mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-13 09:15:02 +08:00
b9a98c3437
Add an extremely verbose trace point to the TDP MMU to log all SPTE changes, regardless of callstack / motivation. This is useful when a complete picture of the paging structure is needed or a change cannot be explained with the other, existing trace points. Tested: ran the demand paging selftest on an Intel Skylake machine with all the trace points used by the TDP MMU enabled and observed them firing with expected values. This patch can be viewed in Gerrit at: https://linux-review.googlesource.com/c/virt/kvm/kvm/+/3813 Signed-off-by: Ben Gardon <bgardon@google.com> Message-Id: <20201027175944.1183301-2-bgardon@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1177 lines
32 KiB
C
1177 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "mmu.h"
|
|
#include "mmu_internal.h"
|
|
#include "mmutrace.h"
|
|
#include "tdp_iter.h"
|
|
#include "tdp_mmu.h"
|
|
#include "spte.h"
|
|
|
|
#include <trace/events/kvm.h>
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static bool __read_mostly tdp_mmu_enabled = false;
|
|
module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
|
|
#endif
|
|
|
|
static bool is_tdp_mmu_enabled(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
|
|
#else
|
|
return false;
|
|
#endif /* CONFIG_X86_64 */
|
|
}
|
|
|
|
/* Initializes the TDP MMU for the VM, if enabled. */
|
|
void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
|
|
{
|
|
if (!is_tdp_mmu_enabled())
|
|
return;
|
|
|
|
/* This should not be changed for the lifetime of the VM. */
|
|
kvm->arch.tdp_mmu_enabled = true;
|
|
|
|
INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
|
|
INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
|
|
}
|
|
|
|
void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
|
|
{
|
|
if (!kvm->arch.tdp_mmu_enabled)
|
|
return;
|
|
|
|
WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
|
|
}
|
|
|
|
#define for_each_tdp_mmu_root(_kvm, _root) \
|
|
list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
|
|
|
|
bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
|
|
{
|
|
struct kvm_mmu_page *sp;
|
|
|
|
if (!kvm->arch.tdp_mmu_enabled)
|
|
return false;
|
|
if (WARN_ON(!VALID_PAGE(hpa)))
|
|
return false;
|
|
|
|
sp = to_shadow_page(hpa);
|
|
if (WARN_ON(!sp))
|
|
return false;
|
|
|
|
return sp->tdp_mmu_page && sp->root_count;
|
|
}
|
|
|
|
static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
|
|
gfn_t start, gfn_t end, bool can_yield);
|
|
|
|
void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
|
|
{
|
|
gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);
|
|
|
|
lockdep_assert_held(&kvm->mmu_lock);
|
|
|
|
WARN_ON(root->root_count);
|
|
WARN_ON(!root->tdp_mmu_page);
|
|
|
|
list_del(&root->link);
|
|
|
|
zap_gfn_range(kvm, root, 0, max_gfn, false);
|
|
|
|
free_page((unsigned long)root->spt);
|
|
kmem_cache_free(mmu_page_header_cache, root);
|
|
}
|
|
|
|
static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
|
|
int level)
|
|
{
|
|
union kvm_mmu_page_role role;
|
|
|
|
role = vcpu->arch.mmu->mmu_role.base;
|
|
role.level = level;
|
|
role.direct = true;
|
|
role.gpte_is_8_bytes = true;
|
|
role.access = ACC_ALL;
|
|
|
|
return role;
|
|
}
|
|
|
|
static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
|
|
int level)
|
|
{
|
|
struct kvm_mmu_page *sp;
|
|
|
|
sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
|
|
sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
|
|
set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
|
|
|
|
sp->role.word = page_role_for_level(vcpu, level).word;
|
|
sp->gfn = gfn;
|
|
sp->tdp_mmu_page = true;
|
|
|
|
trace_kvm_mmu_get_page(sp, true);
|
|
|
|
return sp;
|
|
}
|
|
|
|
static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
|
|
{
|
|
union kvm_mmu_page_role role;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_mmu_page *root;
|
|
|
|
role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
/* Check for an existing root before allocating a new one. */
|
|
for_each_tdp_mmu_root(kvm, root) {
|
|
if (root->role.word == role.word) {
|
|
kvm_mmu_get_root(kvm, root);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
return root;
|
|
}
|
|
}
|
|
|
|
root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
|
|
root->root_count = 1;
|
|
|
|
list_add(&root->link, &kvm->arch.tdp_mmu_roots);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
return root;
|
|
}
|
|
|
|
hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_mmu_page *root;
