mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-30 07:34:12 +08:00
92dd057572
Back-merge of previous cycles msm-fixes for kexec fix (to avoid merge conflict) Signed-off-by: Rob Clark <robdclark@chromium.org>
700 lines
19 KiB
C
700 lines
19 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* Copyright (C) 2013 Red Hat
|
|
* Author: Rob Clark <robdclark@gmail.com>
|
|
*/
|
|
|
|
#ifndef __MSM_GPU_H__
|
|
#define __MSM_GPU_H__
|
|
|
|
#include <linux/adreno-smmu-priv.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/devfreq.h>
|
|
#include <linux/interconnect.h>
|
|
#include <linux/pm_opp.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/reset.h>
|
|
|
|
#include "msm_drv.h"
|
|
#include "msm_fence.h"
|
|
#include "msm_ringbuffer.h"
|
|
#include "msm_gem.h"
|
|
|
|
struct msm_gem_submit;
|
|
struct msm_gpu_perfcntr;
|
|
struct msm_gpu_state;
|
|
struct msm_file_private;
|
|
|
|
struct msm_gpu_config {
|
|
const char *ioname;
|
|
unsigned int nr_rings;
|
|
};
|
|
|
|
/* So far, with hardware that I've seen to date, we can have:
|
|
* + zero, one, or two z180 2d cores
|
|
* + a3xx or a2xx 3d core, which share a common CP (the firmware
|
|
* for the CP seems to implement some different PM4 packet types
|
|
* but the basics of cmdstream submission are the same)
|
|
*
|
|
* Which means that the eventual complete "class" hierarchy, once
|
|
* support for all past and present hw is in place, becomes:
|
|
* + msm_gpu
|
|
* + adreno_gpu
|
|
* + a3xx_gpu
|
|
* + a2xx_gpu
|
|
* + z180_gpu
|
|
*/
|
|
struct msm_gpu_funcs {
|
|
int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
|
|
uint32_t param, uint64_t *value, uint32_t *len);
|
|
int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
|
|
uint32_t param, uint64_t value, uint32_t len);
|
|
int (*hw_init)(struct msm_gpu *gpu);
|
|
int (*pm_suspend)(struct msm_gpu *gpu);
|
|
int (*pm_resume)(struct msm_gpu *gpu);
|
|
void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
|
|
void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
|
|
irqreturn_t (*irq)(struct msm_gpu *irq);
|
|
struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
|
|
void (*recover)(struct msm_gpu *gpu);
|
|
void (*destroy)(struct msm_gpu *gpu);
|
|
#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
|
|
/* show GPU status in debugfs: */
|
|
void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
|
|
struct drm_printer *p);
|
|
/* for generation specific debugfs: */
|
|
void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
|
|
#endif
|
|
/* note: gpu_busy() can assume that we have been pm_resumed */
|
|
u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
|
|
struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
|
|
int (*gpu_state_put)(struct msm_gpu_state *state);
|
|
unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
|
|
/* note: gpu_set_freq() can assume that we have been pm_resumed */
|
|
void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
|
|
bool suspended);
|
|
struct msm_gem_address_space *(*create_address_space)
|
|
(struct msm_gpu *gpu, struct platform_device *pdev);
|
|
struct msm_gem_address_space *(*create_private_address_space)
|
|
(struct msm_gpu *gpu);
|
|
uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
|
|
|
|
/**
|
|
* progress: Has the GPU made progress?
|
|
*
|
|
* Return true if GPU position in cmdstream has advanced (or changed)
|
|
* since the last call. To avoid false negatives, this should account
|
|
* for cmdstream that is buffered in this FIFO upstream of the CP fw.
