mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 08:14:15 +08:00
2775df6e5e
-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZuQEvgAKCRCRxhvAZXjc ou77AQD3U1KjbdgzbUi6kaUmiiWOPhfYTlm8mho8dBjqvTCB+AD/XTWSFCWWhHB4 KyQZTbjRD81xmVNbKjASazp0EA6Ahwc= =gIsD -----END PGP SIGNATURE----- Merge tag 'vfs-6.12.folio' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs Pull vfs folio updates from Christian Brauner: "This contains work to port write_begin and write_end to rely on folios for various filesystems. This converts ocfs2, vboxfs, orangefs, jffs2, hostfs, fuse, f2fs, ecryptfs, ntfs3, nilfs2, reiserfs, minixfs, qnx6, sysv, ufs, and squashfs. After this series lands a bunch of the filesystems in this list do not mention struct page anymore" * tag 'vfs-6.12.folio' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (61 commits) Squashfs: Ensure all readahead pages have been used Squashfs: Rewrite and update squashfs_readahead_fragment() to not use page->index Squashfs: Update squashfs_readpage_block() to not use page->index Squashfs: Update squashfs_readahead() to not use page->index Squashfs: Update page_actor to not use page->index jffs2: Use a folio in jffs2_garbage_collect_dnode() jffs2: Convert jffs2_do_readpage_nolock to take a folio buffer: Convert __block_write_begin() to take a folio ocfs2: Convert ocfs2_write_zero_page to use a folio fs: Convert aops->write_begin to take a folio fs: Convert aops->write_end to take a folio vboxsf: Use a folio in vboxsf_write_end() orangefs: Convert orangefs_write_begin() to use a folio orangefs: Convert orangefs_write_end() to use a folio jffs2: Convert jffs2_write_begin() to use a folio jffs2: Convert jffs2_write_end() to use a folio hostfs: Convert hostfs_write_end() to use a folio fuse: Convert fuse_write_begin() to use a folio fuse: Convert fuse_write_end() to use a folio f2fs: Convert f2fs_write_begin() to use a folio ...
3158 lines
83 KiB
C
3158 lines
83 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/fs/buffer.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 2002 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
|
|
*
|
|
* Removed a lot of unnecessary code and simplified things now that
|
|
* the buffer cache isn't our primary cache - Andrew Tridgell 12/96
|
|
*
|
|
* Speed up hash, lru, and free list operations. Use gfp() for allocating
|
|
* hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
|
|
*
|
|
* Added 32k buffer block sizes - these are required older ARM systems. - RMK
|
|
*
|
|
* async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/iomap.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/file.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/export.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/bit_spinlock.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <trace/events/block.h>
|
|
#include <linux/fscrypt.h>
|
|
#include <linux/fsverity.h>
|
|
#include <linux/sched/isolation.h>
|
|
|
|
#include "internal.h"
|
|
|
|
static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
|
|
static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
|
|
enum rw_hint hint, struct writeback_control *wbc);
|
|
|
|
#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
|
|
|
|
inline void touch_buffer(struct buffer_head *bh)
|
|
{
|
|
trace_block_touch_buffer(bh);
|
|
folio_mark_accessed(bh->b_folio);
|
|
}
|
|
EXPORT_SYMBOL(touch_buffer);
|
|
|
|
void __lock_buffer(struct buffer_head *bh)
|
|
{
|
|
wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
|
|
}
|
|
EXPORT_SYMBOL(__lock_buffer);
|
|
|
|
void unlock_buffer(struct buffer_head *bh)
|
|
{
|
|
clear_bit_unlock(BH_Lock, &bh->b_state);
|
|
smp_mb__after_atomic();
|
|
wake_up_bit(&bh->b_state, BH_Lock);
|
|
}
|
|
EXPORT_SYMBOL(unlock_buffer);
|
|
|
|
/*
|
|
* Returns if the folio has dirty or writeback buffers. If all the buffers
|
|
* are unlocked and clean then the folio_test_dirty information is stale. If
|
|
* any of the buffers are locked, it is assumed they are locked for IO.
|
|
*/
|
|
void buffer_check_dirty_writeback(struct folio *folio,
|
|
bool *dirty, bool *writeback)
|
|
{
|
|
struct buffer_head *head, *bh;
|
|
*dirty = false;
|
|
*writeback = false;
|
|
|
|
BUG_ON(!folio_test_locked(folio));
|
|
|
|
head = folio_buffers(folio);
|
|
if (!head)
|
|
return;
|
|
|
|
if (folio_test_writeback(folio))
|
|
*writeback = true;
|
|
|
|
bh = head;
|
|
do {
|
|
if (buffer_locked(bh))
|
|
*writeback = true;
|
|
|
|
if (buffer_dirty(bh))
|
|
*dirty = true;
|
|
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
}
|
|
|
|
/*
|
|
* Block until a buffer comes unlocked. This doesn't stop it
|
|
* from becoming locked again - you have to lock it yourself
|
|
* if you want to preserve its state.
|
|
*/
|
|
void __wait_on_buffer(struct buffer_head * bh)
|
|
{
|
|
wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
|
|
}
|
|
EXPORT_SYMBOL(__wait_on_buffer);
|
|
|
|
static void buffer_io_error(struct buffer_head *bh, char *msg)
|
|
{
|
|
if (!test_bit(BH_Quiet, &bh->b_state))
|
|
printk_ratelimited(KERN_ERR
|
|
"Buffer I/O error on dev %pg, logical block %llu%s\n",
|
|
bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
|
|
}
|
|
|
|
/*
|
|
* End-of-IO handler helper function which does not touch the bh after
|
|
* unlocking it.
|
|
* Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
|
|
* a race there is benign: unlock_buffer() only use the bh's address for
|
|
* hashing after unlocking the buffer, so it doesn't actually touch the bh
|
|
* itself.
|
|
*/
|
|
static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
|
|
{
|
|
if (uptodate) {
|
|
set_buffer_uptodate(bh);
|
|
} else {
|
|
/* This happens, due to failed read-ahead attempts. */
|
|
clear_buffer_uptodate(bh);
|
|
}
|
|
unlock_buffer(bh);
|
|
}
|
|
|
|
/*
|
|
* Default synchronous end-of-IO handler.. Just mark it up-to-date and
|
|
* unlock the buffer.
|
|
*/
|
|
void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
|
|
{
|
|
__end_buffer_read_notouch(bh, uptodate);
|
|
put_bh(bh);
|
|
}
|
|
EXPORT_SYMBOL(end_buffer_read_sync);
|
|
|
|
void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
|
|
{
|
|
if (uptodate) {
|
|
set_buffer_uptodate(bh);
|
|
} else {
|
|
buffer_io_error(bh, ", lost sync page write");
|
|
mark_buffer_write_io_error(bh);
|
|
clear_buffer_uptodate(bh);
|
|
}
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
}
|
|
EXPORT_SYMBOL(end_buffer_write_sync);
|
|
|
|
/*
|
|
* Various filesystems appear to want __find_get_block to be non-blocking.
|
|
* But it's the page lock which protects the buffers. To get around this,
|
|
* we get exclusion from try_to_free_buffers with the blockdev mapping's
|
|
* i_private_lock.
|
|
*
|
|
* Hack idea: for the blockdev mapping, i_private_lock contention
|
|
* may be quite high. This code could TryLock the page, and if that
|
|
* succeeds, there is no need to take i_private_lock.
