linux/sound/soc/atmel/mchp-spdifrx.c
Colin Ian King 6db282c8a9
ASoC: mchp-spdifrx: fix spelling mistake "overrrun" -> "overrun"
There is a spelling mistake in a dev_warn message. Fix it.

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Codrin Ciubotariu <codrin.ciubotariu@microchip.com>
Link: https://lore.kernel.org/r/20201006152024.542418-1-colin.king@canonical.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2020-10-07 13:28:00 +01:00

954 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Driver for Microchip S/PDIF RX Controller
//
// Copyright (C) 2020 Microchip Technology Inc. and its subsidiaries
//
// Author: Codrin Ciubotariu <codrin.ciubotariu@microchip.com>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/spinlock.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
/*
* ---- S/PDIF Receiver Controller Register map ----
*/
#define SPDIFRX_CR 0x00 /* Control Register */
#define SPDIFRX_MR 0x04 /* Mode Register */
#define SPDIFRX_IER 0x10 /* Interrupt Enable Register */
#define SPDIFRX_IDR 0x14 /* Interrupt Disable Register */
#define SPDIFRX_IMR 0x18 /* Interrupt Mask Register */
#define SPDIFRX_ISR 0x1c /* Interrupt Status Register */
#define SPDIFRX_RSR 0x20 /* Status Register */
#define SPDIFRX_RHR 0x24 /* Holding Register */
#define SPDIFRX_CHSR(channel, reg) \
(0x30 + (channel) * 0x30 + (reg) * 4) /* Channel x Status Registers */
#define SPDIFRX_CHUD(channel, reg) \
(0x48 + (channel) * 0x30 + (reg) * 4) /* Channel x User Data Registers */
#define SPDIFRX_WPMR 0xE4 /* Write Protection Mode Register */
#define SPDIFRX_WPSR 0xE8 /* Write Protection Status Register */
#define SPDIFRX_VERSION 0xFC /* Version Register */
/*
* ---- Control Register (Write-only) ----
*/
#define SPDIFRX_CR_SWRST BIT(0) /* Software Reset */
/*
* ---- Mode Register (Read/Write) ----
*/
/* Receive Enable */
#define SPDIFRX_MR_RXEN_MASK GENMASK(0, 0)
#define SPDIFRX_MR_RXEN_DISABLE (0 << 0) /* SPDIF Receiver Disabled */
#define SPDIFRX_MR_RXEN_ENABLE (1 << 0) /* SPDIF Receiver Enabled */
/* Validity Bit Mode */
#define SPDIFRX_MR_VBMODE_MASK GENAMSK(1, 1)
#define SPDIFRX_MR_VBMODE_ALWAYS_LOAD \
(0 << 1) /* Load sample regardles of validity bit value */
#define SPDIFRX_MR_VBMODE_DISCARD_IF_VB1 \
(1 << 1) /* Load sample only if validity bit is 0 */
/* Data Word Endian Mode */
#define SPDIFRX_MR_ENDIAN_MASK GENMASK(2, 2)
#define SPDIFRX_MR_ENDIAN_LITTLE (0 << 2) /* Little Endian Mode */
#define SPDIFRX_MR_ENDIAN_BIG (1 << 2) /* Big Endian Mode */
/* Parity Bit Mode */
#define SPDIFRX_MR_PBMODE_MASK GENMASK(3, 3)
#define SPDIFRX_MR_PBMODE_PARCHECK (0 << 3) /* Parity Check Enabled */
#define SPDIFRX_MR_PBMODE_NOPARCHECK (1 << 3) /* Parity Check Disabled */
/* Sample Data Width */
#define SPDIFRX_MR_DATAWIDTH_MASK GENMASK(5, 4)
#define SPDIFRX_MR_DATAWIDTH(width) \
(((6 - (width) / 4) << 4) & SPDIFRX_MR_DATAWIDTH_MASK)
/* Packed Data Mode in Receive Holding Register */
#define SPDIFRX_MR_PACK_MASK GENMASK(7, 7)
#define SPDIFRX_MR_PACK_DISABLED (0 << 7)
#define SPDIFRX_MR_PACK_ENABLED (1 << 7)
/* Start of Block Bit Mode */
#define SPDIFRX_MR_SBMODE_MASK GENMASK(8, 8)
#define SPDIFRX_MR_SBMODE_ALWAYS_LOAD (0 << 8)