|
|
*/
|
|
bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
|
|
};
|
|
|
|
/* Additional state for iommu faults: */
|
|
struct msm_gpu_fault_info {
|
|
u64 ttbr0;
|
|
unsigned long iova;
|
|
int flags;
|
|
const char *type;
|
|
const char *block;
|
|
};
|
|
|
|
/**
|
|
* struct msm_gpu_devfreq - devfreq related state
|
|
*/
|
|
struct msm_gpu_devfreq {
|
|
/** devfreq: devfreq instance */
|
|
struct devfreq *devfreq;
|
|
|
|
/** lock: lock for "suspended", "busy_cycles", and "time" */
|
|
struct mutex lock;
|
|
|
|
/**
|
|
* idle_freq:
|
|
*
|
|
* Shadow frequency used while the GPU is idle. From the PoV of
|
|
* the devfreq governor, we are continuing to sample busyness and
|
|
* adjust frequency while the GPU is idle, but we use this shadow
|
|
* value as the GPU is actually clamped to minimum frequency while
|
|
* it is inactive.
|
|
*/
|
|
unsigned long idle_freq;
|
|
|
|
/**
|
|
* boost_constraint:
|
|
*
|
|
* A PM QoS constraint to boost min freq for a period of time
|
|
* until the boost expires.
|
|
*/
|
|
struct dev_pm_qos_request boost_freq;
|
|
|
|
/**
|
|
* busy_cycles: Last busy counter value, for calculating elapsed busy
|
|
* cycles since last sampling period.
|
|
*/
|
|
u64 busy_cycles;
|
|
|
|
/** time: Time of last sampling period. */
|
|
ktime_t time;
|
|
|
|
/** idle_time: Time of last transition to idle: */
|
|
ktime_t idle_time;
|
|
|
|
/**
|
|
* idle_work:
|
|
*
|
|
* Used to delay clamping to idle freq on active->idle transition.
|
|
*/
|
|
struct msm_hrtimer_work idle_work;
|
|
|
|
/**
|
|
* boost_work:
|
|
*
|
|
* Used to reset the boost_constraint after the boost period has
|
|
* elapsed
|
|
*/
|
|
struct msm_hrtimer_work boost_work;
|
|
|
|
/** suspended: tracks if we're suspended */
|
|
bool suspended;
|
|
};
|
|
|
|
struct msm_gpu {
|
|
const char *name;
|
|
struct drm_device *dev;
|
|
struct platform_device *pdev;
|
|
const struct msm_gpu_funcs *funcs;
|
|
|
|
struct adreno_smmu_priv adreno_smmu;
|
|
|
|
/* performance counters (hw & sw): */
|
|
spinlock_t perf_lock;
|
|
bool perfcntr_active;
|
|
struct {
|
|
bool active;
|
|
ktime_t time;
|
|
} last_sample;
|
|
uint32_t totaltime, activetime; /* sw counters */
|
|
uint32_t last_cntrs[5]; /* hw counters */
|
|
const struct msm_gpu_perfcntr *perfcntrs;
|
|
uint32_t num_perfcntrs;
|
|
|
|
struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
|
|
int nr_rings;
|
|
|
|
/**
|
|
* sysprof_active:
|
|
*
|
|
* The count of contexts that have enabled system profiling.
|
|
*/
|
|
refcount_t sysprof_active;
|
|
|
|
/**
|
|
* cur_ctx_seqno:
|
|
*
|
|
* The ctx->seqno value of the last context to submit rendering,
|
|
* and the one with current pgtables installed (for generations
|
|
* that support per-context pgtables). Tracked by seqno rather
|
|
* than pointer value to avoid dangling pointers, and cases where
|
|
* a ctx can be freed and a new one created with the same address.
|
|
*/
|
|
int cur_ctx_seqno;
|
|
|
|
/**
|
|
* lock:
|
|
*
|
|
* General lock for serializing all the gpu things.
|
|
*
|
|
* TODO move to per-ring locking where feasible (ie. submit/retire
|
|
* path, etc)
|
|
*/
|
|
struct mutex lock;
|
|
|
|
/**
|
|
* active_submits:
|
|
*
|
|
* The number of submitted but not yet retired submits, used to
|
|
* determine transitions between active and idle.