|
|
|
|
root = get_tdp_mmu_vcpu_root(vcpu);
|
|
if (!root)
|
|
return INVALID_PAGE;
|
|
|
|
return __pa(root->spt);
|
|
}
|
|
|
|
static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
|
|
u64 old_spte, u64 new_spte, int level);
|
|
|
|
static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
|
|
{
|
|
return sp->role.smm ? 1 : 0;
|
|
}
|
|
|
|
static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
|
|
{
|
|
bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
|
|
|
|
if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
|
|
return;
|
|
|
|
if (is_accessed_spte(old_spte) &&
|
|
(!is_accessed_spte(new_spte) || pfn_changed))
|
|
kvm_set_pfn_accessed(spte_to_pfn(old_spte));
|
|
}
|
|
|
|
static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
|
|
u64 old_spte, u64 new_spte, int level)
|
|
{
|
|
bool pfn_changed;
|
|
struct kvm_memory_slot *slot;
|
|
|
|
if (level > PG_LEVEL_4K)
|
|
return;
|
|
|
|
pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
|
|
|
|
if ((!is_writable_pte(old_spte) || pfn_changed) &&
|
|
is_writable_pte(new_spte)) {
|
|
slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
|
|
mark_page_dirty_in_slot(kvm, slot, gfn);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* handle_changed_spte - handle bookkeeping associated with an SPTE change
|
|
* @kvm: kvm instance
|
|
* @as_id: the address space of the paging structure the SPTE was a part of
|
|
* @gfn: the base GFN that was mapped by the SPTE
|
|
* @old_spte: The value of the SPTE before the change
|
|
* @new_spte: The value of the SPTE after the change
|
|
* @level: the level of the PT the SPTE is part of in the paging structure
|
|
*
|
|
* Handle bookkeeping that might result from the modification of a SPTE.
|
|
* This function must be called for all TDP SPTE modifications.
|
|
*/
|
|
static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
|
|
u64 old_spte, u64 new_spte, int level)
|
|
{
|
|
bool was_present = is_shadow_present_pte(old_spte);
|
|
bool is_present = is_shadow_present_pte(new_spte);
|
|
bool was_leaf = was_present && is_last_spte(old_spte, level);
|
|
bool is_leaf = is_present && is_last_spte(new_spte, level);
|
|
bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
|
|
u64 *pt;
|
|
struct kvm_mmu_page *sp;
|
|
u64 old_child_spte;
|
|
int i;
|
|
|
|
WARN_ON(level > PT64_ROOT_MAX_LEVEL);
|
|
WARN_ON(level < PG_LEVEL_4K);
|
|
WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
|
|
|
|
/*
|
|
* If this warning were to trigger it would indicate that there was a
|
|
* missing MMU notifier or a race with some notifier handler.
|
|
* A present, leaf SPTE should never be directly replaced with another
|
|
* present leaf SPTE pointing to a differnt PFN. A notifier handler
|
|
* should be zapping the SPTE before the main MM's page table is
|
|
* changed, or the SPTE should be zeroed, and the TLBs flushed by the
|
|
* thread before replacement.
|
|
*/
|
|
if (was_leaf && is_leaf && pfn_changed) {
|
|
pr_err("Invalid SPTE change: cannot replace a present leaf\n"
|
|
"SPTE with another present leaf SPTE mapping a\n"
|
|
"different PFN!\n"
|
|
"as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
|
|
as_id, gfn, old_spte, new_spte, level);
|
|
|
|
/*
|
|
* Crash the host to prevent error propagation and guest data
|
|
* courruption.
|
|
*/
|
|
BUG();
|
|
}
|
|
|
|
if (old_spte == new_spte)
|
|
return;
|
|
|
|
trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
|
|
|
|
/*
|
|
* The only times a SPTE should be changed from a non-present to
|
|
* non-present state is when an MMIO entry is installed/modified/
|
|
* removed. In that case, there is nothing to do here.
|
|
*/
|
|
if (!was_present && !is_present) {
|
|
/*
|
|
* If this change does not involve a MMIO SPTE, it is
|
|
* unexpected. Log the change, though it should not impact the
|
|
* guest since both the former and current SPTEs are nonpresent.
|
|
*/
|
|
if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
|
|
pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
|
|
"should not be replaced with another,\n"
|
|
"different nonpresent SPTE, unless one or both\n"
|
|
"are MMIO SPTEs.\n"
|
|
"as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
|
|
as_id, gfn, old_spte, new_spte, level);
|
|
return;
|
|
}
|
|
|
|
|
|
if (was_leaf && is_dirty_spte(old_spte) &&
|
|
(!is_dirty_spte(new_spte) || pfn_changed))
|
|
kvm_set_pfn_dirty(spte_to_pfn(old_spte));
|
|
|
|
/*
|
|
* Recursively handle child PTs if the change removed a subtree from
|
|
* the paging structure.