|
|
*/
|
|
static struct buffer_head *
|
|
__find_get_block_slow(struct block_device *bdev, sector_t block)
|
|
{
|
|
struct address_space *bd_mapping = bdev->bd_mapping;
|
|
const int blkbits = bd_mapping->host->i_blkbits;
|
|
struct buffer_head *ret = NULL;
|
|
pgoff_t index;
|
|
struct buffer_head *bh;
|
|
struct buffer_head *head;
|
|
struct folio *folio;
|
|
int all_mapped = 1;
|
|
static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
|
|
|
|
index = ((loff_t)block << blkbits) / PAGE_SIZE;
|
|
folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
|
|
if (IS_ERR(folio))
|
|
goto out;
|
|
|
|
spin_lock(&bd_mapping->i_private_lock);
|
|
head = folio_buffers(folio);
|
|
if (!head)
|
|
goto out_unlock;
|
|
bh = head;
|
|
do {
|
|
if (!buffer_mapped(bh))
|
|
all_mapped = 0;
|
|
else if (bh->b_blocknr == block) {
|
|
ret = bh;
|
|
get_bh(bh);
|
|
goto out_unlock;
|
|
}
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
|
|
/* we might be here because some of the buffers on this page are
|
|
* not mapped. This is due to various races between
|
|
* file io on the block device and getblk. It gets dealt with
|
|
* elsewhere, don't buffer_error if we had some unmapped buffers
|
|
*/
|
|
ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
|
|
if (all_mapped && __ratelimit(&last_warned)) {
|
|
printk("__find_get_block_slow() failed. block=%llu, "
|
|
"b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
|
|
"device %pg blocksize: %d\n",
|
|
(unsigned long long)block,
|
|
(unsigned long long)bh->b_blocknr,
|
|
bh->b_state, bh->b_size, bdev,
|
|
1 << blkbits);
|
|
}
|
|
out_unlock:
|
|
spin_unlock(&bd_mapping->i_private_lock);
|
|
folio_put(folio);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
|
|
{
|
|
unsigned long flags;
|
|
struct buffer_head *first;
|
|
struct buffer_head *tmp;
|
|
struct folio *folio;
|
|
int folio_uptodate = 1;
|
|
|
|
BUG_ON(!buffer_async_read(bh));
|
|
|
|
folio = bh->b_folio;
|
|
if (uptodate) {
|
|
set_buffer_uptodate(bh);
|
|
} else {
|
|
clear_buffer_uptodate(bh);
|
|
buffer_io_error(bh, ", async page read");
|
|
}
|
|
|
|
/*
|
|
* Be _very_ careful from here on. Bad things can happen if
|
|
* two buffer heads end IO at almost the same time and both
|
|
* decide that the page is now completely done.
|
|
*/
|
|
first = folio_buffers(folio);
|
|
spin_lock_irqsave(&first->b_uptodate_lock, flags);
|
|
clear_buffer_async_read(bh);
|
|
unlock_buffer(bh);
|
|
tmp = bh;
|
|
do {
|
|
if (!buffer_uptodate(tmp))
|
|
folio_uptodate = 0;
|
|
if (buffer_async_read(tmp)) {
|
|
BUG_ON(!buffer_locked(tmp));
|
|
goto still_busy;
|
|
}
|
|
tmp = tmp->b_this_page;
|
|
} while (tmp != bh);
|
|
spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
|
|
|
|
folio_end_read(folio, folio_uptodate);
|
|
return;
|
|
|
|
still_busy:
|
|
spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
|
|
return;
|
|
}
|
|
|
|
struct postprocess_bh_ctx {
|
|
struct work_struct work;
|
|
struct buffer_head *bh;
|
|
};
|
|
|
|
static void verify_bh(struct work_struct *work)
|
|
{
|
|
struct postprocess_bh_ctx *ctx =
|
|
container_of(work, struct postprocess_bh_ctx, work);
|
|
struct buffer_head *bh = ctx->bh;
|
|
bool valid;
|
|
|
|
valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
|
|
end_buffer_async_read(bh, valid);
|
|
kfree(ctx);
|
|
}
|
|
|
|
static bool need_fsverity(struct buffer_head *bh)
|
|
{
|
|
struct folio *folio = bh->b_folio;
|
|
struct inode *inode = folio->mapping->host;
|
|
|
|
return fsverity_active(inode) &&
|
|
/* needed by ext4 */
|
|
folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
|
|
}
|
|
|
|
static void decrypt_bh(struct work_struct *work)
|
|
{
|
|
struct postprocess_bh_ctx *ctx =
|
|
container_of(work, struct postprocess_bh_ctx, work);
|
|
struct buffer_head *bh = ctx->bh;
|
|
int err;
|
|
|
|
err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
|
|
bh_offset(bh));
|
|
if (err == 0 && need_fsverity(bh)) {
|
|
/*
|
|
* We use different work queues for decryption and for verity
|
|
* because verity may require reading metadata pages that need
|
|
* decryption, and we shouldn't recurse to the same workqueue.
|
|
*/
|
|
INIT_WORK(&ctx->work, verify_bh);
|
|
fsverity_enqueue_verify_work(&ctx->work);
|
|
return;
|
|
}
|
|
end_buffer_async_read(bh, err == 0);
|
|
kfree(ctx);
|
|
}
|
|
|
|
/*
|
|
* I/O completion handler for block_read_full_folio() - pages
|
|
* which come unlocked at the end of I/O.
|
|
*/
|
|
static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
|
|
{
|
|
struct inode *inode = bh->b_folio->mapping->host;
|
|
bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
|
|
bool verify = need_fsverity(bh);
|
|
|
|
/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
|
|
if (uptodate && (decrypt || verify)) {
|
|
struct postprocess_bh_ctx *ctx =
|
|
kmalloc(sizeof(*ctx), GFP_ATOMIC);
|
|
|
|
if (ctx) {
|
|
ctx->bh = bh;
|
|
if (decrypt) {
|
|
INIT_WORK(&ctx->work, decrypt_bh);
|
|
fscrypt_enqueue_decrypt_work(&ctx->work);
|
|
} else {
|
|
INIT_WORK(&ctx->work, verify_bh);
|
|
fsverity_enqueue_verify_work(&ctx->work);
|
|
}
|
|
return;
|
|
}
|
|
uptodate = 0;
|
|
}
|
|
end_buffer_async_read(bh, uptodate);
|
|
}
|
|
|
|
/*
|
|
* Completion handler for block_write_full_folio() - folios which are unlocked
|
|
* during I/O, and which have the writeback flag cleared upon I/O completion.
|
|
*/
|
|
static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
|
|
{
|
|
unsigned long flags;
|
|
struct buffer_head *first;
|
|
struct buffer_head *tmp;
|
|
struct folio *folio;
|
|
|
|
BUG_ON(!buffer_async_write(bh));
|
|
|
|
folio = bh->b_folio;
|
|
if (uptodate) {
|
|
set_buffer_uptodate(bh);
|
|
} else {
|
|
buffer_io_error(bh, ", lost async page write");
|
|
mark_buffer_write_io_error(bh);
|
|
clear_buffer_uptodate(bh);
|
|
}
|
|
|
|
first = folio_buffers(folio);
|
|
spin_lock_irqsave(&first->b_uptodate_lock, flags);
|
|
|
|
clear_buffer_async_write(bh);
|
|
unlock_buffer(bh);
|
|
tmp = bh->b_this_page;
|
|
while (tmp != bh) {
|
|
if (buffer_async_write(tmp)) {
|
|
BUG_ON(!buffer_locked(tmp));
|
|
goto still_busy;
|
|
}
|
|
tmp = tmp->b_this_page;
|
|
}
|
|
spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
|
|
folio_end_writeback(folio);
|
|
return;
|
|
|
|
still_busy:
|
|
spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If a page's buffers are under async readin (end_buffer_async_read
|
|
* completion) then there is a possibility that another thread of
|
|
* control could lock one of the buffers after it has completed
|
|
* but while some of the other buffers have not completed. This
|
|
* locked buffer would confuse end_buffer_async_read() into not unlocking
|
|
* the page. So the absence of BH_Async_Read tells end_buffer_async_read()
|
|
* that this buffer is not under async I/O.
|
|
*
|
|
* The page comes unlocked when it has no locked buffer_async buffers
|
|
* left.
|
|
*
|
|
* PageLocked prevents anyone starting new async I/O reads any of
|
|
* the buffers.
|
|
*
|
|
* PageWriteback is used to prevent simultaneous writeout of the same
|
|
* page.
|
|
*
|
|
* PageLocked prevents anyone from starting writeback of a page which is
|
|
* under read I/O (PageWriteback is only ever set against a locked page).
|
|
*/
|
|
static void mark_buffer_async_read(struct buffer_head *bh)
|
|
{
|
|
bh->b_end_io = end_buffer_async_read_io;
|
|
set_buffer_async_read(bh);
|
|
}
|
|
|
|
static void mark_buffer_async_write_endio(struct buffer_head *bh,
|
|
bh_end_io_t *handler)
|
|
{
|
|
bh->b_end_io = handler;
|
|
set_buffer_async_write(bh);
|
|
}
|
|
|
|
void mark_buffer_async_write(struct buffer_head *bh)
|
|
{
|
|
mark_buffer_async_write_endio(bh, end_buffer_async_write);
|
|
}
|
|
EXPORT_SYMBOL(mark_buffer_async_write);
|
|
|
|
|
|
/*
|
|
* fs/buffer.c contains helper functions for buffer-backed address space's
|
|
* fsync functions. A common requirement for buffer-based filesystems is
|
|
* that certain data from the backing blockdev needs to be written out for
|
|
* a successful fsync(). For example, ext2 indirect blocks need to be
|
|
* written back and waited upon before fsync() returns.