|
|
*
|
|
* Protected by active_lock
|
|
*/
|
|
int active_submits;
|
|
|
|
/** lock: protects active_submits and idle/active transitions */
|
|
struct mutex active_lock;
|
|
|
|
/* does gpu need hw_init? */
|
|
bool needs_hw_init;
|
|
|
|
/**
|
|
* global_faults: number of GPU hangs not attributed to a particular
|
|
* address space
|
|
*/
|
|
int global_faults;
|
|
|
|
void __iomem *mmio;
|
|
int irq;
|
|
|
|
struct msm_gem_address_space *aspace;
|
|
|
|
/* Power Control: */
|
|
struct regulator *gpu_reg, *gpu_cx;
|
|
struct clk_bulk_data *grp_clks;
|
|
int nr_clocks;
|
|
struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
|
|
uint32_t fast_rate;
|
|
|
|
/* Hang and Inactivity Detection:
|
|
*/
|
|
#define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
|
|
|
|
#define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
|
|
#define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
|
|
struct timer_list hangcheck_timer;
|
|
|
|
/* Fault info for most recent iova fault: */
|
|
struct msm_gpu_fault_info fault_info;
|
|
|
|
/* work for handling GPU ioval faults: */
|
|
struct kthread_work fault_work;
|
|
|
|
/* work for handling GPU recovery: */
|
|
struct kthread_work recover_work;
|
|
|
|
/** retire_event: notified when submits are retired: */
|
|
wait_queue_head_t retire_event;
|
|
|
|
/* work for handling active-list retiring: */
|
|
struct kthread_work retire_work;
|
|
|
|
/* worker for retire/recover: */
|
|
struct kthread_worker *worker;
|
|
|
|
struct drm_gem_object *memptrs_bo;
|
|
|
|
struct msm_gpu_devfreq devfreq;
|
|
|
|
uint32_t suspend_count;
|
|
|
|
struct msm_gpu_state *crashstate;
|
|
|
|
/* True if the hardware supports expanded apriv (a650 and newer) */
|
|
bool hw_apriv;
|
|
|
|
struct thermal_cooling_device *cooling;
|
|
|
|
/* To poll for cx gdsc collapse during gpu recovery */
|
|
struct reset_control *cx_collapse;
|
|
};
|
|
|
|
static inline struct msm_gpu *dev_to_gpu(struct device *dev)
|
|
{
|
|
struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
|
|
|
|
if (!adreno_smmu)
|
|
return NULL;
|
|
|
|
return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
|
|
}
|
|
|
|
/* It turns out that all targets use the same ringbuffer size */
|
|
#define MSM_GPU_RINGBUFFER_SZ SZ_32K
|
|
#define MSM_GPU_RINGBUFFER_BLKSIZE 32
|
|
|
|
#define MSM_GPU_RB_CNTL_DEFAULT \
|
|
(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
|
|
AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
|
|
|
|
static inline bool msm_gpu_active(struct msm_gpu *gpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < gpu->nr_rings; i++) {
|
|
struct msm_ringbuffer *ring = gpu->rb[i];
|
|
|
|
if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Perf-Counters:
|
|
* The select_reg and select_val are just there for the benefit of the child
|
|
* class that actually enables the perf counter.. but msm_gpu base class
|
|
* will handle sampling/displaying the counters.
|
|
*/
|
|
|
|
struct msm_gpu_perfcntr {
|
|
uint32_t select_reg;
|
|
uint32_t sample_reg;
|
|
uint32_t select_val;
|
|
const char *name;
|
|
};
|
|
|
|
/*
|
|
* The number of priority levels provided by drm gpu scheduler. The
|
|
* DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
|
|
* cases, so we don't use it (no need for kernel generated jobs).