#define SPDIFRX_MR_SBMODE_DISCARD (1 << 8)
/* Consecutive Preamble Error Threshold Automatic Restart */
#define SPDIFRX_MR_AUTORST_MASK GENMASK(24, 24)
#define SPDIFRX_MR_AUTORST_NOACTION (0 << 24)
#define SPDIFRX_MR_AUTORST_UNLOCK_ON_PRE_ERR (1 << 24)
/*
* ---- Interrupt Enable/Disable/Mask/Status Register (Write/Read-only) ----
*/
#define SPDIFRX_IR_RXRDY BIT(0)
#define SPDIFRX_IR_LOCKED BIT(1)
#define SPDIFRX_IR_LOSS BIT(2)
#define SPDIFRX_IR_BLOCKEND BIT(3)
#define SPDIFRX_IR_SFE BIT(4)
#define SPDIFRX_IR_PAR_ERR BIT(5)
#define SPDIFRX_IR_OVERRUN BIT(6)
#define SPDIFRX_IR_RXFULL BIT(7)
#define SPDIFRX_IR_CSC(ch) BIT((ch) + 8)
#define SPDIFRX_IR_SECE BIT(10)
#define SPDIFRX_IR_BLOCKST BIT(11)
#define SPDIFRX_IR_NRZ_ERR BIT(12)
#define SPDIFRX_IR_PRE_ERR BIT(13)
#define SPDIFRX_IR_CP_ERR BIT(14)
/*
* ---- Receiver Status Register (Read/Write) ----
*/
/* Enable Status */
#define SPDIFRX_RSR_ULOCK BIT(0)
#define SPDIFRX_RSR_BADF BIT(1)
#define SPDIFRX_RSR_LOWF BIT(2)
#define SPDIFRX_RSR_NOSIGNAL BIT(3)
#define SPDIFRX_RSR_IFS_MASK GENMASK(27, 16)
#define SPDIFRX_RSR_IFS(reg) \
(((reg) & SPDIFRX_RSR_IFS_MASK) >> 16)
/*
* ---- Version Register (Read-only) ----
*/
#define SPDIFRX_VERSION_MASK GENMASK(11, 0)
#define SPDIFRX_VERSION_MFN_MASK GENMASK(18, 16)
#define SPDIFRX_VERSION_MFN(reg) (((reg) & SPDIFRX_VERSION_MFN_MASK) >> 16)
static bool mchp_spdifrx_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SPDIFRX_MR:
case SPDIFRX_IMR:
case SPDIFRX_ISR:
case SPDIFRX_RSR:
case SPDIFRX_CHSR(0, 0):
case SPDIFRX_CHSR(0, 1):
case SPDIFRX_CHSR(0, 2):
case SPDIFRX_CHSR(0, 3):
case SPDIFRX_CHSR(0, 4):
case SPDIFRX_CHSR(0, 5):
case SPDIFRX_CHUD(0, 0):
case SPDIFRX_CHUD(0, 1):
case SPDIFRX_CHUD(0, 2):
case SPDIFRX_CHUD(0, 3):
case SPDIFRX_CHUD(0, 4):
case SPDIFRX_CHUD(0, 5):
case SPDIFRX_CHSR(1, 0):
case SPDIFRX_CHSR(1, 1):
case SPDIFRX_CHSR(1, 2):
case SPDIFRX_CHSR(1, 3):
case SPDIFRX_CHSR(1, 4):
case SPDIFRX_CHSR(1, 5):
case SPDIFRX_CHUD(1, 0):
case SPDIFRX_CHUD(1, 1):
case SPDIFRX_CHUD(1, 2):
case SPDIFRX_CHUD(1, 3):
case SPDIFRX_CHUD(1, 4):
case SPDIFRX_CHUD(1, 5):
case SPDIFRX_WPMR:
case SPDIFRX_WPSR:
case SPDIFRX_VERSION:
return true;
default:
return false;
}
}
static bool mchp_spdifrx_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SPDIFRX_CR:
case SPDIFRX_MR:
case SPDIFRX_IER:
case SPDIFRX_IDR:
case SPDIFRX_WPMR:
return true;
default:
return false;
}
}
static bool mchp_spdifrx_precious_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SPDIFRX_ISR:
case SPDIFRX_RHR:
return true;
default:
return false;
}
}
static const struct regmap_config mchp_spdifrx_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = SPDIFRX_VERSION,
.readable_reg = mchp_spdifrx_readable_reg,
.writeable_reg = mchp_spdifrx_writeable_reg,
.precious_reg = mchp_spdifrx_precious_reg,
};
#define SPDIFRX_GCLK_RATIO_MIN (12 * 64)
#define SPDIFRX_CS_BITS 192
#define SPDIFRX_UD_BITS 192
#define SPDIFRX_CHANNELS 2
struct mchp_spdifrx_ch_stat {
unsigned char data[SPDIFRX_CS_BITS / 8];
struct completion done;
};
struct mchp_spdifrx_user_data {
unsigned char data[SPDIFRX_UD_BITS / 8];
struct completion done;
spinlock_t lock; /* protect access to user data */
};
