
|
{
|
|
struct list_head splice;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct inode *inode;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&root->fs_info->ordered_extent_lock);
|
|
|
|
list_splice_init(&root->fs_info->ordered_extents, &splice);
|
|
while (!list_empty(&splice)) {
|
|
ordered = list_entry(splice.next, struct btrfs_ordered_extent,
|
|
root_extent_list);
|
|
|
|
list_del_init(&ordered->root_extent_list);
|
|
atomic_inc(&ordered->refs);
|
|
|
|
/* the inode may be getting freed (in sys_unlink path). */
|
|
inode = igrab(ordered->inode);
|
|
|
|
spin_unlock(&root->fs_info->ordered_extent_lock);
|
|
if (inode)
|
|
iput(inode);
|
|
|
|
atomic_set(&ordered->refs, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
|
|
spin_lock(&root->fs_info->ordered_extent_lock);
|
|
}
|
|
|
|
spin_unlock(&root->fs_info->ordered_extent_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
int ret = 0;
|
|
|
|
delayed_refs = &trans->delayed_refs;
|
|
|
|
spin_lock(&delayed_refs->lock);
|
|
if (delayed_refs->num_entries == 0) {
|
|
spin_unlock(&delayed_refs->lock);
|
|
printk(KERN_INFO "delayed_refs has NO entry\n");
|
|
return ret;
|
|
}
|
|
|
|
node = rb_first(&delayed_refs->root);
|
|
while (node) {
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
|
|
node = rb_next(node);
|
|
|
|
ref->in_tree = 0;
|
|
rb_erase(&ref->rb_node, &delayed_refs->root);
|
|
delayed_refs->num_entries--;
|
|
|
|
atomic_set(&ref->refs, 1);
|
|
if (btrfs_delayed_ref_is_head(ref)) {
|
|
struct btrfs_delayed_ref_head *head;
|
|
|
|
head = btrfs_delayed_node_to_head(ref);
|
|
mutex_lock(&head->mutex);
|
|
kfree(head->extent_op);
|
|
delayed_refs->num_heads--;
|
|
if (list_empty(&head->cluster))
|
|
delayed_refs->num_heads_ready--;
|
|
list_del_init(&head->cluster);
|
|
mutex_unlock(&head->mutex);
|
|
}
|
|
|
|
spin_unlock(&delayed_refs->lock);
|
|
btrfs_put_delayed_ref(ref);
|
|
|
|
cond_resched();
|
|
spin_lock(&delayed_refs->lock);
|
|
}
|
|
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
|
|
{
|
|
struct btrfs_pending_snapshot *snapshot;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
list_splice_init(&t->pending_snapshots, &splice);
|
|
|
|
while (!list_empty(&splice)) {
|
|
snapshot = list_entry(splice.next,
|
|
struct btrfs_pending_snapshot,
|
|
list);
|
|
|
|
list_del_init(&snapshot->list);
|
|
|
|
kfree(snapshot);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_inode *btrfs_inode;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&root->fs_info->delalloc_lock);
|
|
list_splice_init(&root->fs_info->delalloc_inodes, &splice);
|
|
|
|
while (!list_empty(&splice)) {
|
|
btrfs_inode = list_entry(splice.next, struct btrfs_inode,
|
|
delalloc_inodes);
|
|
|
|
list_del_init(&btrfs_inode->delalloc_inodes);
|
|
|
|
btrfs_invalidate_inodes(btrfs_inode->root);
|
|
}
|
|
|
|
spin_unlock(&root->fs_info->delalloc_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_destroy_marked_extents(struct btrfs_root *root,
|
|
struct extent_io_tree *dirty_pages,
|
|
int mark)
|
|
{
|
|
int ret;
|
|
struct page *page;
|
|
struct inode *btree_inode = root->fs_info->btree_inode;
|
|
struct extent_buffer *eb;
|
|
u64 start = 0;
|
|
u64 end;
|
|
u64 offset;
|
|
unsigned long index;
|
|
|
|
while (1) {
|
|
ret = find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
mark);
|
|
if (ret)
|
|
break;
|
|
|
|
clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
|
|
while (start <= end) {
|
|
index = start >> PAGE_CACHE_SHIFT;
|
|
start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
|
|
page = find_get_page(btree_inode->i_mapping, index);
|
|
if (!page)
|
|
continue;
|
|