|
|
*/
|
|
#define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
|
|
|
|
/**
|
|
* struct msm_file_private - per-drm_file context
|
|
*
|
|
* @queuelock: synchronizes access to submitqueues list
|
|
* @submitqueues: list of &msm_gpu_submitqueue created by userspace
|
|
* @queueid: counter incremented each time a submitqueue is created,
|
|
* used to assign &msm_gpu_submitqueue.id
|
|
* @aspace: the per-process GPU address-space
|
|
* @ref: reference count
|
|
* @seqno: unique per process seqno
|
|
*/
|
|
struct msm_file_private {
|
|
rwlock_t queuelock;
|
|
struct list_head submitqueues;
|
|
int queueid;
|
|
struct msm_gem_address_space *aspace;
|
|
struct kref ref;
|
|
int seqno;
|
|
|
|
/**
|
|
* sysprof:
|
|
*
|
|
* The value of MSM_PARAM_SYSPROF set by userspace. This is
|
|
* intended to be used by system profiling tools like Mesa's
|
|
* pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
|
|
*
|
|
* Setting a value of 1 will preserve performance counters across
|
|
* context switches. Setting a value of 2 will in addition
|
|
* suppress suspend. (Performance counters lose state across
|
|
* power collapse, which is undesirable for profiling in some
|
|
* cases.)
|
|
*
|
|
* The value automatically reverts to zero when the drm device
|
|
* file is closed.
|
|
*/
|
|
int sysprof;
|
|
|
|
/**
|
|
* comm: Overridden task comm, see MSM_PARAM_COMM
|
|
*
|
|
* Accessed under msm_gpu::lock
|
|
*/
|
|
char *comm;
|
|
|
|
/**
|
|
* cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
|
|
*
|
|
* Accessed under msm_gpu::lock
|
|
*/
|
|
char *cmdline;
|
|
|
|
/**
|
|
* elapsed:
|
|
*
|
|
* The total (cumulative) elapsed time GPU was busy with rendering
|
|
* from this context in ns.
|
|
*/
|
|
uint64_t elapsed_ns;
|
|
|
|
/**
|
|
* cycles:
|
|
*
|
|
* The total (cumulative) GPU cycles elapsed attributed to this
|
|
* context.
|
|
*/
|
|
uint64_t cycles;
|
|
|
|
/**
|
|
* entities:
|
|
*
|
|
* Table of per-priority-level sched entities used by submitqueues
|
|
* associated with this &drm_file. Because some userspace apps
|
|
* make assumptions about rendering from multiple gl contexts
|
|
* (of the same priority) within the process happening in FIFO
|
|
* order without requiring any fencing beyond MakeCurrent(), we
|
|
* create at most one &drm_sched_entity per-process per-priority-
|
|
* level.
|
|
*/
|
|
struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
|
|
};
|
|
|
|
/**
|
|
* msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
|
|
*
|
|
* @gpu: the gpu instance
|
|
* @prio: the userspace priority level
|
|
* @ring_nr: [out] the ringbuffer the userspace priority maps to
|
|
* @sched_prio: [out] the gpu scheduler priority level which the userspace
|
|
* priority maps to
|
|
*
|
|
* With drm/scheduler providing it's own level of prioritization, our total
|
|
* number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
|
|
* Each ring is associated with it's own scheduler instance. However, our
|
|
* UABI is that lower numerical values are higher priority. So mapping the
|
|
* single userspace priority level into ring_nr and sched_prio takes some
|
|
* care. The userspace provided priority (when a submitqueue is created)
|
|
* is mapped to ring nr and scheduler priority as such:
|
|
*
|
|
* ring_nr = userspace_prio / NR_SCHED_PRIORITIES
|
|
* sched_prio = NR_SCHED_PRIORITIES -
|
|
* (userspace_prio % NR_SCHED_PRIORITIES) - 1
|
|
*
|
|
* This allows generations without preemption (nr_rings==1) to have some
|
|
* amount of prioritization, and provides more priority levels for gens
|
|
* that do have preemption.
|
|
*/
|
|
static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
|
|
unsigned *ring_nr, enum drm_sched_priority *sched_prio)
|
|
{
|
|
unsigned rn, sp;
|
|
|
|
rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
|
|
|
|
/* invert sched priority to map to higher-numeric-is-higher-
|
|
* priority convention
|
|
*/
|
|
sp = NR_SCHED_PRIORITIES - sp - 1;
|
|
|
|
if (rn >= gpu->nr_rings)
|
|
return -EINVAL;
|
|
|
|
*ring_nr = rn;
|
|
*sched_prio = sp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* struct msm_gpu_submitqueues - Userspace created context.