struct mchp_spdifrx_mixer_control {
struct mchp_spdifrx_ch_stat ch_stat[SPDIFRX_CHANNELS];
struct mchp_spdifrx_user_data user_data[SPDIFRX_CHANNELS];
bool ulock;
bool badf;
bool signal;
};
struct mchp_spdifrx_dev {
struct snd_dmaengine_dai_dma_data capture;
struct mchp_spdifrx_mixer_control control;
spinlock_t blockend_lock; /* protect access to blockend_refcount */
int blockend_refcount;
struct device *dev;
struct regmap *regmap;
struct clk *pclk;
struct clk *gclk;
unsigned int fmt;
unsigned int gclk_enabled:1;
};
static void mchp_spdifrx_channel_status_read(struct mchp_spdifrx_dev *dev,
int channel)
{
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u8 *ch_stat = &ctrl->ch_stat[channel].data[0];
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(ctrl->ch_stat[channel].data) / 4; i++) {
regmap_read(dev->regmap, SPDIFRX_CHSR(channel, i), &val);
*ch_stat++ = val & 0xFF;
*ch_stat++ = (val >> 8) & 0xFF;
*ch_stat++ = (val >> 16) & 0xFF;
*ch_stat++ = (val >> 24) & 0xFF;
}
}
static void mchp_spdifrx_channel_user_data_read(struct mchp_spdifrx_dev *dev,
int channel)
{
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u8 *user_data = &ctrl->user_data[channel].data[0];
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(ctrl->user_data[channel].data) / 4; i++) {
regmap_read(dev->regmap, SPDIFRX_CHUD(channel, i), &val);
*user_data++ = val & 0xFF;
*user_data++ = (val >> 8) & 0xFF;
*user_data++ = (val >> 16) & 0xFF;
*user_data++ = (val >> 24) & 0xFF;
}
}
/* called from non-atomic context only */
static void mchp_spdifrx_isr_blockend_en(struct mchp_spdifrx_dev *dev)
{
unsigned long flags;
spin_lock_irqsave(&dev->blockend_lock, flags);
dev->blockend_refcount++;
/* don't enable BLOCKEND interrupt if it's already enabled */
if (dev->blockend_refcount == 1)
regmap_write(dev->regmap, SPDIFRX_IER, SPDIFRX_IR_BLOCKEND);
spin_unlock_irqrestore(&dev->blockend_lock, flags);
}
/* called from atomic context only */
static void mchp_spdifrx_isr_blockend_dis(struct mchp_spdifrx_dev *dev)
{
spin_lock(&dev->blockend_lock);
dev->blockend_refcount--;
/* don't enable BLOCKEND interrupt if it's already enabled */
if (dev->blockend_refcount == 0)
regmap_write(dev->regmap, SPDIFRX_IDR, SPDIFRX_IR_BLOCKEND);
spin_unlock(&dev->blockend_lock);
}
static irqreturn_t mchp_spdif_interrupt(int irq, void *dev_id)
{
struct mchp_spdifrx_dev *dev = dev_id;
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u32 sr, imr, pending, idr = 0;
irqreturn_t ret = IRQ_NONE;
int ch;
regmap_read(dev->regmap, SPDIFRX_ISR, &sr);
regmap_read(dev->regmap, SPDIFRX_IMR, &imr);
pending = sr & imr;
dev_dbg(dev->dev, "ISR: %#x, IMR: %#x, pending: %#x\n", sr, imr,
pending);
if (!pending)
return IRQ_NONE;
if (pending & SPDIFRX_IR_BLOCKEND) {
for (ch = 0; ch < SPDIFRX_CHANNELS; ch++) {
spin_lock(&ctrl->user_data[ch].lock);
mchp_spdifrx_channel_user_data_read(dev, ch);
spin_unlock(&ctrl->user_data[ch].lock);
complete(&ctrl->user_data[ch].done);
}
mchp_spdifrx_isr_blockend_dis(dev);
ret = IRQ_HANDLED;
}
for (ch = 0; ch < SPDIFRX_CHANNELS; ch++) {
if (pending & SPDIFRX_IR_CSC(ch)) {
mchp_spdifrx_channel_status_read(dev, ch);
complete(&ctrl->ch_stat[ch].done);
idr |= SPDIFRX_IR_CSC(ch);