|
|
*
|
|
* The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
|
|
* inode_has_buffers() and invalidate_inode_buffers() are provided for the
|
|
* management of a list of dependent buffers at ->i_mapping->i_private_list.
|
|
*
|
|
* Locking is a little subtle: try_to_free_buffers() will remove buffers
|
|
* from their controlling inode's queue when they are being freed. But
|
|
* try_to_free_buffers() will be operating against the *blockdev* mapping
|
|
* at the time, not against the S_ISREG file which depends on those buffers.
|
|
* So the locking for i_private_list is via the i_private_lock in the address_space
|
|
* which backs the buffers. Which is different from the address_space
|
|
* against which the buffers are listed. So for a particular address_space,
|
|
* mapping->i_private_lock does *not* protect mapping->i_private_list! In fact,
|
|
* mapping->i_private_list will always be protected by the backing blockdev's
|
|
* ->i_private_lock.
|
|
*
|
|
* Which introduces a requirement: all buffers on an address_space's
|
|
* ->i_private_list must be from the same address_space: the blockdev's.
|
|
*
|
|
* address_spaces which do not place buffers at ->i_private_list via these
|
|
* utility functions are free to use i_private_lock and i_private_list for
|
|
* whatever they want. The only requirement is that list_empty(i_private_list)
|
|
* be true at clear_inode() time.
|
|
*
|
|
* FIXME: clear_inode should not call invalidate_inode_buffers(). The
|
|
* filesystems should do that. invalidate_inode_buffers() should just go
|
|
* BUG_ON(!list_empty).
|
|
*
|
|
* FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
|
|
* take an address_space, not an inode. And it should be called
|
|
* mark_buffer_dirty_fsync() to clearly define why those buffers are being
|
|
* queued up.
|
|
*
|
|
* FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
|
|
* list if it is already on a list. Because if the buffer is on a list,
|
|
* it *must* already be on the right one. If not, the filesystem is being
|
|
* silly. This will save a ton of locking. But first we have to ensure
|
|
* that buffers are taken *off* the old inode's list when they are freed
|
|
* (presumably in truncate). That requires careful auditing of all
|
|
* filesystems (do it inside bforget()). It could also be done by bringing
|
|
* b_inode back.
|
|
*/
|
|
|
|
/*
|
|
* The buffer's backing address_space's i_private_lock must be held
|
|
*/
|
|
static void __remove_assoc_queue(struct buffer_head *bh)
|
|
{
|
|
list_del_init(&bh->b_assoc_buffers);
|
|
WARN_ON(!bh->b_assoc_map);
|
|
bh->b_assoc_map = NULL;
|
|
}
|
|
|
|
int inode_has_buffers(struct inode *inode)
|
|
{
|
|
return !list_empty(&inode->i_data.i_private_list);
|
|
}
|
|
|
|
/*
|
|
* osync is designed to support O_SYNC io. It waits synchronously for
|
|
* all already-submitted IO to complete, but does not queue any new
|
|
* writes to the disk.
|
|
*
|
|
* To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
|
|
* as you dirty the buffers, and then use osync_inode_buffers to wait for
|
|
* completion. Any other dirty buffers which are not yet queued for
|
|
* write will not be flushed to disk by the osync.
|
|
*/
|
|
static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct list_head *p;
|
|
int err = 0;
|
|
|
|
spin_lock(lock);
|
|
repeat:
|
|
list_for_each_prev(p, list) {
|
|
bh = BH_ENTRY(p);
|
|
if (buffer_locked(bh)) {
|
|
get_bh(bh);
|
|
spin_unlock(lock);
|
|
wait_on_buffer(bh);
|
|
if (!buffer_uptodate(bh))
|
|
err = -EIO;
|
|
brelse(bh);
|
|
spin_lock(lock);
|
|
goto repeat;
|
|
}
|
|
}
|
|
spin_unlock(lock);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
|
|
* @mapping: the mapping which wants those buffers written
|
|
*
|
|
* Starts I/O against the buffers at mapping->i_private_list, and waits upon
|
|
* that I/O.
|
|
*
|
|
* Basically, this is a convenience function for fsync().
|
|
* @mapping is a file or directory which needs those buffers to be written for
|
|
* a successful fsync().
|
|
*/
|
|
int sync_mapping_buffers(struct address_space *mapping)
|
|
{
|
|
struct address_space *buffer_mapping = mapping->i_private_data;
|
|
|
|
if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
|
|
return 0;
|
|
|
|
return fsync_buffers_list(&buffer_mapping->i_private_lock,
|
|
&mapping->i_private_list);
|
|
}
|
|
EXPORT_SYMBOL(sync_mapping_buffers);
|
|
|
|
/**
|
|
* generic_buffers_fsync_noflush - generic buffer fsync implementation
|
|
* for simple filesystems with no inode lock
|
|
*
|
|
* @file: file to synchronize
|
|
* @start: start offset in bytes
|
|
* @end: end offset in bytes (inclusive)
|
|
* @datasync: only synchronize essential metadata if true
|
|
*
|
|
* This is a generic implementation of the fsync method for simple
|
|
* filesystems which track all non-inode metadata in the buffers list
|
|
* hanging off the address_space structure.
|
|
*/
|
|
int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
|
|
bool datasync)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
int err;
|
|
int ret;
|
|
|
|
err = file_write_and_wait_range(file, start, end);
|
|
if (err)
|
|
return err;
|
|
|
|
ret = sync_mapping_buffers(inode->i_mapping);
|
|
if (!(inode->i_state & I_DIRTY_ALL))
|
|
goto out;
|
|
if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
|
|
goto out;
|
|
|
|
err = sync_inode_metadata(inode, 1);
|
|
if (ret == 0)
|
|
ret = err;
|
|
|
|
out:
|
|
/* check and advance again to catch errors after syncing out buffers */
|
|
err = file_check_and_advance_wb_err(file);
|
|
if (ret == 0)
|
|
ret = err;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(generic_buffers_fsync_noflush);
|
|
|
|
/**
|
|
* generic_buffers_fsync - generic buffer fsync implementation
|
|
* for simple filesystems with no inode lock
|
|
*
|
|
* @file: file to synchronize
|
|
* @start: start offset in bytes
|
|
* @end: end offset in bytes (inclusive)
|
|
* @datasync: only synchronize essential metadata if true
|
|
*
|
|
* This is a generic implementation of the fsync method for simple
|
|
* filesystems which track all non-inode metadata in the buffers list
|
|
* hanging off the address_space structure. This also makes sure that
|
|
* a device cache flush operation is called at the end.
|
|
*/
|
|
int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
|
|
bool datasync)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
int ret;
|
|
|
|
ret = generic_buffers_fsync_noflush(file, start, end, datasync);
|
|
if (!ret)
|
|
ret = blkdev_issue_flush(inode->i_sb->s_bdev);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(generic_buffers_fsync);
|
|
|
|
/*
|
|
* Called when we've recently written block `bblock', and it is known that
|
|
* `bblock' was for a buffer_boundary() buffer. This means that the block at
|
|
* `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
|
|
* dirty, schedule it for IO. So that indirects merge nicely with their data.
|
|
*/
|
|
void write_boundary_block(struct block_device *bdev,
|
|
sector_t bblock, unsigned blocksize)
|
|
{
|
|
struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
|
|
if (bh) {
|
|
if (buffer_dirty(bh))
|
|
write_dirty_buffer(bh, 0);
|
|
put_bh(bh);
|
|
}
|
|
}
|
|
|
|
void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct address_space *buffer_mapping = bh->b_folio->mapping;
|
|
|
|
mark_buffer_dirty(bh);
|
|
if (!mapping->i_private_data) {
|
|
mapping->i_private_data = buffer_mapping;
|
|
} else {
|
|
BUG_ON(mapping->i_private_data != buffer_mapping);
|
|
}
|
|
if (!bh->b_assoc_map) {
|
|
spin_lock(&buffer_mapping->i_private_lock);
|
|
list_move_tail(&bh->b_assoc_buffers,
|
|
&mapping->i_private_list);
|
|
bh->b_assoc_map = mapping;
|
|
spin_unlock(&buffer_mapping->i_private_lock);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(mark_buffer_dirty_inode);
|
|
|
|
/**
|
|
* block_dirty_folio - Mark a folio as dirty.
|
|
* @mapping: The address space containing this folio.
|
|
* @folio: The folio to mark dirty.
|
|
*
|
|
* Filesystems which use buffer_heads can use this function as their
|
|
* ->dirty_folio implementation. Some filesystems need to do a little
|
|
* work before calling this function. Filesystems which do not use
|
|
* buffer_heads should call filemap_dirty_folio() instead.