|
|
*/
|
|
if (was_present && !was_leaf && (pfn_changed || !is_present)) {
|
|
pt = spte_to_child_pt(old_spte, level);
|
|
sp = sptep_to_sp(pt);
|
|
|
|
trace_kvm_mmu_prepare_zap_page(sp);
|
|
|
|
list_del(&sp->link);
|
|
|
|
if (sp->lpage_disallowed)
|
|
unaccount_huge_nx_page(kvm, sp);
|
|
|
|
for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
|
|
old_child_spte = READ_ONCE(*(pt + i));
|
|
WRITE_ONCE(*(pt + i), 0);
|
|
handle_changed_spte(kvm, as_id,
|
|
gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
|
|
old_child_spte, 0, level - 1);
|
|
}
|
|
|
|
kvm_flush_remote_tlbs_with_address(kvm, gfn,
|
|
KVM_PAGES_PER_HPAGE(level));
|
|
|
|
free_page((unsigned long)pt);
|
|
kmem_cache_free(mmu_page_header_cache, sp);
|
|
}
|
|
}
|
|
|
|
static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
|
|
u64 old_spte, u64 new_spte, int level)
|
|
{
|
|
__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
|
|
handle_changed_spte_acc_track(old_spte, new_spte, level);
|
|
handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
|
|
new_spte, level);
|
|
}
|
|
|
|
static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
|
|
u64 new_spte, bool record_acc_track,
|
|
bool record_dirty_log)
|
|
{
|
|
u64 *root_pt = tdp_iter_root_pt(iter);
|
|
struct kvm_mmu_page *root = sptep_to_sp(root_pt);
|
|
int as_id = kvm_mmu_page_as_id(root);
|
|
|
|
WRITE_ONCE(*iter->sptep, new_spte);
|
|
|
|
__handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
|
|
iter->level);
|
|
if (record_acc_track)
|
|
handle_changed_spte_acc_track(iter->old_spte, new_spte,
|
|
iter->level);
|
|
if (record_dirty_log)
|
|
handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
|
|
iter->old_spte, new_spte,
|
|
iter->level);
|
|
}
|
|
|
|
static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
|
|
u64 new_spte)
|
|
{
|
|
__tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
|
|
}
|
|
|
|
static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
|
|
struct tdp_iter *iter,
|
|
u64 new_spte)
|
|
{
|
|
__tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
|
|
}
|
|
|
|
static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
|
|
struct tdp_iter *iter,
|
|
u64 new_spte)
|
|
{
|
|
__tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
|
|
}
|
|
|
|
#define tdp_root_for_each_pte(_iter, _root, _start, _end) \
|
|
for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
|
|
|
|
#define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \
|
|
tdp_root_for_each_pte(_iter, _root, _start, _end) \
|
|
if (!is_shadow_present_pte(_iter.old_spte) || \
|
|
!is_last_spte(_iter.old_spte, _iter.level)) \
|
|
continue; \
|
|
else
|
|
|
|
#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \
|
|
for_each_tdp_pte(_iter, __va(_mmu->root_hpa), \
|
|
_mmu->shadow_root_level, _start, _end)
|
|
|
|
/*
|
|
* Flush the TLB if the process should drop kvm->mmu_lock.
|
|
* Return whether the caller still needs to flush the tlb.
|
|
*/
|
|
static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
|
|
{
|
|
if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
|
|
kvm_flush_remote_tlbs(kvm);
|
|
cond_resched_lock(&kvm->mmu_lock);
|
|
tdp_iter_refresh_walk(iter);
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
|
|
{
|
|
if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
|
|
cond_resched_lock(&kvm->mmu_lock);
|
|
tdp_iter_refresh_walk(iter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tears down the mappings for the range of gfns, [start, end), and frees the
|
|
* non-root pages mapping GFNs strictly within that range. Returns true if
|
|
* SPTEs have been cleared and a TLB flush is needed before releasing the
|
|
* MMU lock.
|
|
* If can_yield is true, will release the MMU lock and reschedule if the
|
|
* scheduler needs the CPU or there is contention on the MMU lock. If this
|
|
* function cannot yield, it will not release the MMU lock or reschedule and
|
|
* the caller must ensure it does not supply too large a GFN range, or the
|
|
* operation can cause a soft lockup.
|
|
*/
|
|
static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
|
|
gfn_t start, gfn_t end, bool can_yield)
|
|
{
|
|
struct tdp_iter iter;
|
|
bool flush_needed = false;
|
|
|
|
tdp_root_for_each_pte(iter, root, start, end) {
|
|
if (!is_shadow_present_pte(iter.old_spte))
|
|
continue;
|
|
|
|
/*
|
|
* If this is a non-last-level SPTE that covers a larger range
|
|
* than should be zapped, continue, and zap the mappings at a
|
|
* lower level.
