linux/virt/kvm/arm/arch_timer.c
Christoffer Dall bbdd52cfcb KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
There is no need to schedule and cancel a hrtimer when entering and
exiting the guest, because we know when the physical timer is going to
fire when the guest programs it, and we can simply program the hrtimer
at that point.

Now when the register modifications from the guest go through the
kvm_arm_timer_set/get_reg functions, which always call
kvm_timer_update_state(), we can simply consider the timer state in this
function and schedule and cancel the timers as needed.

This avoids looking at the physical timer emulation state when entering
and exiting the VCPU, allowing for faster servicing of the VM when
needed.

Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
2017-11-06 16:23:16 +01:00

969 lines
25 KiB
C

/*
* Copyright (C) 2012 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/uaccess.h>
#include <clocksource/arm_arch_timer.h>
#include <asm/arch_timer.h>
#include <asm/kvm_hyp.h>
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
#include "trace.h"
static struct timecounter *timecounter;
static unsigned int host_vtimer_irq;
static u32 host_vtimer_irq_flags;
static const struct kvm_irq_level default_ptimer_irq = {
.irq = 30,
.level = 1,
};
static const struct kvm_irq_level default_vtimer_irq = {
.irq = 27,
.level = 1,
};
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
struct arch_timer_context *timer_ctx);
u64 kvm_phys_timer_read(void)
{
return timecounter->cc->read(timecounter->cc);
}
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
{
hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
HRTIMER_MODE_ABS);
}
static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
{
hrtimer_cancel(hrt);
if (work)
cancel_work_sync(work);
}
static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
/*
* When using a userspace irqchip with the architected timers, we must
* prevent continuously exiting from the guest, and therefore mask the
* physical interrupt by disabling it on the host interrupt controller
* when the virtual level is high, such that the guest can make
* forward progress. Once we detect the output level being
* de-asserted, we unmask the interrupt again so that we exit from the
* guest when the timer fires.
*/
if (vtimer->irq.level)
disable_percpu_irq(host_vtimer_irq);
else
enable_percpu_irq(host_vtimer_irq, 0);
}
static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
struct arch_timer_context *vtimer;
if (!vcpu) {
pr_warn_once("Spurious arch timer IRQ on non-VCPU thread\n");
return IRQ_NONE;
}
vtimer = vcpu_vtimer(vcpu);
if (!vtimer->irq.level) {
vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
if (kvm_timer_irq_can_fire(vtimer))
kvm_timer_update_irq(vcpu, true, vtimer);
}
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
kvm_vtimer_update_mask_user(vcpu);
return IRQ_HANDLED;
}
/*
* Work function for handling the backup timer that we schedule when a vcpu is
* no longer running, but had a timer programmed to fire in the future.
*/
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
struct kvm_vcpu *vcpu;
vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
/*
* If the vcpu is blocked we want to wake it up so that it will see
* the timer has expired when entering the guest.
*/
kvm_vcpu_wake_up(vcpu);
}
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
{
u64 cval, now;
cval = timer_ctx->cnt_cval;
now = kvm_phys_timer_read() - timer_ctx->cntvoff;
if (now < cval) {
u64 ns;
ns = cyclecounter_cyc2ns(timecounter->cc,
cval - now,
timecounter->mask,
&timecounter->frac);
return ns;
}
return 0;
}
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
}
/*
* Returns the earliest expiration time in ns among guest timers.
* Note that it will return 0 if none of timers can fire.
*/
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
if (kvm_timer_irq_can_fire(vtimer))
min_virt = kvm_timer_compute_delta(vtimer);
if (kvm_timer_irq_can_fire(ptimer))
min_phys = kvm_timer_compute_delta(ptimer);
/* If none of timers can fire, then return 0 */
if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
return 0;
return min(min_virt, min_phys);
}
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
{
struct arch_timer_cpu *timer;
struct kvm_vcpu *vcpu;
u64 ns;
timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
/*
* Check that the timer has really expired from the guest's
* PoV (NTP on the host may have forced it to expire
* early). If we should have slept longer, restart it.
*/
ns = kvm_timer_earliest_exp(vcpu);
if (unlikely(ns)) {
hrtimer_forward_now(hrt, ns_to_ktime(ns));
return HRTIMER_RESTART;
}
schedule_work(&timer->expired);
return HRTIMER_NORESTART;
}
static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
{
struct arch_timer_context *ptimer;
struct arch_timer_cpu *timer;
struct kvm_vcpu *vcpu;
u64 ns;
timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
ptimer = vcpu_ptimer(vcpu);
/*
* Check that the timer has really expired from the guest's
* PoV (NTP on the host may have forced it to expire
* early). If not ready, schedule for a later time.