|
|
*
|
|
* If the folio has buffers, the uptodate buffers are set dirty, to
|
|
* preserve dirty-state coherency between the folio and the buffers.
|
|
* Buffers added to a dirty folio are created dirty.
|
|
*
|
|
* The buffers are dirtied before the folio is dirtied. There's a small
|
|
* race window in which writeback may see the folio cleanness but not the
|
|
* buffer dirtiness. That's fine. If this code were to set the folio
|
|
* dirty before the buffers, writeback could clear the folio dirty flag,
|
|
* see a bunch of clean buffers and we'd end up with dirty buffers/clean
|
|
* folio on the dirty folio list.
|
|
*
|
|
* We use i_private_lock to lock against try_to_free_buffers() while
|
|
* using the folio's buffer list. This also prevents clean buffers
|
|
* being added to the folio after it was set dirty.
|
|
*
|
|
* Context: May only be called from process context. Does not sleep.
|
|
* Caller must ensure that @folio cannot be truncated during this call,
|
|
* typically by holding the folio lock or having a page in the folio
|
|
* mapped and holding the page table lock.
|
|
*
|
|
* Return: True if the folio was dirtied; false if it was already dirtied.
|
|
*/
|
|
bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
|
|
{
|
|
struct buffer_head *head;
|
|
bool newly_dirty;
|
|
|
|
spin_lock(&mapping->i_private_lock);
|
|
head = folio_buffers(folio);
|
|
if (head) {
|
|
struct buffer_head *bh = head;
|
|
|
|
do {
|
|
set_buffer_dirty(bh);
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
}
|
|
/*
|
|
* Lock out page's memcg migration to keep PageDirty
|
|
* synchronized with per-memcg dirty page counters.
|
|
*/
|
|
folio_memcg_lock(folio);
|
|
newly_dirty = !folio_test_set_dirty(folio);
|
|
spin_unlock(&mapping->i_private_lock);
|
|
|
|
if (newly_dirty)
|
|
__folio_mark_dirty(folio, mapping, 1);
|
|
|
|
folio_memcg_unlock(folio);
|
|
|
|
if (newly_dirty)
|
|
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
|
|
|
|
return newly_dirty;
|
|
}
|
|
EXPORT_SYMBOL(block_dirty_folio);
|
|
|
|
/*
|
|
* Write out and wait upon a list of buffers.
|
|
*
|
|
* We have conflicting pressures: we want to make sure that all
|
|
* initially dirty buffers get waited on, but that any subsequently
|
|
* dirtied buffers don't. After all, we don't want fsync to last
|
|
* forever if somebody is actively writing to the file.
|
|
*
|
|
* Do this in two main stages: first we copy dirty buffers to a
|
|
* temporary inode list, queueing the writes as we go. Then we clean
|
|
* up, waiting for those writes to complete.
|
|
*
|
|
* During this second stage, any subsequent updates to the file may end
|
|
* up refiling the buffer on the original inode's dirty list again, so
|
|
* there is a chance we will end up with a buffer queued for write but
|
|
* not yet completed on that list. So, as a final cleanup we go through
|
|
* the osync code to catch these locked, dirty buffers without requeuing
|
|
* any newly dirty buffers for write.
|
|
*/
|
|
static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct address_space *mapping;
|
|
int err = 0, err2;
|
|
struct blk_plug plug;
|
|
LIST_HEAD(tmp);
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
spin_lock(lock);
|
|
while (!list_empty(list)) {
|
|
bh = BH_ENTRY(list->next);
|
|
mapping = bh->b_assoc_map;
|
|
__remove_assoc_queue(bh);
|
|
/* Avoid race with mark_buffer_dirty_inode() which does
|
|
* a lockless check and we rely on seeing the dirty bit */
|
|
smp_mb();
|
|
if (buffer_dirty(bh) || buffer_locked(bh)) {
|
|
list_add(&bh->b_assoc_buffers, &tmp);
|
|
bh->b_assoc_map = mapping;
|
|
if (buffer_dirty(bh)) {
|
|
get_bh(bh);
|
|
spin_unlock(lock);
|
|
/*
|
|
* Ensure any pending I/O completes so that
|
|
* write_dirty_buffer() actually writes the
|
|
* current contents - it is a noop if I/O is
|
|
* still in flight on potentially older
|
|
* contents.
|
|
*/
|
|
write_dirty_buffer(bh, REQ_SYNC);
|
|
|
|
/*
|
|
* Kick off IO for the previous mapping. Note
|
|
* that we will not run the very last mapping,
|
|
* wait_on_buffer() will do that for us
|
|
* through sync_buffer().
|
|
*/
|
|
brelse(bh);
|
|
spin_lock(lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_unlock(lock);
|
|
blk_finish_plug(&plug);
|
|
spin_lock(lock);
|
|
|
|
while (!list_empty(&tmp)) {
|
|
bh = BH_ENTRY(tmp.prev);
|
|
get_bh(bh);
|
|
mapping = bh->b_assoc_map;
|
|
__remove_assoc_queue(bh);
|
|
/* Avoid race with mark_buffer_dirty_inode() which does
|
|
* a lockless check and we rely on seeing the dirty bit */
|
|
smp_mb();
|
|
if (buffer_dirty(bh)) {
|
|
list_add(&bh->b_assoc_buffers,
|
|
&mapping->i_private_list);
|
|
bh->b_assoc_map = mapping;
|
|
}
|
|
spin_unlock(lock);
|
|
wait_on_buffer(bh);
|
|
if (!buffer_uptodate(bh))
|
|
err = -EIO;
|
|
brelse(bh);
|
|
spin_lock(lock);
|
|
}
|
|
|
|
spin_unlock(lock);
|
|
err2 = osync_buffers_list(lock, list);
|
|
if (err)
|
|
return err;
|
|
else
|
|
return err2;
|
|
}
|
|
|
|
/*
|
|
* Invalidate any and all dirty buffers on a given inode. We are
|
|
* probably unmounting the fs, but that doesn't mean we have already
|
|
* done a sync(). Just drop the buffers from the inode list.
|
|
*
|
|
* NOTE: we take the inode's blockdev's mapping's i_private_lock. Which
|
|
* assumes that all the buffers are against the blockdev. Not true
|
|
* for reiserfs.
|
|
*/
|
|
void invalidate_inode_buffers(struct inode *inode)
|
|
{
|
|
if (inode_has_buffers(inode)) {
|
|
struct address_space *mapping = &inode->i_data;
|
|
struct list_head *list = &mapping->i_private_list;
|
|
struct address_space *buffer_mapping = mapping->i_private_data;
|
|
|
|
spin_lock(&buffer_mapping->i_private_lock);
|
|
while (!list_empty(list))
|
|
__remove_assoc_queue(BH_ENTRY(list->next));
|
|
spin_unlock(&buffer_mapping->i_private_lock);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(invalidate_inode_buffers);
|
|
|
|
/*
|
|
* Remove any clean buffers from the inode's buffer list. This is called
|
|
* when we're trying to free the inode itself. Those buffers can pin it.
|
|
*
|
|
* Returns true if all buffers were removed.
|
|
*/
|
|
int remove_inode_buffers(struct inode *inode)
|
|
{
|
|
int ret = 1;
|
|
|
|
if (inode_has_buffers(inode)) {
|
|
struct address_space *mapping = &inode->i_data;
|
|
struct list_head *list = &mapping->i_private_list;
|
|
struct address_space *buffer_mapping = mapping->i_private_data;
|
|
|
|
spin_lock(&buffer_mapping->i_private_lock);
|
|
while (!list_empty(list)) {
|
|
struct buffer_head *bh = BH_ENTRY(list->next);
|
|
if (buffer_dirty(bh)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
__remove_assoc_queue(bh);
|
|
}
|
|
spin_unlock(&buffer_mapping->i_private_lock);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Create the appropriate buffers when given a folio for data area and
|
|
* the size of each buffer.. Use the bh->b_this_page linked list to
|
|
* follow the buffers created. Return NULL if unable to create more
|
|
* buffers.
|
|
*
|
|
* The retry flag is used to differentiate async IO (paging, swapping)
|
|
* which may not fail from ordinary buffer allocations.