|
|
*/
|
|
if ((iter.gfn < start ||
|
|
iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
|
|
!is_last_spte(iter.old_spte, iter.level))
|
|
continue;
|
|
|
|
tdp_mmu_set_spte(kvm, &iter, 0);
|
|
|
|
if (can_yield)
|
|
flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
|
|
else
|
|
flush_needed = true;
|
|
}
|
|
return flush_needed;
|
|
}
|
|
|
|
/*
|
|
* Tears down the mappings for the range of gfns, [start, end), and frees the
|
|
* non-root pages mapping GFNs strictly within that range. Returns true if
|
|
* SPTEs have been cleared and a TLB flush is needed before releasing the
|
|
* MMU lock.
|
|
*/
|
|
bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
|
|
{
|
|
struct kvm_mmu_page *root;
|
|
bool flush = false;
|
|
|
|
for_each_tdp_mmu_root(kvm, root) {
|
|
/*
|
|
* Take a reference on the root so that it cannot be freed if
|
|
* this thread releases the MMU lock and yields in this loop.
|
|
*/
|
|
kvm_mmu_get_root(kvm, root);
|
|
|
|
flush |= zap_gfn_range(kvm, root, start, end, true);
|
|
|
|
kvm_mmu_put_root(kvm, root);
|
|
}
|
|
|
|
return flush;
|
|
}
|
|
|
|
void kvm_tdp_mmu_zap_all(struct kvm *kvm)
|
|
{
|
|
gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);
|
|
bool flush;
|
|
|
|
flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
|
|
if (flush)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
}
|
|
|
|
/*
|
|
* Installs a last-level SPTE to handle a TDP page fault.
|
|
* (NPT/EPT violation/misconfiguration)
|
|
*/
|
|
static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
|
|
int map_writable,
|
|
struct tdp_iter *iter,
|
|
kvm_pfn_t pfn, bool prefault)
|
|
{
|
|
u64 new_spte;
|
|
int ret = 0;
|
|
int make_spte_ret = 0;
|
|
|
|
if (unlikely(is_noslot_pfn(pfn))) {
|
|
new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
|
|
trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
|
|
} else {
|
|
make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
|
|
pfn, iter->old_spte, prefault, true,
|
|
map_writable, !shadow_accessed_mask,
|
|
&new_spte);
|
|
trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
|
|
}
|
|
|
|
if (new_spte == iter->old_spte)
|
|
ret = RET_PF_SPURIOUS;
|
|
else
|
|
tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
|
|
|
|
/*
|
|
* If the page fault was caused by a write but the page is write
|
|
* protected, emulation is needed. If the emulation was skipped,
|
|
* the vCPU would have the same fault again.
|
|
*/
|
|
if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
|
|
if (write)
|
|
ret = RET_PF_EMULATE;
|
|
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
|
|
}
|
|
|
|
/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
|
|
if (unlikely(is_mmio_spte(new_spte)))
|
|
ret = RET_PF_EMULATE;
|
|
|
|
trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
|
|
if (!prefault)
|
|
vcpu->stat.pf_fixed++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
|
|
* page tables and SPTEs to translate the faulting guest physical address.
|
|
*/
|
|
int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
|
|
int map_writable, int max_level, kvm_pfn_t pfn,
|
|
bool prefault)
|
|
{
|
|
bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
|
|
bool write = error_code & PFERR_WRITE_MASK;
|
|
bool exec = error_code & PFERR_FETCH_MASK;
|
|
bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
|
|
struct kvm_mmu *mmu = vcpu->arch.mmu;
|
|
struct tdp_iter iter;
|
|
struct kvm_mmu_page *sp;
|
|
u64 *child_pt;
|
|
u64 new_spte;
|
|
int ret;
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int level;
|
|
int req_level;
|
|
|
|
if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
|
|
return RET_PF_RETRY;
|
|
if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
|
|
return RET_PF_RETRY;
|
|
|
|
level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
|
|
huge_page_disallowed, &req_level);
|
|
|
|
trace_kvm_mmu_spte_requested(gpa, level, pfn);
|
|
tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
|
|
if (nx_huge_page_workaround_enabled)
|
|
disallowed_hugepage_adjust(iter.old_spte, gfn,
|
|
iter.level, &pfn, &level);
|
|
|
|
if (iter.level == level)
|
|
break;
|
|
|
|
/*
|
|
* If there is an SPTE mapping a large page at a higher level
|
|
* than the target, that SPTE must be cleared and replaced
|
|
* with a non-leaf SPTE.