|
|
*
|
|
* A submitqueue is associated with a gl context or vk queue (or equiv)
|
|
* in userspace.
|
|
*
|
|
* @id: userspace id for the submitqueue, unique within the drm_file
|
|
* @flags: userspace flags for the submitqueue, specified at creation
|
|
* (currently unusued)
|
|
* @ring_nr: the ringbuffer used by this submitqueue, which is determined
|
|
* by the submitqueue's priority
|
|
* @faults: the number of GPU hangs associated with this submitqueue
|
|
* @last_fence: the sequence number of the last allocated fence (for error
|
|
* checking)
|
|
* @ctx: the per-drm_file context associated with the submitqueue (ie.
|
|
* which set of pgtables do submits jobs associated with the
|
|
* submitqueue use)
|
|
* @node: node in the context's list of submitqueues
|
|
* @fence_idr: maps fence-id to dma_fence for userspace visible fence
|
|
* seqno, protected by submitqueue lock
|
|
* @idr_lock: for serializing access to fence_idr
|
|
* @lock: submitqueue lock for serializing submits on a queue
|
|
* @ref: reference count
|
|
* @entity: the submit job-queue
|
|
*/
|
|
struct msm_gpu_submitqueue {
|
|
int id;
|
|
u32 flags;
|
|
u32 ring_nr;
|
|
int faults;
|
|
uint32_t last_fence;
|
|
struct msm_file_private *ctx;
|
|
struct list_head node;
|
|
struct idr fence_idr;
|
|
struct mutex idr_lock;
|
|
struct mutex lock;
|
|
struct kref ref;
|
|
struct drm_sched_entity *entity;
|
|
};
|
|
|
|
struct msm_gpu_state_bo {
|
|
u64 iova;
|
|
size_t size;
|
|
void *data;
|
|
bool encoded;
|
|
char name[32];
|
|
};
|
|
|
|
struct msm_gpu_state {
|
|
struct kref ref;
|
|
struct timespec64 time;
|
|
|
|
struct {
|
|
u64 iova;
|
|
u32 fence;
|
|
u32 seqno;
|
|
u32 rptr;
|
|
u32 wptr;
|
|
void *data;
|
|
int data_size;
|
|
bool encoded;
|
|
} ring[MSM_GPU_MAX_RINGS];
|
|
|
|
int nr_registers;
|
|
u32 *registers;
|
|
|
|
u32 rbbm_status;
|
|
|
|
char *comm;
|
|
char *cmd;
|
|
|
|
struct msm_gpu_fault_info fault_info;
|
|
|
|
int nr_bos;
|
|
struct msm_gpu_state_bo *bos;
|
|
};
|
|
|
|
static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
|
|
{
|
|
msm_writel(data, gpu->mmio + (reg << 2));
|
|
}
|
|
|
|
static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
|
|
{
|
|
return msm_readl(gpu->mmio + (reg << 2));
|
|
}
|
|
|
|
static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
|
|
{
|
|
msm_rmw(gpu->mmio + (reg << 2), mask, or);
|
|
}
|
|
|
|
static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
|
|
{
|
|
u64 val;
|
|
|
|
/*
|
|
* Why not a readq here? Two reasons: 1) many of the LO registers are
|
|
* not quad word aligned and 2) the GPU hardware designers have a bit
|
|
* of a history of putting registers where they fit, especially in
|
|
* spins. The longer a GPU family goes the higher the chance that
|
|
* we'll get burned. We could do a series of validity checks if we
|
|
* wanted to, but really is a readq() that much better? Nah.