|
|
*/
|
|
struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
|
|
gfp_t gfp)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
long offset;
|
|
struct mem_cgroup *memcg, *old_memcg;
|
|
|
|
/* The folio lock pins the memcg */
|
|
memcg = folio_memcg(folio);
|
|
old_memcg = set_active_memcg(memcg);
|
|
|
|
head = NULL;
|
|
offset = folio_size(folio);
|
|
while ((offset -= size) >= 0) {
|
|
bh = alloc_buffer_head(gfp);
|
|
if (!bh)
|
|
goto no_grow;
|
|
|
|
bh->b_this_page = head;
|
|
bh->b_blocknr = -1;
|
|
head = bh;
|
|
|
|
bh->b_size = size;
|
|
|
|
/* Link the buffer to its folio */
|
|
folio_set_bh(bh, folio, offset);
|
|
}
|
|
out:
|
|
set_active_memcg(old_memcg);
|
|
return head;
|
|
/*
|
|
* In case anything failed, we just free everything we got.
|
|
*/
|
|
no_grow:
|
|
if (head) {
|
|
do {
|
|
bh = head;
|
|
head = head->b_this_page;
|
|
free_buffer_head(bh);
|
|
} while (head);
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL_GPL(folio_alloc_buffers);
|
|
|
|
struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size)
|
|
{
|
|
gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
|
|
|
|
return folio_alloc_buffers(page_folio(page), size, gfp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(alloc_page_buffers);
|
|
|
|
static inline void link_dev_buffers(struct folio *folio,
|
|
struct buffer_head *head)
|
|
{
|
|
struct buffer_head *bh, *tail;
|
|
|
|
bh = head;
|
|
do {
|
|
tail = bh;
|
|
bh = bh->b_this_page;
|
|
} while (bh);
|
|
tail->b_this_page = head;
|
|
folio_attach_private(folio, head);
|
|
}
|
|
|
|
static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
|
|
{
|
|
sector_t retval = ~((sector_t)0);
|
|
loff_t sz = bdev_nr_bytes(bdev);
|
|
|
|
if (sz) {
|
|
unsigned int sizebits = blksize_bits(size);
|
|
retval = (sz >> sizebits);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Initialise the state of a blockdev folio's buffers.
|
|
*/
|
|
static sector_t folio_init_buffers(struct folio *folio,
|
|
struct block_device *bdev, unsigned size)
|
|
{
|
|
struct buffer_head *head = folio_buffers(folio);
|
|
struct buffer_head *bh = head;
|
|
bool uptodate = folio_test_uptodate(folio);
|
|
sector_t block = div_u64(folio_pos(folio), size);
|
|
sector_t end_block = blkdev_max_block(bdev, size);
|
|
|
|
do {
|
|
if (!buffer_mapped(bh)) {
|
|
bh->b_end_io = NULL;
|
|
bh->b_private = NULL;
|
|
bh->b_bdev = bdev;
|
|
bh->b_blocknr = block;
|
|
if (uptodate)
|
|
set_buffer_uptodate(bh);
|
|
if (block < end_block)
|
|
set_buffer_mapped(bh);
|
|
}
|
|
block++;
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
|
|
/*
|
|
* Caller needs to validate requested block against end of device.
|
|
*/
|
|
return end_block;
|
|
}
|
|
|
|
/*
|
|
* Create the page-cache folio that contains the requested block.
|
|
*
|
|
* This is used purely for blockdev mappings.
|
|
*
|
|
* Returns false if we have a failure which cannot be cured by retrying
|
|
* without sleeping. Returns true if we succeeded, or the caller should retry.
|
|
*/
|
|
static bool grow_dev_folio(struct block_device *bdev, sector_t block,
|
|
pgoff_t index, unsigned size, gfp_t gfp)
|
|
{
|
|
struct address_space *mapping = bdev->bd_mapping;
|
|
struct folio *folio;
|
|
struct buffer_head *bh;
|
|
sector_t end_block = 0;
|
|
|
|
folio = __filemap_get_folio(mapping, index,
|
|
FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
|
|
if (IS_ERR(folio))
|
|
return false;
|
|
|
|
bh = folio_buffers(folio);
|
|
if (bh) {
|
|
if (bh->b_size == size) {
|
|
end_block = folio_init_buffers(folio, bdev, size);
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Retrying may succeed; for example the folio may finish
|
|
* writeback, or buffers may be cleaned. This should not
|
|
* happen very often; maybe we have old buffers attached to
|
|
* this blockdev's page cache and we're trying to change
|
|
* the block size?
|
|
*/
|
|
if (!try_to_free_buffers(folio)) {
|
|
end_block = ~0ULL;
|
|
goto unlock;
|
|
}
|
|
}
|
|
|
|
bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
|
|
if (!bh)
|
|
goto unlock;
|
|
|
|
/*
|
|
* Link the folio to the buffers and initialise them. Take the
|
|
* lock to be atomic wrt __find_get_block(), which does not
|
|
* run under the folio lock.
|
|
*/
|
|
spin_lock(&mapping->i_private_lock);
|
|
link_dev_buffers(folio, bh);
|
|
end_block = folio_init_buffers(folio, bdev, size);
|
|
spin_unlock(&mapping->i_private_lock);
|
|
unlock:
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
return block < end_block;
|
|
}
|
|
|
|
/*
|
|
* Create buffers for the specified block device block's folio. If
|
|
* that folio was dirty, the buffers are set dirty also. Returns false
|
|
* if we've hit a permanent error.
|
|
*/
|
|
static bool grow_buffers(struct block_device *bdev, sector_t block,
|
|
unsigned size, gfp_t gfp)
|
|
{
|
|
loff_t pos;
|
|
|
|
/*
|
|
* Check for a block which lies outside our maximum possible
|
|
* pagecache index.
|
|
*/
|
|
if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
|
|
printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
|
|
__func__, (unsigned long long)block,
|
|
bdev);
|
|
return false;
|
|
}
|
|
|
|
/* Create a folio with the proper size buffers */
|
|
return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
|
|
}
|
|
|
|
static struct buffer_head *
|
|
__getblk_slow(struct block_device *bdev, sector_t block,
|
|
unsigned size, gfp_t gfp)
|
|
{
|
|
/* Size must be multiple of hard sectorsize */
|
|
if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
|
|
(size < 512 || size > PAGE_SIZE))) {
|
|
printk(KERN_ERR "getblk(): invalid block size %d requested\n",
|
|
size);
|
|
printk(KERN_ERR "logical block size: %d\n",
|
|
bdev_logical_block_size(bdev));
|
|
|
|
dump_stack();
|
|
return NULL;
|
|
}
|
|
|
|
for (;;) {
|
|
struct buffer_head *bh;
|
|
|
|
bh = __find_get_block(bdev, block, size);
|
|
if (bh)
|
|
return bh;
|
|
|
|
if (!grow_buffers(bdev, block, size, gfp))
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The relationship between dirty buffers and dirty pages:
|
|
*
|
|
* Whenever a page has any dirty buffers, the page's dirty bit is set, and
|
|
* the page is tagged dirty in the page cache.
|
|
*
|
|
* At all times, the dirtiness of the buffers represents the dirtiness of
|
|
* subsections of the page. If the page has buffers, the page dirty bit is
|
|
* merely a hint about the true dirty state.
|
|
*
|
|
* When a page is set dirty in its entirety, all its buffers are marked dirty
|
|
* (if the page has buffers).
|
|
*
|
|
* When a buffer is marked dirty, its page is dirtied, but the page's other
|
|
* buffers are not.
|
|
*
|
|
* Also. When blockdev buffers are explicitly read with bread(), they
|
|
* individually become uptodate. But their backing page remains not
|
|
* uptodate - even if all of its buffers are uptodate. A subsequent
|
|
* block_read_full_folio() against that folio will discover all the uptodate
|
|
* buffers, will set the folio uptodate and will perform no I/O.
|
|
*/
|
|
|
|
/**
|
|
* mark_buffer_dirty - mark a buffer_head as needing writeout
|
|
* @bh: the buffer_head to mark dirty
|
|
*
|
|
* mark_buffer_dirty() will set the dirty bit against the buffer, then set
|
|
* its backing page dirty, then tag the page as dirty in the page cache
|
|
* and then attach the address_space's inode to its superblock's dirty
|
|
* inode list.
|
|
*
|
|
* mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock,
|
|
* i_pages lock and mapping->host->i_lock.
|
|
*/
|
|
void mark_buffer_dirty(struct buffer_head *bh)
|
|
{
|
|
WARN_ON_ONCE(!buffer_uptodate(bh));
|
|
|
|
trace_block_dirty_buffer(bh);
|
|
|
|
/*
|
|
* Very *carefully* optimize the it-is-already-dirty case.
|
|
*
|
|
* Don't let the final "is it dirty" escape to before we
|
|
* perhaps modified the buffer.