|
|
*/
|
|
if (is_shadow_present_pte(iter.old_spte) &&
|
|
is_large_pte(iter.old_spte)) {
|
|
tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
|
|
|
|
kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
|
|
KVM_PAGES_PER_HPAGE(iter.level));
|
|
|
|
/*
|
|
* The iter must explicitly re-read the spte here
|
|
* because the new value informs the !present
|
|
* path below.
|
|
*/
|
|
iter.old_spte = READ_ONCE(*iter.sptep);
|
|
}
|
|
|
|
if (!is_shadow_present_pte(iter.old_spte)) {
|
|
sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
|
|
list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
|
|
child_pt = sp->spt;
|
|
clear_page(child_pt);
|
|
new_spte = make_nonleaf_spte(child_pt,
|
|
!shadow_accessed_mask);
|
|
|
|
trace_kvm_mmu_get_page(sp, true);
|
|
if (huge_page_disallowed && req_level >= iter.level)
|
|
account_huge_nx_page(vcpu->kvm, sp);
|
|
|
|
tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
|
|
}
|
|
}
|
|
|
|
if (WARN_ON(iter.level != level))
|
|
return RET_PF_RETRY;
|
|
|
|
ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
|
|
pfn, prefault);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
|
|
unsigned long end, unsigned long data,
|
|
int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
|
|
struct kvm_mmu_page *root, gfn_t start,
|
|
gfn_t end, unsigned long data))
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
struct kvm_mmu_page *root;
|
|
int ret = 0;
|
|
int as_id;
|
|
|
|
for_each_tdp_mmu_root(kvm, root) {
|
|
/*
|
|
* Take a reference on the root so that it cannot be freed if
|
|
* this thread releases the MMU lock and yields in this loop.
|
|
*/
|
|
kvm_mmu_get_root(kvm, root);
|
|
|
|
as_id = kvm_mmu_page_as_id(root);
|
|
slots = __kvm_memslots(kvm, as_id);
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
unsigned long hva_start, hva_end;
|
|
gfn_t gfn_start, gfn_end;
|
|
|
|
hva_start = max(start, memslot->userspace_addr);
|
|
hva_end = min(end, memslot->userspace_addr +
|
|
(memslot->npages << PAGE_SHIFT));
|
|
if (hva_start >= hva_end)
|
|
continue;
|
|
/*
|
|
* {gfn(page) | page intersects with [hva_start, hva_end)} =
|
|
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
|
|
*/
|
|
gfn_start = hva_to_gfn_memslot(hva_start, memslot);
|
|
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
|
|
|
|
ret |= handler(kvm, memslot, root, gfn_start,
|
|
gfn_end, data);
|
|
}
|
|
|
|
kvm_mmu_put_root(kvm, root);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
struct kvm_mmu_page *root, gfn_t start,
|
|
gfn_t end, unsigned long unused)
|
|
{
|
|
return zap_gfn_range(kvm, root, start, end, false);
|
|
}
|
|
|
|
int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
|
|
zap_gfn_range_hva_wrapper);
|
|
}
|
|
|
|
/*
|
|
* Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
|
|
* if any of the GFNs in the range have been accessed.
|
|
*/
|
|
static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
|
|
struct kvm_mmu_page *root, gfn_t start, gfn_t end,
|
|
unsigned long unused)
|
|
{
|
|
struct tdp_iter iter;
|
|
int young = 0;
|
|
u64 new_spte = 0;
|
|
|
|
tdp_root_for_each_leaf_pte(iter, root, start, end) {
|
|
/*
|
|
* If we have a non-accessed entry we don't need to change the
|
|
* pte.
|
|
*/
|
|
if (!is_accessed_spte(iter.old_spte))
|
|
continue;
|
|
|
|
new_spte = iter.old_spte;
|
|
|
|
if (spte_ad_enabled(new_spte)) {
|
|
clear_bit((ffs(shadow_accessed_mask) - 1),
|
|
(unsigned long *)&new_spte);
|
|
} else {
|
|
/*
|
|
* Capture the dirty status of the page, so that it doesn't get
|
|
* lost when the SPTE is marked for access tracking.
|
|
*/
|
|
if (is_writable_pte(new_spte))
|
|
kvm_set_pfn_dirty(spte_to_pfn(new_spte));
|
|
|
|
new_spte = mark_spte_for_access_track(new_spte);
|
|
}
|
|
new_spte &= ~shadow_dirty_mask;
|
|
|
|
tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
|
|
young = 1;
|
|
|
|
trace_kvm_age_page(iter.gfn, iter.level, slot, young);
|
|
}
|
|
|
|
return young;
|
|
}
|
|
|
|
int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
|
|
age_gfn_range);
|
|
}
|
|
|
|
static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
|
|
struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
|
|
unsigned long unused2)
|
|
{
|
|
struct tdp_iter iter;
|
|
|
|
tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
|
|
if (is_accessed_spte(iter.old_spte))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
|
|
test_age_gfn);
|
|
}
|
|
|
|
/*
|
|
* Handle the changed_pte MMU notifier for the TDP MMU.