ret = IRQ_HANDLED;
}
}
if (pending & SPDIFRX_IR_OVERRUN) {
dev_warn(dev->dev, "Overrun detected\n");
ret = IRQ_HANDLED;
}
regmap_write(dev->regmap, SPDIFRX_IDR, idr);
return ret;
}
static int mchp_spdifrx_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
u32 mr;
int running;
int ret;
regmap_read(dev->regmap, SPDIFRX_MR, &mr);
running = !!(mr & SPDIFRX_MR_RXEN_ENABLE);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (!running) {
mr &= ~SPDIFRX_MR_RXEN_MASK;
mr |= SPDIFRX_MR_RXEN_ENABLE;
/* enable overrun interrupts */
regmap_write(dev->regmap, SPDIFRX_IER,
SPDIFRX_IR_OVERRUN);
}
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (running) {
mr &= ~SPDIFRX_MR_RXEN_MASK;
mr |= SPDIFRX_MR_RXEN_DISABLE;
/* disable overrun interrupts */
regmap_write(dev->regmap, SPDIFRX_IDR,
SPDIFRX_IR_OVERRUN);
}
break;
default:
return -EINVAL;
}
ret = regmap_write(dev->regmap, SPDIFRX_MR, mr);
if (ret) {
dev_err(dev->dev, "unable to enable/disable RX: %d\n", ret);
return ret;
}
return 0;
}
static int mchp_spdifrx_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
u32 mr;
int ret;
dev_dbg(dev->dev, "%s() rate=%u format=%#x width=%u channels=%u\n",
__func__, params_rate(params), params_format(params),
params_width(params), params_channels(params));
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
dev_err(dev->dev, "Playback is not supported\n");
return -EINVAL;
}
regmap_read(dev->regmap, SPDIFRX_MR, &mr);
if (mr & SPDIFRX_MR_RXEN_ENABLE) {
dev_err(dev->dev, "PCM already running\n");
return -EBUSY;
}
if (params_channels(params) != SPDIFRX_CHANNELS) {
dev_err(dev->dev, "unsupported number of channels: %d\n",
params_channels(params));
return -EINVAL;
}
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_BE:
case SNDRV_PCM_FORMAT_S20_3BE:
case SNDRV_PCM_FORMAT_S24_3BE:
case SNDRV_PCM_FORMAT_S24_BE:
mr |= SPDIFRX_MR_ENDIAN_BIG;
fallthrough;
case SNDRV_PCM_FORMAT_S16_LE:
case SNDRV_PCM_FORMAT_S20_3LE:
case SNDRV_PCM_FORMAT_S24_3LE:
case SNDRV_PCM_FORMAT_S24_LE:
mr |= SPDIFRX_MR_DATAWIDTH(params_width(params));
break;
default:
dev_err(dev->dev, "unsupported PCM format: %d\n",
params_format(params));
return -EINVAL;
}
if (dev->gclk_enabled) {
clk_disable_unprepare(dev->gclk);
dev->gclk_enabled = 0;
}
ret = clk_set_min_rate(dev->gclk, params_rate(params) *
SPDIFRX_GCLK_RATIO_MIN + 1);
if (ret) {
dev_err(dev->dev,
"unable to set gclk min rate: rate %u * ratio %u + 1\n",
params_rate(params), SPDIFRX_GCLK_RATIO_MIN);
return ret;
}
ret = clk_prepare_enable(dev->gclk);
if (ret) {
dev_err(dev->dev, "unable to enable gclk: %d\n", ret);
return ret;
}
dev->gclk_enabled = 1;
dev_dbg(dev->dev, "GCLK range min set to %d\n",
params_rate(params) * SPDIFRX_GCLK_RATIO_MIN + 1);
return regmap_write(dev->regmap, SPDIFRX_MR, mr);
}
static int mchp_spdifrx_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
if (dev->gclk_enabled) {
clk_disable_unprepare(dev->gclk);
dev->gclk_enabled = 0;
}
return 0;
}
static const struct snd_soc_dai_ops mchp_spdifrx_dai_ops = {
.trigger = mchp_spdifrx_trigger,
.hw_params = mchp_spdifrx_hw_params,
.hw_free = mchp_spdifrx_hw_free,
};
#define MCHP_SPDIF_RATES SNDRV_PCM_RATE_8000_192000