offset = page_offset(page);
|
|
|
|
spin_lock(&dirty_pages->buffer_lock);
|
|
eb = radix_tree_lookup(
|
|
&(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
|
|
offset >> PAGE_CACHE_SHIFT);
|
|
spin_unlock(&dirty_pages->buffer_lock);
|
|
if (eb) {
|
|
ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
|
|
&eb->bflags);
|
|
atomic_set(&eb->refs, 1);
|
|
}
|
|
if (PageWriteback(page))
|
|
end_page_writeback(page);
|
|
|
|
lock_page(page);
|
|
if (PageDirty(page)) {
|
|
clear_page_dirty_for_io(page);
|
|
spin_lock_irq(&page->mapping->tree_lock);
|
|
radix_tree_tag_clear(&page->mapping->page_tree,
|
|
page_index(page),
|
|
PAGECACHE_TAG_DIRTY);
|
|
spin_unlock_irq(&page->mapping->tree_lock);
|
|
}
|
|
|
|
page->mapping->a_ops->invalidatepage(page, 0);
|
|
unlock_page(page);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
|
|
struct extent_io_tree *pinned_extents)
|
|
{
|
|
struct extent_io_tree *unpin;
|
|
u64 start;
|
|
u64 end;
|
|
int ret;
|
|
|
|
unpin = pinned_extents;
|
|
while (1) {
|
|
ret = find_first_extent_bit(unpin, 0, &start, &end,
|
|
EXTENT_DIRTY);
|
|
if (ret)
|
|
break;
|
|
|
|
/* opt_discard */
|
|
if (btrfs_test_opt(root, DISCARD))
|
|
ret = btrfs_error_discard_extent(root, start,
|
|
end + 1 - start,
|
|
NULL);
|
|
|
|
clear_extent_dirty(unpin, start, end, GFP_NOFS);
|
|
btrfs_error_unpin_extent_range(root, start, end);
|
|
cond_resched();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_cleanup_transaction(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_transaction *t;
|
|
LIST_HEAD(list);
|
|
|
|
WARN_ON(1);
|
|
|
|
mutex_lock(&root->fs_info->transaction_kthread_mutex);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
list_splice_init(&root->fs_info->trans_list, &list);
|
|
root->fs_info->trans_no_join = 1;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
while (!list_empty(&list)) {
|
|
t = list_entry(list.next, struct btrfs_transaction, list);
|
|
if (!t)
|
|
break;
|
|
|
|
btrfs_destroy_ordered_operations(root);
|
|
|
|
btrfs_destroy_ordered_extents(root);
|
|
|
|
btrfs_destroy_delayed_refs(t, root);
|
|
|
|
btrfs_block_rsv_release(root,
|
|
&root->fs_info->trans_block_rsv,
|
|
t->dirty_pages.dirty_bytes);
|
|
|
|
/* FIXME: cleanup wait for commit */
|
|
t->in_commit = 1;
|
|
t->blocked = 1;
|
|
if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
|
|
wake_up(&root->fs_info->transaction_blocked_wait);
|
|
|
|
t->blocked = 0;
|
|
if (waitqueue_active(&root->fs_info->transaction_wait))
|
|
wake_up(&root->fs_info->transaction_wait);
|
|
|
|
t->commit_done = 1;
|
|
if (waitqueue_active(&t->commit_wait))
|
|
wake_up(&t->commit_wait);
|
|
|
|
btrfs_destroy_pending_snapshots(t);
|
|
|
|
btrfs_destroy_delalloc_inodes(root);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
root->fs_info->running_transaction = NULL;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
btrfs_destroy_marked_extents(root, &t->dirty_pages,
|
|
EXTENT_DIRTY);
|
|
|
|
btrfs_destroy_pinned_extent(root,
|
|
root->fs_info->pinned_extents);
|
|
|
|
atomic_set(&t->use_count, 0);
|
|
list_del_init(&t->list);
|
|
memset(t, 0, sizeof(*t));
|
|
kmem_cache_free(btrfs_transaction_cachep, t);
|
|
}
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
root->fs_info->trans_no_join = 0;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct extent_io_ops btree_extent_io_ops = {
|
|
.write_cache_pages_lock_hook = btree_lock_page_hook,
|
|
.readpage_end_io_hook = btree_readpage_end_io_hook,
|
|
.submit_bio_hook = btree_submit_bio_hook,
|
|
/* note we're sharing with inode.c for the merge bio hook */
|
|
.merge_bio_hook = btrfs_merge_bio_hook,
|
|
};
|