|
|
*/
|
|
|
|
/*
|
|
* For some lo/hi registers (like perfcounters), the hi value is latched
|
|
* when the lo is read, so make sure to read the lo first to trigger
|
|
* that
|
|
*/
|
|
val = (u64) msm_readl(gpu->mmio + (reg << 2));
|
|
val |= ((u64) msm_readl(gpu->mmio + ((reg + 1) << 2)) << 32);
|
|
|
|
return val;
|
|
}
|
|
|
|
static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
|
|
{
|
|
/* Why not a writeq here? Read the screed above */
|
|
msm_writel(lower_32_bits(val), gpu->mmio + (reg << 2));
|
|
msm_writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
|
|
}
|
|
|
|
int msm_gpu_pm_suspend(struct msm_gpu *gpu);
|
|
int msm_gpu_pm_resume(struct msm_gpu *gpu);
|
|
|
|
void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
|
|
struct drm_printer *p);
|
|
|
|
int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
|
|
struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
|
|
u32 id);
|
|
int msm_submitqueue_create(struct drm_device *drm,
|
|
struct msm_file_private *ctx,
|
|
u32 prio, u32 flags, u32 *id);
|
|
int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
|
|
struct drm_msm_submitqueue_query *args);
|
|
int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
|
|
void msm_submitqueue_close(struct msm_file_private *ctx);
|
|
|
|
void msm_submitqueue_destroy(struct kref *kref);
|
|
|
|
int msm_file_private_set_sysprof(struct msm_file_private *ctx,
|
|
struct msm_gpu *gpu, int sysprof);
|
|
void __msm_file_private_destroy(struct kref *kref);
|
|
|
|
static inline void msm_file_private_put(struct msm_file_private *ctx)
|
|
{
|
|
kref_put(&ctx->ref, __msm_file_private_destroy);
|
|
}
|
|
|
|
static inline struct msm_file_private *msm_file_private_get(
|
|
struct msm_file_private *ctx)
|
|
{
|
|
kref_get(&ctx->ref);
|
|
return ctx;
|
|
}
|
|
|
|
void msm_devfreq_init(struct msm_gpu *gpu);
|
|
void msm_devfreq_cleanup(struct msm_gpu *gpu);
|
|
void msm_devfreq_resume(struct msm_gpu *gpu);
|
|
void msm_devfreq_suspend(struct msm_gpu *gpu);
|
|
void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
|
|
void msm_devfreq_active(struct msm_gpu *gpu);
|
|
void msm_devfreq_idle(struct msm_gpu *gpu);
|
|
|
|
int msm_gpu_hw_init(struct msm_gpu *gpu);
|
|
|
|
void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
|
|
void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
|
|
int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
|
|
uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
|
|
|
|
void msm_gpu_retire(struct msm_gpu *gpu);
|
|
void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
|
|
|
|
int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
|
|
struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
|
|
const char *name, struct msm_gpu_config *config);
|
|
|
|
struct msm_gem_address_space *
|
|
msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
|
|
|
|
void msm_gpu_cleanup(struct msm_gpu *gpu);
|
|
|
|
struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
|
|
void __init adreno_register(void);
|
|
void __exit adreno_unregister(void);
|
|
|
|
static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
|
|
{
|
|
if (queue)
|
|
kref_put(&queue->ref, msm_submitqueue_destroy);
|
|
}
|
|
|
|
static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
|
|
{
|
|
struct msm_gpu_state *state = NULL;
|
|
|
|
mutex_lock(&gpu->lock);
|
|
|
|
if (gpu->crashstate) {
|
|
kref_get(&gpu->crashstate->ref);
|
|
state = gpu->crashstate;
|
|
}
|
|
|
|
mutex_unlock(&gpu->lock);
|
|
|
|
return state;
|
|
}
|
|
|
|
static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
|
|
{
|
|
mutex_lock(&gpu->lock);
|
|
|
|
if (gpu->crashstate) {
|
|
if (gpu->funcs->gpu_state_put(gpu->crashstate))
|
|
gpu->crashstate = NULL;
|
|
}
|
|
|
|
mutex_unlock(&gpu->lock);
|
|
}
|
|
|
|
/*
|
|
* Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
|
|
* support expanded privileges
|
|
*/
|
|
#define check_apriv(gpu, flags) \
|
|
(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
|
|
|
|
|
|
#endif /* __MSM_GPU_H__ */
|