#define MCHP_SPDIF_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_U16_BE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S20_3BE | \
SNDRV_PCM_FMTBIT_S24_3LE | \
SNDRV_PCM_FMTBIT_S24_3BE | \
SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_S24_BE \
)
static int mchp_spdifrx_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int mchp_spdifrx_cs_get(struct mchp_spdifrx_dev *dev,
int channel,
struct snd_ctl_elem_value *uvalue)
{
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
struct mchp_spdifrx_ch_stat *ch_stat = &ctrl->ch_stat[channel];
int ret;
regmap_write(dev->regmap, SPDIFRX_IER, SPDIFRX_IR_CSC(channel));
/* check for new data available */
ret = wait_for_completion_interruptible_timeout(&ch_stat->done,
msecs_to_jiffies(100));
/* IP might not be started or valid stream might not be prezent */
if (ret < 0) {
dev_dbg(dev->dev, "channel status for channel %d timeout\n",
channel);
}
memcpy(uvalue->value.iec958.status, ch_stat->data,
sizeof(ch_stat->data));
return 0;
}
static int mchp_spdifrx_cs1_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
return mchp_spdifrx_cs_get(dev, 0, uvalue);
}
static int mchp_spdifrx_cs2_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
return mchp_spdifrx_cs_get(dev, 1, uvalue);
}
static int mchp_spdifrx_cs_mask(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
memset(uvalue->value.iec958.status, 0xff,
sizeof(uvalue->value.iec958.status));
return 0;
}
static int mchp_spdifrx_subcode_ch_get(struct mchp_spdifrx_dev *dev,
int channel,
struct snd_ctl_elem_value *uvalue)
{
unsigned long flags;
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
struct mchp_spdifrx_user_data *user_data = &ctrl->user_data[channel];
int ret;
reinit_completion(&user_data->done);
mchp_spdifrx_isr_blockend_en(dev);
ret = wait_for_completion_interruptible_timeout(&user_data->done,
msecs_to_jiffies(100));
/* IP might not be started or valid stream might not be prezent */
if (ret <= 0) {
dev_dbg(dev->dev, "user data for channel %d timeout\n",
channel);
return ret;
}
spin_lock_irqsave(&user_data->lock, flags);
memcpy(uvalue->value.iec958.subcode, user_data->data,
sizeof(user_data->data));
spin_unlock_irqrestore(&user_data->lock, flags);
return 0;
}
static int mchp_spdifrx_subcode_ch1_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
return mchp_spdifrx_subcode_ch_get(dev, 0, uvalue);
}
static int mchp_spdifrx_subcode_ch2_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
return mchp_spdifrx_subcode_ch_get(dev, 1, uvalue);
}
static int mchp_spdifrx_boolean_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int mchp_spdifrx_ulock_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u32 val;
bool ulock_old = ctrl->ulock;
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
ctrl->ulock = !(val & SPDIFRX_RSR_ULOCK);
uvalue->value.integer.value[0] = ctrl->ulock;
return ulock_old != ctrl->ulock;
}
static int mchp_spdifrx_badf_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u32 val;
bool badf_old = ctrl->badf;
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
ctrl->badf = !!(val & SPDIFRX_RSR_BADF);
uvalue->value.integer.value[0] = ctrl->badf;
return badf_old != ctrl->badf;
}