|
|
*/
|
|
if (buffer_dirty(bh)) {
|
|
smp_mb();
|
|
if (buffer_dirty(bh))
|
|
return;
|
|
}
|
|
|
|
if (!test_set_buffer_dirty(bh)) {
|
|
struct folio *folio = bh->b_folio;
|
|
struct address_space *mapping = NULL;
|
|
|
|
folio_memcg_lock(folio);
|
|
if (!folio_test_set_dirty(folio)) {
|
|
mapping = folio->mapping;
|
|
if (mapping)
|
|
__folio_mark_dirty(folio, mapping, 0);
|
|
}
|
|
folio_memcg_unlock(folio);
|
|
if (mapping)
|
|
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(mark_buffer_dirty);
|
|
|
|
void mark_buffer_write_io_error(struct buffer_head *bh)
|
|
{
|
|
set_buffer_write_io_error(bh);
|
|
/* FIXME: do we need to set this in both places? */
|
|
if (bh->b_folio && bh->b_folio->mapping)
|
|
mapping_set_error(bh->b_folio->mapping, -EIO);
|
|
if (bh->b_assoc_map) {
|
|
mapping_set_error(bh->b_assoc_map, -EIO);
|
|
errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(mark_buffer_write_io_error);
|
|
|
|
/**
|
|
* __brelse - Release a buffer.
|
|
* @bh: The buffer to release.
|
|
*
|
|
* This variant of brelse() can be called if @bh is guaranteed to not be NULL.
|
|
*/
|
|
void __brelse(struct buffer_head *bh)
|
|
{
|
|
if (atomic_read(&bh->b_count)) {
|
|
put_bh(bh);
|
|
return;
|
|
}
|
|
WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
|
|
}
|
|
EXPORT_SYMBOL(__brelse);
|
|
|
|
/**
|
|
* __bforget - Discard any dirty data in a buffer.
|
|
* @bh: The buffer to forget.
|
|
*
|
|
* This variant of bforget() can be called if @bh is guaranteed to not
|
|
* be NULL.
|
|
*/
|
|
void __bforget(struct buffer_head *bh)
|
|
{
|
|
clear_buffer_dirty(bh);
|
|
if (bh->b_assoc_map) {
|
|
struct address_space *buffer_mapping = bh->b_folio->mapping;
|
|
|
|
spin_lock(&buffer_mapping->i_private_lock);
|
|
list_del_init(&bh->b_assoc_buffers);
|
|
bh->b_assoc_map = NULL;
|
|
spin_unlock(&buffer_mapping->i_private_lock);
|
|
}
|
|
__brelse(bh);
|
|
}
|
|
EXPORT_SYMBOL(__bforget);
|
|
|
|
static struct buffer_head *__bread_slow(struct buffer_head *bh)
|
|
{
|
|
lock_buffer(bh);
|
|
if (buffer_uptodate(bh)) {
|
|
unlock_buffer(bh);
|
|
return bh;
|
|
} else {
|
|
get_bh(bh);
|
|
bh->b_end_io = end_buffer_read_sync;
|
|
submit_bh(REQ_OP_READ, bh);
|
|
wait_on_buffer(bh);
|
|
if (buffer_uptodate(bh))
|
|
return bh;
|
|
}
|
|
brelse(bh);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
|
|
* The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
|
|
* refcount elevated by one when they're in an LRU. A buffer can only appear
|
|
* once in a particular CPU's LRU. A single buffer can be present in multiple
|
|
* CPU's LRUs at the same time.
|
|
*
|
|
* This is a transparent caching front-end to sb_bread(), sb_getblk() and
|
|
* sb_find_get_block().
|
|
*
|
|
* The LRUs themselves only need locking against invalidate_bh_lrus. We use
|
|
* a local interrupt disable for that.
|
|
*/
|
|
|
|
#define BH_LRU_SIZE 16
|
|
|
|
struct bh_lru {
|
|
struct buffer_head *bhs[BH_LRU_SIZE];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define bh_lru_lock() local_irq_disable()
|
|
#define bh_lru_unlock() local_irq_enable()
|
|
#else
|
|
#define bh_lru_lock() preempt_disable()
|
|
#define bh_lru_unlock() preempt_enable()
|
|
#endif
|
|
|
|
static inline void check_irqs_on(void)
|
|
{
|
|
#ifdef irqs_disabled
|
|
BUG_ON(irqs_disabled());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
|
|
* inserted at the front, and the buffer_head at the back if any is evicted.
|
|
* Or, if already in the LRU it is moved to the front.
|
|
*/
|
|
static void bh_lru_install(struct buffer_head *bh)
|
|
{
|
|
struct buffer_head *evictee = bh;
|
|
struct bh_lru *b;
|
|
int i;
|
|
|
|
check_irqs_on();
|
|
bh_lru_lock();
|
|
|
|
/*
|
|
* the refcount of buffer_head in bh_lru prevents dropping the
|
|
* attached page(i.e., try_to_free_buffers) so it could cause
|
|
* failing page migration.
|
|
* Skip putting upcoming bh into bh_lru until migration is done.
|
|
*/
|
|
if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
|
|
bh_lru_unlock();
|
|
return;
|
|
}
|
|
|
|
b = this_cpu_ptr(&bh_lrus);
|
|
for (i = 0; i < BH_LRU_SIZE; i++) {
|
|
swap(evictee, b->bhs[i]);
|
|
if (evictee == bh) {
|
|
bh_lru_unlock();
|
|
return;
|
|
}
|
|
}
|
|
|
|
get_bh(bh);
|
|
bh_lru_unlock();
|
|
brelse(evictee);
|
|
}
|
|
|
|
/*
|
|
* Look up the bh in this cpu's LRU. If it's there, move it to the head.
|
|
*/
|
|
static struct buffer_head *
|
|
lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
|
|
{
|
|
struct buffer_head *ret = NULL;
|
|
unsigned int i;
|
|
|
|
check_irqs_on();
|
|
bh_lru_lock();
|
|
if (cpu_is_isolated(smp_processor_id())) {
|
|
bh_lru_unlock();
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < BH_LRU_SIZE; i++) {
|
|
struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
|
|
|
|
if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
|
|
bh->b_size == size) {
|
|
if (i) {
|
|
while (i) {
|
|
__this_cpu_write(bh_lrus.bhs[i],
|
|
__this_cpu_read(bh_lrus.bhs[i - 1]));
|
|
i--;
|
|
}
|
|
__this_cpu_write(bh_lrus.bhs[0], bh);
|
|
}
|
|
get_bh(bh);
|
|
ret = bh;
|
|
break;
|
|
}
|
|
}
|
|
bh_lru_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Perform a pagecache lookup for the matching buffer. If it's there, refresh
|
|
* it in the LRU and mark it as accessed. If it is not present then return
|
|
* NULL
|
|
*/
|
|
struct buffer_head *
|
|
__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
|
|
{
|
|
struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
|
|
|
|
if (bh == NULL) {
|
|
/* __find_get_block_slow will mark the page accessed */
|
|
bh = __find_get_block_slow(bdev, block);
|
|
if (bh)
|
|
bh_lru_install(bh);
|
|
} else
|
|
touch_buffer(bh);
|
|
|
|
return bh;
|
|
}
|
|
EXPORT_SYMBOL(__find_get_block);
|
|
|
|
/**
|
|
* bdev_getblk - Get a buffer_head in a block device's buffer cache.
|
|
* @bdev: The block device.
|
|
* @block: The block number.
|
|
* @size: The size of buffer_heads for this @bdev.
|
|
* @gfp: The memory allocation flags to use.
|
|
*
|
|
* The returned buffer head has its reference count incremented, but is
|
|
* not locked. The caller should call brelse() when it has finished
|
|
* with the buffer. The buffer may not be uptodate. If needed, the
|
|
* caller can bring it uptodate either by reading it or overwriting it.
|
|
*
|
|
* Return: The buffer head, or NULL if memory could not be allocated.
|
|
*/
|
|
struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
|
|
unsigned size, gfp_t gfp)
|
|
{
|
|
struct buffer_head *bh = __find_get_block(bdev, block, size);
|
|
|
|
might_alloc(gfp);
|
|
if (bh)
|
|
return bh;
|
|
|
|
return __getblk_slow(bdev, block, size, gfp);
|
|
}
|
|
EXPORT_SYMBOL(bdev_getblk);
|
|
|
|
/*
|
|
* Do async read-ahead on a buffer..