*/
ns = kvm_timer_compute_delta(ptimer);
if (unlikely(ns)) {
hrtimer_forward_now(hrt, ns_to_ktime(ns));
return HRTIMER_RESTART;
}
kvm_timer_update_irq(vcpu, true, ptimer);
return HRTIMER_NORESTART;
}
bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
{
u64 cval, now;
if (!kvm_timer_irq_can_fire(timer_ctx))
return false;
cval = timer_ctx->cnt_cval;
now = kvm_phys_timer_read() - timer_ctx->cntvoff;
return cval <= now;
}
/*
* Reflect the timer output level into the kvm_run structure
*/
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
/* Populate the device bitmap with the timer states */
regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
KVM_ARM_DEV_EL1_PTIMER);
if (vtimer->irq.level)
regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
if (ptimer->irq.level)
regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
struct arch_timer_context *timer_ctx)
{
int ret;
timer_ctx->irq.level = new_level;
trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
timer_ctx->irq.level);
if (likely(irqchip_in_kernel(vcpu->kvm))) {
ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
timer_ctx->irq.irq,
timer_ctx->irq.level,
timer_ctx);
WARN_ON(ret);
}
}
/* Schedule the background timer for the emulated timer. */
static void phys_timer_emulate(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
/*
* If the timer can fire now we have just raised the IRQ line and we
* don't need to have a soft timer scheduled for the future. If the
* timer cannot fire at all, then we also don't need a soft timer.
*/
if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
soft_timer_cancel(&timer->phys_timer, NULL);
return;
}
soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
}
/*
* Check if there was a change in the timer state, so that we should either
* raise or lower the line level to the GIC or schedule a background timer to
* emulate the physical timer.
*/
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
/*
* If userspace modified the timer registers via SET_ONE_REG before
* the vgic was initialized, we mustn't set the vtimer->irq.level value
* because the guest would never see the interrupt. Instead wait
* until we call this function from kvm_timer_flush_hwstate.
*/
if (unlikely(!timer->enabled))
return;
if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
phys_timer_emulate(vcpu);
}
static void vtimer_save_state(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
unsigned long flags;
local_irq_save(flags);
if (!vtimer->loaded)
goto out;
if (timer->enabled) {
vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
}
/* Disable the virtual timer */
write_sysreg_el0(0, cntv_ctl);
vtimer->loaded = false;
out:
local_irq_restore(flags);
}
/*
* Schedule the background timer before calling kvm_vcpu_block, so that this
* thread is removed from its waitqueue and made runnable when there's a timer
* interrupt to handle.
*/
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
vtimer_save_state(vcpu);
/*
* No need to schedule a background timer if any guest timer has
* already expired, because kvm_vcpu_block will return before putting
* the thread to sleep.
*/
if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
return;
/*
* If both timers are not capable of raising interrupts (disabled or
* masked), then there's no more work for us to do.
*/
if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
return;
/*
* The guest timers have not yet expired, schedule a background timer.
* Set the earliest expiration time among the guest timers.
*/
soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
}
static void vtimer_restore_state(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
unsigned long flags;
local_irq_save(flags);
if (vtimer->loaded)
goto out;
if (timer->enabled) {
write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
isb();
write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
}
vtimer->loaded = true;
out:
local_irq_restore(flags);
}
void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
vtimer_restore_state(vcpu);
soft_timer_cancel(&timer->bg_timer, &timer->expired);
}
static void set_cntvoff(u64 cntvoff)
{
u32 low = lower_32_bits(cntvoff);
u32 high = upper_32_bits(cntvoff);
/*
* Since kvm_call_hyp doesn't fully support the ARM PCS especially on
* 32-bit systems, but rather passes register by register shifted one
* place (we put the function address in r0/x0), we cannot simply pass
* a 64-bit value as an argument, but have to split the value in two
* 32-bit halves.
*/
kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
}
static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
bool phys_active;
int ret;
phys_active = vtimer->irq.level ||
kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
ret = irq_set_irqchip_state(host_vtimer_irq,
IRQCHIP_STATE_ACTIVE,
phys_active);
WARN_ON(ret);
}
static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu)
{
kvm_vtimer_update_mask_user(vcpu);
}
void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
if (unlikely(!timer->enabled))
return;
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
kvm_timer_vcpu_load_user(vcpu);
else
kvm_timer_vcpu_load_vgic(vcpu);
set_cntvoff(vtimer->cntvoff);
vtimer_restore_state(vcpu);
if (has_vhe())
disable_el1_phys_timer_access();
/* Set the background timer for the physical timer emulation. */
phys_timer_emulate(vcpu);
}
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
bool vlevel, plevel;
if (likely(irqchip_in_kernel(vcpu->kvm)))
return false;
vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
return vtimer->irq.level != vlevel ||
ptimer->irq.level != plevel;
}
/**
* kvm_timer_flush_hwstate - prepare timers before running the vcpu
* @vcpu: The vcpu pointer
*
* Check if the virtual timer has expired while we were running in the host,
* and inject an interrupt if that was the case, making sure the timer is
* masked or disabled on the host so that we keep executing. Also schedule a
* software timer for the physical timer if it is enabled.