static int mchp_spdifrx_signal_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u32 val;
bool signal_old = ctrl->signal;
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
ctrl->signal = !(val & SPDIFRX_RSR_NOSIGNAL);
uvalue->value.integer.value[0] = ctrl->signal;
return signal_old != ctrl->signal;
}
static int mchp_spdifrx_rate_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 192000;
return 0;
}
static int mchp_spdifrx_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
u32 val;
int rate;
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
/* if the receiver is not locked, ISF data is invalid */
if (val & SPDIFRX_RSR_ULOCK || !(val & SPDIFRX_RSR_IFS_MASK)) {
ucontrol->value.integer.value[0] = 0;
return 0;
}
rate = clk_get_rate(dev->gclk);
ucontrol->value.integer.value[0] = rate / (32 * SPDIFRX_RSR_IFS(val));
return 0;
}
static struct snd_kcontrol_new mchp_spdifrx_ctrls[] = {
/* Channel status controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT)
" Channel 1",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_info,
.get = mchp_spdifrx_cs1_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT)
" Channel 2",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_info,
.get = mchp_spdifrx_cs2_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = mchp_spdifrx_info,
.get = mchp_spdifrx_cs_mask,
},
/* User bits controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Subcode Capture Default Channel 1",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_info,
.get = mchp_spdifrx_subcode_ch1_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Subcode Capture Default Channel 2",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_info,
.get = mchp_spdifrx_subcode_ch2_get,
},
/* Lock status */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE) "Unlocked",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_boolean_info,
.get = mchp_spdifrx_ulock_get,
},
/* Bad format */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE)"Bad Format",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_boolean_info,
.get = mchp_spdifrx_badf_get,
},
/* Signal */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE) "Signal",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_boolean_info,
.get = mchp_spdifrx_signal_get,
},
/* Sampling rate */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE) "Rate",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_rate_info,
.get = mchp_spdifrx_rate_get,
},
};
static int mchp_spdifrx_dai_probe(struct snd_soc_dai *dai)
{
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
int ch;
int err;
err = clk_prepare_enable(dev->pclk);
if (err) {
dev_err(dev->dev,
"failed to enable the peripheral clock: %d\n", err);
return err;
}
snd_soc_dai_init_dma_data(dai, NULL, &dev->capture);
/* Software reset the IP */
regmap_write(dev->regmap, SPDIFRX_CR, SPDIFRX_CR_SWRST);
/* Default configuration */
regmap_write(dev->regmap, SPDIFRX_MR,
SPDIFRX_MR_VBMODE_DISCARD_IF_VB1 |
SPDIFRX_MR_SBMODE_DISCARD |
SPDIFRX_MR_AUTORST_NOACTION |
SPDIFRX_MR_PACK_DISABLED);
dev->blockend_refcount = 0;
for (ch = 0; ch < SPDIFRX_CHANNELS; ch++) {
init_completion(&ctrl->ch_stat[ch].done);
init_completion(&ctrl->user_data[ch].done);