|
|
*/
|
|
void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
|
|
{
|
|
struct buffer_head *bh = bdev_getblk(bdev, block, size,
|
|
GFP_NOWAIT | __GFP_MOVABLE);
|
|
|
|
if (likely(bh)) {
|
|
bh_readahead(bh, REQ_RAHEAD);
|
|
brelse(bh);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__breadahead);
|
|
|
|
/**
|
|
* __bread_gfp() - Read a block.
|
|
* @bdev: The block device to read from.
|
|
* @block: Block number in units of block size.
|
|
* @size: The block size of this device in bytes.
|
|
* @gfp: Not page allocation flags; see below.
|
|
*
|
|
* You are not expected to call this function. You should use one of
|
|
* sb_bread(), sb_bread_unmovable() or __bread().
|
|
*
|
|
* Read a specified block, and return the buffer head that refers to it.
|
|
* If @gfp is 0, the memory will be allocated using the block device's
|
|
* default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be
|
|
* allocated from a movable area. Do not pass in a complete set of
|
|
* GFP flags.
|
|
*
|
|
* The returned buffer head has its refcount increased. The caller should
|
|
* call brelse() when it has finished with the buffer.
|
|
*
|
|
* Context: May sleep waiting for I/O.
|
|
* Return: NULL if the block was unreadable.
|
|
*/
|
|
struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
|
|
unsigned size, gfp_t gfp)
|
|
{
|
|
struct buffer_head *bh;
|
|
|
|
gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
|
|
|
|
/*
|
|
* Prefer looping in the allocator rather than here, at least that
|
|
* code knows what it's doing.
|
|
*/
|
|
gfp |= __GFP_NOFAIL;
|
|
|
|
bh = bdev_getblk(bdev, block, size, gfp);
|
|
|
|
if (likely(bh) && !buffer_uptodate(bh))
|
|
bh = __bread_slow(bh);
|
|
return bh;
|
|
}
|
|
EXPORT_SYMBOL(__bread_gfp);
|
|
|
|
static void __invalidate_bh_lrus(struct bh_lru *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BH_LRU_SIZE; i++) {
|
|
brelse(b->bhs[i]);
|
|
b->bhs[i] = NULL;
|
|
}
|
|
}
|
|
/*
|
|
* invalidate_bh_lrus() is called rarely - but not only at unmount.
|
|
* This doesn't race because it runs in each cpu either in irq
|
|
* or with preempt disabled.
|
|
*/
|
|
static void invalidate_bh_lru(void *arg)
|
|
{
|
|
struct bh_lru *b = &get_cpu_var(bh_lrus);
|
|
|
|
__invalidate_bh_lrus(b);
|
|
put_cpu_var(bh_lrus);
|
|
}
|
|
|
|
bool has_bh_in_lru(int cpu, void *dummy)
|
|
{
|
|
struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
|
|
int i;
|
|
|
|
for (i = 0; i < BH_LRU_SIZE; i++) {
|
|
if (b->bhs[i])
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void invalidate_bh_lrus(void)
|
|
{
|
|
on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
|
|
|
|
/*
|
|
* It's called from workqueue context so we need a bh_lru_lock to close
|
|
* the race with preemption/irq.
|
|
*/
|
|
void invalidate_bh_lrus_cpu(void)
|
|
{
|
|
struct bh_lru *b;
|
|
|
|
bh_lru_lock();
|
|
b = this_cpu_ptr(&bh_lrus);
|
|
__invalidate_bh_lrus(b);
|
|
bh_lru_unlock();
|
|
}
|
|
|
|
void folio_set_bh(struct buffer_head *bh, struct folio *folio,
|
|
unsigned long offset)
|
|
{
|
|
bh->b_folio = folio;
|
|
BUG_ON(offset >= folio_size(folio));
|
|
if (folio_test_highmem(folio))
|
|
/*
|
|
* This catches illegal uses and preserves the offset:
|
|
*/
|
|
bh->b_data = (char *)(0 + offset);
|
|
else
|
|
bh->b_data = folio_address(folio) + offset;
|
|
}
|
|
EXPORT_SYMBOL(folio_set_bh);
|
|
|
|
/*
|
|
* Called when truncating a buffer on a page completely.
|
|
*/
|
|
|
|
/* Bits that are cleared during an invalidate */
|
|
#define BUFFER_FLAGS_DISCARD \
|
|
(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
|
|
1 << BH_Delay | 1 << BH_Unwritten)
|
|
|
|
static void discard_buffer(struct buffer_head * bh)
|
|
{
|
|
unsigned long b_state;
|
|
|
|
lock_buffer(bh);
|
|
clear_buffer_dirty(bh);
|
|
bh->b_bdev = NULL;
|
|
b_state = READ_ONCE(bh->b_state);
|
|
do {
|
|
} while (!try_cmpxchg(&bh->b_state, &b_state,
|
|
b_state & ~BUFFER_FLAGS_DISCARD));
|
|
unlock_buffer(bh);
|
|
}
|
|
|
|
/**
|
|
* block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
|
|
* @folio: The folio which is affected.
|
|
* @offset: start of the range to invalidate
|
|
* @length: length of the range to invalidate
|
|
*
|
|
* block_invalidate_folio() is called when all or part of the folio has been
|
|
* invalidated by a truncate operation.
|
|
*
|
|
* block_invalidate_folio() does not have to release all buffers, but it must
|
|
* ensure that no dirty buffer is left outside @offset and that no I/O
|
|
* is underway against any of the blocks which are outside the truncation
|
|
* point. Because the caller is about to free (and possibly reuse) those
|
|
* blocks on-disk.
|
|
*/
|
|
void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
|
|
{
|
|
struct buffer_head *head, *bh, *next;
|
|
size_t curr_off = 0;
|
|
size_t stop = length + offset;
|
|
|
|
BUG_ON(!folio_test_locked(folio));
|
|
|
|
/*
|
|
* Check for overflow
|
|
*/
|
|
BUG_ON(stop > folio_size(folio) || stop < length);
|
|
|
|
head = folio_buffers(folio);
|
|
if (!head)
|
|
return;
|
|
|
|
bh = head;
|
|
do {
|
|
size_t next_off = curr_off + bh->b_size;
|
|
next = bh->b_this_page;
|
|
|
|
/*
|
|
* Are we still fully in range ?
|
|
*/
|
|
if (next_off > stop)
|
|
goto out;
|
|
|
|
/*
|
|
* is this block fully invalidated?
|
|
*/
|
|
if (offset <= curr_off)
|
|
discard_buffer(bh);
|
|
curr_off = next_off;
|
|
bh = next;
|
|
} while (bh != head);
|
|
|
|
/*
|
|
* We release buffers only if the entire folio is being invalidated.
|
|
* The get_block cached value has been unconditionally invalidated,
|
|
* so real IO is not possible anymore.
|
|
*/
|
|
if (length == folio_size(folio))
|
|
filemap_release_folio(folio, 0);
|
|
out:
|
|
return;
|
|
}
|
|
EXPORT_SYMBOL(block_invalidate_folio);
|
|
|
|
/*
|
|
* We attach and possibly dirty the buffers atomically wrt
|
|
* block_dirty_folio() via i_private_lock. try_to_free_buffers
|
|
* is already excluded via the folio lock.
|
|
*/
|
|
struct buffer_head *create_empty_buffers(struct folio *folio,
|
|
unsigned long blocksize, unsigned long b_state)
|
|
{
|
|
struct buffer_head *bh, *head, *tail;
|
|
gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
|
|
|
|
head = folio_alloc_buffers(folio, blocksize, gfp);
|
|
bh = head;
|
|
do {
|
|
bh->b_state |= b_state;
|
|
tail = bh;
|
|
bh = bh->b_this_page;
|
|
} while (bh);
|
|
tail->b_this_page = head;
|
|
|
|
spin_lock(&folio->mapping->i_private_lock);
|
|
if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
|
|
bh = head;
|
|
do {
|
|
if (folio_test_dirty(folio))
|
|
set_buffer_dirty(bh);
|
|
if (folio_test_uptodate(folio))
|
|
set_buffer_uptodate(bh);
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
}
|
|
folio_attach_private(folio, head);
|
|
spin_unlock(&folio->mapping->i_private_lock);
|
|
|
|
return head;
|
|
}
|
|
EXPORT_SYMBOL(create_empty_buffers);
|
|
|
|
/**
|
|
* clean_bdev_aliases: clean a range of buffers in block device
|
|
* @bdev: Block device to clean buffers in
|
|
* @block: Start of a range of blocks to clean
|
|
* @len: Number of blocks to clean
|
|
*
|
|
* We are taking a range of blocks for data and we don't want writeback of any
|
|
* buffer-cache aliases starting from return from this function and until the
|
|
* moment when something will explicitly mark the buffer dirty (hopefully that
|
|
* will not happen until we will free that block ;-) We don't even need to mark
|
|
* it not-uptodate - nobody can expect anything from a newly allocated buffer
|
|
* anyway. We used to use unmap_buffer() for such invalidation, but that was
|
|
* wrong. We definitely don't want to mark the alias unmapped, for example - it
|
|
* would confuse anyone who might pick it with bread() afterwards...