|
|
* data is a pointer to the new pte_t mapping the HVA specified by the MMU
|
|
* notifier.
|
|
* Returns non-zero if a flush is needed before releasing the MMU lock.
|
|
*/
|
|
static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
|
|
struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
|
|
unsigned long data)
|
|
{
|
|
struct tdp_iter iter;
|
|
pte_t *ptep = (pte_t *)data;
|
|
kvm_pfn_t new_pfn;
|
|
u64 new_spte;
|
|
int need_flush = 0;
|
|
|
|
WARN_ON(pte_huge(*ptep));
|
|
|
|
new_pfn = pte_pfn(*ptep);
|
|
|
|
tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
|
|
if (iter.level != PG_LEVEL_4K)
|
|
continue;
|
|
|
|
if (!is_shadow_present_pte(iter.old_spte))
|
|
break;
|
|
|
|
tdp_mmu_set_spte(kvm, &iter, 0);
|
|
|
|
kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
|
|
|
|
if (!pte_write(*ptep)) {
|
|
new_spte = kvm_mmu_changed_pte_notifier_make_spte(
|
|
iter.old_spte, new_pfn);
|
|
|
|
tdp_mmu_set_spte(kvm, &iter, new_spte);
|
|
}
|
|
|
|
need_flush = 1;
|
|
}
|
|
|
|
if (need_flush)
|
|
kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
|
|
pte_t *host_ptep)
|
|
{
|
|
return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
|
|
(unsigned long)host_ptep,
|
|
set_tdp_spte);
|
|
}
|
|
|
|
/*
|
|
* Remove write access from all the SPTEs mapping GFNs [start, end). If
|
|
* skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
|
|
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
|
|
*/
|
|
static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
|
|
gfn_t start, gfn_t end, int min_level)
|
|
{
|
|
struct tdp_iter iter;
|
|
u64 new_spte;
|
|
bool spte_set = false;
|
|
|
|
BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
|
|
|
|
for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
|
|
min_level, start, end) {
|
|
if (!is_shadow_present_pte(iter.old_spte) ||
|
|
!is_last_spte(iter.old_spte, iter.level))
|
|
continue;
|
|
|
|
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
|
|
|
|
tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
|
|
spte_set = true;
|
|
|
|
tdp_mmu_iter_cond_resched(kvm, &iter);
|
|
}
|
|
return spte_set;
|
|
}
|
|
|
|
/*
|
|
* Remove write access from all the SPTEs mapping GFNs in the memslot. Will
|
|
* only affect leaf SPTEs down to min_level.
|
|
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
|
|
*/
|
|
bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
|
|
int min_level)
|
|
{
|
|
struct kvm_mmu_page *root;
|
|
int root_as_id;
|
|
bool spte_set = false;
|
|
|
|
for_each_tdp_mmu_root(kvm, root) {
|
|
root_as_id = kvm_mmu_page_as_id(root);
|
|
if (root_as_id != slot->as_id)
|
|
continue;
|
|
|
|
/*
|
|
* Take a reference on the root so that it cannot be freed if
|
|
* this thread releases the MMU lock and yields in this loop.
|
|
*/
|
|
kvm_mmu_get_root(kvm, root);
|
|
|
|
spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
|
|
slot->base_gfn + slot->npages, min_level);
|
|
|
|
kvm_mmu_put_root(kvm, root);
|
|
}
|
|
|
|
return spte_set;
|
|
}
|
|
|
|
/*
|
|
* Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
|
|
* AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
|
|
* If AD bits are not enabled, this will require clearing the writable bit on
|
|
* each SPTE. Returns true if an SPTE has been changed and the TLBs need to
|
|
* be flushed.
|
|
*/
|
|
static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
|
|
gfn_t start, gfn_t end)
|
|
{
|
|
struct tdp_iter iter;
|
|
u64 new_spte;
|
|
bool spte_set = false;
|
|
|
|
tdp_root_for_each_leaf_pte(iter, root, start, end) {
|
|
if (spte_ad_need_write_protect(iter.old_spte)) {
|
|
if (is_writable_pte(iter.old_spte))
|
|
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
|
|
else
|
|
continue;
|
|
} else {
|
|
if (iter.old_spte & shadow_dirty_mask)
|
|
new_spte = iter.old_spte & ~shadow_dirty_mask;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
|
|
spte_set = true;
|
|
|
|
tdp_mmu_iter_cond_resched(kvm, &iter);
|
|
}
|
|
return spte_set;
|
|
}
|
|
|
|
/*
|
|
* Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
|
|
* AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
|
|
* If AD bits are not enabled, this will require clearing the writable bit on
|
|
* each SPTE. Returns true if an SPTE has been changed and the TLBs need to
|
|
* be flushed.