*/
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
if (unlikely(!timer->enabled))
return;
}
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
if (unlikely(!timer->enabled))
return;
if (has_vhe())
enable_el1_phys_timer_access();
vtimer_save_state(vcpu);
/*
* Cancel the physical timer emulation, because the only case where we
* need it after a vcpu_put is in the context of a sleeping VCPU, and
* in that case we already factor in the deadline for the physical
* timer when scheduling the bg_timer.
*
* In any case, we re-schedule the hrtimer for the physical timer when
* coming back to the VCPU thread in kvm_timer_vcpu_load().
*/
soft_timer_cancel(&timer->phys_timer, NULL);
/*
* The kernel may decide to run userspace after calling vcpu_put, so
* we reset cntvoff to 0 to ensure a consistent read between user
* accesses to the virtual counter and kernel access to the physical
* counter.
*/
set_cntvoff(0);
}
static void unmask_vtimer_irq(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
kvm_vtimer_update_mask_user(vcpu);
return;
}
/*
* If the guest disabled the timer without acking the interrupt, then
* we must make sure the physical and virtual active states are in
* sync by deactivating the physical interrupt, because otherwise we
* wouldn't see the next timer interrupt in the host.
*/
if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) {
int ret;
ret = irq_set_irqchip_state(host_vtimer_irq,
IRQCHIP_STATE_ACTIVE,
false);
WARN_ON(ret);
}
}
/**
* kvm_timer_sync_hwstate - sync timer state from cpu
* @vcpu: The vcpu pointer
*
* Check if any of the timers have expired while we were running in the guest,
* and inject an interrupt if that was the case.
*/
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
/*
* If we entered the guest with the vtimer output asserted we have to
* check if the guest has modified the timer so that we should lower
* the line at this point.
*/
if (vtimer->irq.level) {
vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
if (!kvm_timer_should_fire(vtimer)) {
kvm_timer_update_irq(vcpu, false, vtimer);
unmask_vtimer_irq(vcpu);
}
}
}
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
/*
* The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
* and to 0 for ARMv7. We provide an implementation that always
* resets the timer to be disabled and unmasked and is compliant with
* the ARMv7 architecture.
*/
vtimer->cnt_ctl = 0;
ptimer->cnt_ctl = 0;
kvm_timer_update_state(vcpu);
return 0;
}
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
int i;
struct kvm *kvm = vcpu->kvm;
struct kvm_vcpu *tmp;
mutex_lock(&kvm->lock);
kvm_for_each_vcpu(i, tmp, kvm)
vcpu_vtimer(tmp)->cntvoff = cntvoff;
/*
* When called from the vcpu create path, the CPU being created is not
* included in the loop above, so we just set it here as well.
*/
vcpu_vtimer(vcpu)->cntvoff = cntvoff;
mutex_unlock(&kvm->lock);
}
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
/* Synchronize cntvoff across all vtimers of a VM. */
update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
vcpu_ptimer(vcpu)->cntvoff = 0;
INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
timer->bg_timer.function = kvm_bg_timer_expire;
hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
timer->phys_timer.function = kvm_phys_timer_expire;
vtimer->irq.irq = default_vtimer_irq.irq;
ptimer->irq.irq = default_ptimer_irq.irq;
}
static void kvm_timer_init_interrupt(void *info)
{
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
}
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
switch (regid) {
case KVM_REG_ARM_TIMER_CTL:
vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
break;
case KVM_REG_ARM_TIMER_CNT:
update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
break;
case KVM_REG_ARM_TIMER_CVAL:
vtimer->cnt_cval = value;
break;
case KVM_REG_ARM_PTIMER_CTL:
ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
break;
case KVM_REG_ARM_PTIMER_CVAL:
ptimer->cnt_cval = value;
break;
default:
return -1;
}
kvm_timer_update_state(vcpu);
return 0;
}
static u64 read_timer_ctl(struct arch_timer_context *timer)
{
/*
* Set ISTATUS bit if it's expired.
* Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
* UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
* regardless of ENABLE bit for our implementation convenience.