spin_lock_init(&ctrl->user_data[ch].lock);
}
/* Add controls */
snd_soc_add_dai_controls(dai, mchp_spdifrx_ctrls,
ARRAY_SIZE(mchp_spdifrx_ctrls));
return 0;
}
static int mchp_spdifrx_dai_remove(struct snd_soc_dai *dai)
{
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
/* Disable interrupts */
regmap_write(dev->regmap, SPDIFRX_IDR, 0xFF);
clk_disable_unprepare(dev->pclk);
return 0;
}
static struct snd_soc_dai_driver mchp_spdifrx_dai = {
.name = "mchp-spdifrx",
.probe = mchp_spdifrx_dai_probe,
.remove = mchp_spdifrx_dai_remove,
.capture = {
.stream_name = "S/PDIF Capture",
.channels_min = SPDIFRX_CHANNELS,
.channels_max = SPDIFRX_CHANNELS,
.rates = MCHP_SPDIF_RATES,
.formats = MCHP_SPDIF_FORMATS,
},
.ops = &mchp_spdifrx_dai_ops,
};
static const struct snd_soc_component_driver mchp_spdifrx_component = {
.name = "mchp-spdifrx",
};
static const struct of_device_id mchp_spdifrx_dt_ids[] = {
{
.compatible = "microchip,sama7g5-spdifrx",
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mchp_spdifrx_dt_ids);
static int mchp_spdifrx_probe(struct platform_device *pdev)
{
struct mchp_spdifrx_dev *dev;
struct resource *mem;
struct regmap *regmap;
void __iomem *base;
int irq;
int err;
u32 vers;
/* Get memory for driver data. */
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
/* Map I/O registers. */
base = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
if (IS_ERR(base))
return PTR_ERR(base);
regmap = devm_regmap_init_mmio(&pdev->dev, base,
&mchp_spdifrx_regmap_config);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
/* Request IRQ. */
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
err = devm_request_irq(&pdev->dev, irq, mchp_spdif_interrupt, 0,
dev_name(&pdev->dev), dev);
if (err)
return err;
/* Get the peripheral clock */
dev->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(dev->pclk)) {
err = PTR_ERR(dev->pclk);
dev_err(&pdev->dev, "failed to get the peripheral clock: %d\n",
err);
return err;
}
/* Get the generated clock */
dev->gclk = devm_clk_get(&pdev->dev, "gclk");
if (IS_ERR(dev->gclk)) {
err = PTR_ERR(dev->gclk);
dev_err(&pdev->dev,
"failed to get the PMC generated clock: %d\n", err);
return err;
}
spin_lock_init(&dev->blockend_lock);
dev->dev = &pdev->dev;
dev->regmap = regmap;
platform_set_drvdata(pdev, dev);
dev->capture.addr = (dma_addr_t)mem->start + SPDIFRX_RHR;
dev->capture.maxburst = 1;
err = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
if (err) {
dev_err(&pdev->dev, "failed to register PMC: %d\n", err);
return err;
}
err = devm_snd_soc_register_component(&pdev->dev,
&mchp_spdifrx_component,
&mchp_spdifrx_dai, 1);
if (err) {
dev_err(&pdev->dev, "fail to register dai\n");
return err;
}
regmap_read(regmap, SPDIFRX_VERSION, &vers);
dev_info(&pdev->dev, "hw version: %#lx\n", vers & SPDIFRX_VERSION_MASK);
return 0;
}
static struct platform_driver mchp_spdifrx_driver = {
.probe = mchp_spdifrx_probe,
.driver = {
.name = "mchp_spdifrx",
.of_match_table = of_match_ptr(mchp_spdifrx_dt_ids),
},
};
module_platform_driver(mchp_spdifrx_driver);
MODULE_AUTHOR("Codrin Ciubotariu <codrin.ciubotariu@microchip.com>");
MODULE_DESCRIPTION("Microchip S/PDIF RX Controller Driver");
MODULE_LICENSE("GPL v2");