|
|
*/
|
|
bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
|
|
{
|
|
struct kvm_mmu_page *root;
|
|
int root_as_id;
|
|
bool spte_set = false;
|
|
|
|
for_each_tdp_mmu_root(kvm, root) {
|
|
root_as_id = kvm_mmu_page_as_id(root);
|
|
if (root_as_id != slot->as_id)
|
|
continue;
|
|
|
|
/*
|
|
* Take a reference on the root so that it cannot be freed if
|
|
* this thread releases the MMU lock and yields in this loop.
|
|
*/
|
|
kvm_mmu_get_root(kvm, root);
|
|
|
|
spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
|
|
slot->base_gfn + slot->npages);
|
|
|
|
kvm_mmu_put_root(kvm, root);
|
|
}
|
|
|
|
return spte_set;
|
|
}
|
|
|
|
/*
|
|
* Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
|
|
* set in mask, starting at gfn. The given memslot is expected to contain all
|
|
* the GFNs represented by set bits in the mask. If AD bits are enabled,
|
|
* clearing the dirty status will involve clearing the dirty bit on each SPTE
|
|
* or, if AD bits are not enabled, clearing the writable bit on each SPTE.
|
|
*/
|
|
static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
|
|
gfn_t gfn, unsigned long mask, bool wrprot)
|
|
{
|
|
struct tdp_iter iter;
|
|
u64 new_spte;
|
|
|
|
tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
|
|
gfn + BITS_PER_LONG) {
|
|
if (!mask)
|
|
break;
|
|
|
|
if (iter.level > PG_LEVEL_4K ||
|
|
!(mask & (1UL << (iter.gfn - gfn))))
|
|
continue;
|
|
|
|
if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
|
|
if (is_writable_pte(iter.old_spte))
|
|
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
|
|
else
|
|
continue;
|
|
} else {
|
|
if (iter.old_spte & shadow_dirty_mask)
|
|
new_spte = iter.old_spte & ~shadow_dirty_mask;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
|
|
|
|
mask &= ~(1UL << (iter.gfn - gfn));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
|
|
* set in mask, starting at gfn. The given memslot is expected to contain all
|
|
* the GFNs represented by set bits in the mask. If AD bits are enabled,
|
|
* clearing the dirty status will involve clearing the dirty bit on each SPTE
|
|
* or, if AD bits are not enabled, clearing the writable bit on each SPTE.
|
|
*/
|
|
void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
gfn_t gfn, unsigned long mask,
|
|
bool wrprot)
|
|
{
|
|
struct kvm_mmu_page *root;
|
|
int root_as_id;
|
|
|
|
lockdep_assert_held(&kvm->mmu_lock);
|
|
for_each_tdp_mmu_root(kvm, root) {
|
|
root_as_id = kvm_mmu_page_as_id(root);
|
|
if (root_as_id != slot->as_id)
|
|
continue;
|
|
|
|
clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
|
|
* only used for PML, and so will involve setting the dirty bit on each SPTE.
|
|
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
|
|
*/
|
|
static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
|
|
gfn_t start, gfn_t end)
|
|
{
|
|
struct tdp_iter iter;
|
|
u64 new_spte;
|
|
bool spte_set = false;
|
|
|
|
tdp_root_for_each_pte(iter, root, start, end) {
|
|
if (!is_shadow_present_pte(iter.old_spte))
|
|
continue;
|
|
|
|
new_spte = iter.old_spte | shadow_dirty_mask;
|
|
|
|
tdp_mmu_set_spte(kvm, &iter, new_spte);
|
|
spte_set = true;
|
|
|
|
tdp_mmu_iter_cond_resched(kvm, &iter);
|
|
}
|
|
|
|
return spte_set;
|
|
}
|
|
|
|
/*
|
|
* Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
|
|
* only used for PML, and so will involve setting the dirty bit on each SPTE.
|
|
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
|
|
*/
|
|
bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
|
|
{
|
|
struct kvm_mmu_page *root;
|
|
int root_as_id;
|
|
bool spte_set = false;
|
|
|
|
for_each_tdp_mmu_root(kvm, root) {
|
|
root_as_id = kvm_mmu_page_as_id(root);
|
|
if (root_as_id != slot->as_id)
|
|
continue;
|
|
|
|
/*
|
|
* Take a reference on the root so that it cannot be freed if
|
|
* this thread releases the MMU lock and yields in this loop.