*/
if (!kvm_timer_compute_delta(timer))
return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
else
return timer->cnt_ctl;
}
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
switch (regid) {
case KVM_REG_ARM_TIMER_CTL:
return read_timer_ctl(vtimer);
case KVM_REG_ARM_TIMER_CNT:
return kvm_phys_timer_read() - vtimer->cntvoff;
case KVM_REG_ARM_TIMER_CVAL:
return vtimer->cnt_cval;
case KVM_REG_ARM_PTIMER_CTL:
return read_timer_ctl(ptimer);
case KVM_REG_ARM_PTIMER_CVAL:
return ptimer->cnt_cval;
case KVM_REG_ARM_PTIMER_CNT:
return kvm_phys_timer_read();
}
return (u64)-1;
}
static int kvm_timer_starting_cpu(unsigned int cpu)
{
kvm_timer_init_interrupt(NULL);
return 0;
}
static int kvm_timer_dying_cpu(unsigned int cpu)
{
disable_percpu_irq(host_vtimer_irq);
return 0;
}
int kvm_timer_hyp_init(void)
{
struct arch_timer_kvm_info *info;
int err;
info = arch_timer_get_kvm_info();
timecounter = &info->timecounter;
if (!timecounter->cc) {
kvm_err("kvm_arch_timer: uninitialized timecounter\n");
return -ENODEV;
}
if (info->virtual_irq <= 0) {
kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
info->virtual_irq);
return -ENODEV;
}
host_vtimer_irq = info->virtual_irq;
host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
host_vtimer_irq);
host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
}
err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
"kvm guest timer", kvm_get_running_vcpus());
if (err) {
kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
host_vtimer_irq, err);
return err;
}
err = irq_set_vcpu_affinity(host_vtimer_irq, kvm_get_running_vcpus());
if (err) {
kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
goto out_free_irq;
}
kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
"kvm/arm/timer:starting", kvm_timer_starting_cpu,
kvm_timer_dying_cpu);
return 0;
out_free_irq:
free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
return err;
}
void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
soft_timer_cancel(&timer->bg_timer, &timer->expired);
soft_timer_cancel(&timer->phys_timer, NULL);
kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
}
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
{
int vtimer_irq, ptimer_irq;
int i, ret;
vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
if (ret)
return false;
ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
if (ret)
return false;
kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
return false;
}
return true;
}
int kvm_timer_enable(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct irq_desc *desc;
struct irq_data *data;
int phys_irq;
int ret;
if (timer->enabled)
return 0;
/* Without a VGIC we do not map virtual IRQs to physical IRQs */
if (!irqchip_in_kernel(vcpu->kvm))
goto no_vgic;
if (!vgic_initialized(vcpu->kvm))
return -ENODEV;
if (!timer_irqs_are_valid(vcpu)) {
kvm_debug("incorrectly configured timer irqs\n");
return -EINVAL;
}
/*
* Find the physical IRQ number corresponding to the host_vtimer_irq
*/
desc = irq_to_desc(host_vtimer_irq);
if (!desc) {
kvm_err("%s: no interrupt descriptor\n", __func__);
return -EINVAL;
}
data = irq_desc_get_irq_data(desc);
while (data->parent_data)
data = data->parent_data;
phys_irq = data->hwirq;
/*
* Tell the VGIC that the virtual interrupt is tied to a
* physical interrupt. We do that once per VCPU.
*/
ret = kvm_vgic_map_phys_irq(vcpu, vtimer->irq.irq, phys_irq);
if (ret)
return ret;
no_vgic:
timer->enabled = 1;
return 0;
}
/*
* On VHE system, we only need to configure trap on physical timer and counter
* accesses in EL0 and EL1 once, not for every world switch.
* The host kernel runs at EL2 with HCR_EL2.TGE == 1,
* and this makes those bits have no effect for the host kernel execution.
*/
void kvm_timer_init_vhe(void)
{
/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
u32 cnthctl_shift = 10;
u64 val;
/*
* Disallow physical timer access for the guest.
* Physical counter access is allowed.
*/
val = read_sysreg(cnthctl_el2);
val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
write_sysreg(val, cnthctl_el2);
}
static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
{
struct kvm_vcpu *vcpu;
int i;
kvm_for_each_vcpu(i, vcpu, kvm) {
vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
}
}
int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
int __user *uaddr = (int __user *)(long)attr->addr;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
int irq;
if (!irqchip_in_kernel(vcpu->kvm))
return -EINVAL;
if (get_user(irq, uaddr))
return -EFAULT;
if (!(irq_is_ppi(irq)))
return -EINVAL;
if (vcpu->arch.timer_cpu.enabled)
return -EBUSY;
switch (attr->attr) {
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
break;
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
break;
default:
return -ENXIO;
}
return 0;
}
int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
int __user *uaddr = (int __user *)(long)attr->addr;
struct arch_timer_context *timer;
int irq;
switch (attr->attr) {
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
timer = vcpu_vtimer(vcpu);
break;
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
timer = vcpu_ptimer(vcpu);
break;
default:
return -ENXIO;
}
irq = timer->irq.irq;
return put_user(irq, uaddr);
}
int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
switch (attr->attr) {
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
return 0;
}
return -ENXIO;
}