|
|
*/
|
|
kvm_mmu_get_root(kvm, root);
|
|
|
|
spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
|
|
slot->base_gfn + slot->npages);
|
|
|
|
kvm_mmu_put_root(kvm, root);
|
|
}
|
|
return spte_set;
|
|
}
|
|
|
|
/*
|
|
* Clear non-leaf entries (and free associated page tables) which could
|
|
* be replaced by large mappings, for GFNs within the slot.
|
|
*/
|
|
static void zap_collapsible_spte_range(struct kvm *kvm,
|
|
struct kvm_mmu_page *root,
|
|
gfn_t start, gfn_t end)
|
|
{
|
|
struct tdp_iter iter;
|
|
kvm_pfn_t pfn;
|
|
bool spte_set = false;
|
|
|
|
tdp_root_for_each_pte(iter, root, start, end) {
|
|
if (!is_shadow_present_pte(iter.old_spte) ||
|
|
is_last_spte(iter.old_spte, iter.level))
|
|
continue;
|
|
|
|
pfn = spte_to_pfn(iter.old_spte);
|
|
if (kvm_is_reserved_pfn(pfn) ||
|
|
!PageTransCompoundMap(pfn_to_page(pfn)))
|
|
continue;
|
|
|
|
tdp_mmu_set_spte(kvm, &iter, 0);
|
|
|
|
spte_set = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
|
|
}
|
|
|
|
if (spte_set)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
}
|
|
|
|
/*
|
|
* Clear non-leaf entries (and free associated page tables) which could
|
|
* be replaced by large mappings, for GFNs within the slot.
|
|
*/
|
|
void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
|
|
const struct kvm_memory_slot *slot)
|
|
{
|
|
struct kvm_mmu_page *root;
|
|
int root_as_id;
|
|
|
|
for_each_tdp_mmu_root(kvm, root) {
|
|
root_as_id = kvm_mmu_page_as_id(root);
|
|
if (root_as_id != slot->as_id)
|
|
continue;
|
|
|
|
/*
|
|
* Take a reference on the root so that it cannot be freed if
|
|
* this thread releases the MMU lock and yields in this loop.
|
|
*/
|
|
kvm_mmu_get_root(kvm, root);
|
|
|
|
zap_collapsible_spte_range(kvm, root, slot->base_gfn,
|
|
slot->base_gfn + slot->npages);
|
|
|
|
kvm_mmu_put_root(kvm, root);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Removes write access on the last level SPTE mapping this GFN and unsets the
|
|
* SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
|
|
* Returns true if an SPTE was set and a TLB flush is needed.
|
|
*/
|
|
static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
|
|
gfn_t gfn)
|
|
{
|
|
struct tdp_iter iter;
|
|
u64 new_spte;
|
|
bool spte_set = false;
|
|
|
|
tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
|
|
if (!is_writable_pte(iter.old_spte))
|
|
break;
|
|
|
|
new_spte = iter.old_spte &
|
|
~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
|
|
|
|
tdp_mmu_set_spte(kvm, &iter, new_spte);
|
|
spte_set = true;
|
|
}
|
|
|
|
return spte_set;
|
|
}
|
|
|
|
/*
|
|
* Removes write access on the last level SPTE mapping this GFN and unsets the
|
|
* SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
|
|
* Returns true if an SPTE was set and a TLB flush is needed.
|
|
*/
|
|
bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot, gfn_t gfn)
|
|
{
|
|
struct kvm_mmu_page *root;
|
|
int root_as_id;
|
|
bool spte_set = false;
|
|
|
|
lockdep_assert_held(&kvm->mmu_lock);
|
|
for_each_tdp_mmu_root(kvm, root) {
|
|
root_as_id = kvm_mmu_page_as_id(root);
|
|
if (root_as_id != slot->as_id)
|
|
continue;
|
|
|
|
spte_set |= write_protect_gfn(kvm, root, gfn);
|
|
}
|
|
return spte_set;
|
|
}
|
|
|
|
/*
|
|
* Return the level of the lowest level SPTE added to sptes.
|
|
* That SPTE may be non-present.
|
|
*/
|
|
int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
|
|
{
|
|
struct tdp_iter iter;
|
|
struct kvm_mmu *mmu = vcpu->arch.mmu;
|
|
int leaf = vcpu->arch.mmu->shadow_root_level;
|
|
gfn_t gfn = addr >> PAGE_SHIFT;
|
|
|
|
tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
|
|
leaf = iter.level;
|
|
sptes[leaf - 1] = iter.old_spte;
|
|
}
|
|
|
|
return leaf;
|
|
}
|