|
|
*
|
|
* Also.. Note that bforget() doesn't lock the buffer. So there can be
|
|
* writeout I/O going on against recently-freed buffers. We don't wait on that
|
|
* I/O in bforget() - it's more efficient to wait on the I/O only if we really
|
|
* need to. That happens here.
|
|
*/
|
|
void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
|
|
{
|
|
struct address_space *bd_mapping = bdev->bd_mapping;
|
|
const int blkbits = bd_mapping->host->i_blkbits;
|
|
struct folio_batch fbatch;
|
|
pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
|
|
pgoff_t end;
|
|
int i, count;
|
|
struct buffer_head *bh;
|
|
struct buffer_head *head;
|
|
|
|
end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
|
|
folio_batch_init(&fbatch);
|
|
while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
|
|
count = folio_batch_count(&fbatch);
|
|
for (i = 0; i < count; i++) {
|
|
struct folio *folio = fbatch.folios[i];
|
|
|
|
if (!folio_buffers(folio))
|
|
continue;
|
|
/*
|
|
* We use folio lock instead of bd_mapping->i_private_lock
|
|
* to pin buffers here since we can afford to sleep and
|
|
* it scales better than a global spinlock lock.
|
|
*/
|
|
folio_lock(folio);
|
|
/* Recheck when the folio is locked which pins bhs */
|
|
head = folio_buffers(folio);
|
|
if (!head)
|
|
goto unlock_page;
|
|
bh = head;
|
|
do {
|
|
if (!buffer_mapped(bh) || (bh->b_blocknr < block))
|
|
goto next;
|
|
if (bh->b_blocknr >= block + len)
|
|
break;
|
|
clear_buffer_dirty(bh);
|
|
wait_on_buffer(bh);
|
|
clear_buffer_req(bh);
|
|
next:
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
unlock_page:
|
|
folio_unlock(folio);
|
|
}
|
|
folio_batch_release(&fbatch);
|
|
cond_resched();
|
|
/* End of range already reached? */
|
|
if (index > end || !index)
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(clean_bdev_aliases);
|
|
|
|
static struct buffer_head *folio_create_buffers(struct folio *folio,
|
|
struct inode *inode,
|
|
unsigned int b_state)
|
|
{
|
|
struct buffer_head *bh;
|
|
|
|
BUG_ON(!folio_test_locked(folio));
|
|
|
|
bh = folio_buffers(folio);
|
|
if (!bh)
|
|
bh = create_empty_buffers(folio,
|
|
1 << READ_ONCE(inode->i_blkbits), b_state);
|
|
return bh;
|
|
}
|
|
|
|
/*
|
|
* NOTE! All mapped/uptodate combinations are valid:
|
|
*
|
|
* Mapped Uptodate Meaning
|
|
*
|
|
* No No "unknown" - must do get_block()
|
|
* No Yes "hole" - zero-filled
|
|
* Yes No "allocated" - allocated on disk, not read in
|
|
* Yes Yes "valid" - allocated and up-to-date in memory.
|
|
*
|
|
* "Dirty" is valid only with the last case (mapped+uptodate).
|
|
*/
|
|
|
|
/*
|
|
* While block_write_full_folio is writing back the dirty buffers under
|
|
* the page lock, whoever dirtied the buffers may decide to clean them
|
|
* again at any time. We handle that by only looking at the buffer
|
|
* state inside lock_buffer().
|
|
*
|
|
* If block_write_full_folio() is called for regular writeback
|
|
* (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
|
|
* locked buffer. This only can happen if someone has written the buffer
|
|
* directly, with submit_bh(). At the address_space level PageWriteback
|
|
* prevents this contention from occurring.
|
|
*
|
|
* If block_write_full_folio() is called with wbc->sync_mode ==
|
|
* WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
|
|
* causes the writes to be flagged as synchronous writes.
|
|
*/
|
|
int __block_write_full_folio(struct inode *inode, struct folio *folio,
|
|
get_block_t *get_block, struct writeback_control *wbc)
|
|
{
|
|
int err;
|
|
sector_t block;
|
|
sector_t last_block;
|
|
struct buffer_head *bh, *head;
|
|
size_t blocksize;
|
|
int nr_underway = 0;
|
|
blk_opf_t write_flags = wbc_to_write_flags(wbc);
|
|
|
|
head = folio_create_buffers(folio, inode,
|
|
(1 << BH_Dirty) | (1 << BH_Uptodate));
|
|
|
|
/*
|
|
* Be very careful. We have no exclusion from block_dirty_folio
|
|
* here, and the (potentially unmapped) buffers may become dirty at
|
|
* any time. If a buffer becomes dirty here after we've inspected it
|
|
* then we just miss that fact, and the folio stays dirty.
|
|
*
|
|
* Buffers outside i_size may be dirtied by block_dirty_folio;
|
|
* handle that here by just cleaning them.
|
|
*/
|
|
|
|
bh = head;
|
|
blocksize = bh->b_size;
|
|
|
|
block = div_u64(folio_pos(folio), blocksize);
|
|
last_block = div_u64(i_size_read(inode) - 1, blocksize);
|
|
|
|
/*
|
|
* Get all the dirty buffers mapped to disk addresses and
|
|
* handle any aliases from the underlying blockdev's mapping.
|
|
*/
|
|
do {
|
|
if (block > last_block) {
|
|
/*
|
|
* mapped buffers outside i_size will occur, because
|
|
* this folio can be outside i_size when there is a
|
|
* truncate in progress.
|
|
*/
|
|
/*
|
|
* The buffer was zeroed by block_write_full_folio()
|
|
*/
|
|
clear_buffer_dirty(bh);
|
|
set_buffer_uptodate(bh);
|
|
} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
|
|
buffer_dirty(bh)) {
|
|
WARN_ON(bh->b_size != blocksize);
|
|
err = get_block(inode, block, bh, 1);
|
|
if (err)
|
|
goto recover;
|
|
clear_buffer_delay(bh);
|
|
if (buffer_new(bh)) {
|
|
/* blockdev mappings never come here */
|
|
clear_buffer_new(bh);
|
|
clean_bdev_bh_alias(bh);
|
|
}
|
|
}
|
|
bh = bh->b_this_page;
|
|
block++;
|
|
} while (bh != head);
|
|
|
|
do {
|
|
if (!buffer_mapped(bh))
|
|
continue;
|
|
/*
|
|
* If it's a fully non-blocking write attempt and we cannot
|
|
* lock the buffer then redirty the folio. Note that this can
|
|
* potentially cause a busy-wait loop from writeback threads
|
|
* and kswapd activity, but those code paths have their own
|
|
* higher-level throttling.
|
|
*/
|
|
if (wbc->sync_mode != WB_SYNC_NONE) {
|
|
lock_buffer(bh);
|
|
} else if (!trylock_buffer(bh)) {
|
|
folio_redirty_for_writepage(wbc, folio);
|
|
continue;
|
|
}
|
|
if (test_clear_buffer_dirty(bh)) {
|
|
mark_buffer_async_write_endio(bh,
|
|
end_buffer_async_write);
|
|
} else {
|
|
unlock_buffer(bh);
|
|
}
|
|
} while ((bh = bh->b_this_page) != head);
|
|
|
|
/*
|
|
* The folio and its buffers are protected by the writeback flag,
|
|
* so we can drop the bh refcounts early.
|
|
*/
|
|
BUG_ON(folio_test_writeback(folio));
|
|
folio_start_writeback(folio);
|
|
|
|
do {
|
|
struct buffer_head *next = bh->b_this_page;
|
|
if (buffer_async_write(bh)) {
|
|
submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
|
|
inode->i_write_hint, wbc);
|
|
nr_underway++;
|
|
}
|
|
bh = next;
|
|
} while (bh != head);
|
|
folio_unlock(folio);
|
|
|
|
err = 0;
|
|
done:
|
|
if (nr_underway == 0) {
|
|
/*
|
|
* The folio was marked dirty, but the buffers were
|
|
* clean. Someone wrote them back by hand with
|
|
* write_dirty_buffer/submit_bh. A rare case.
|
|
*/
|
|
folio_end_writeback(folio);
|
|
|
|
/*
|
|
* The folio and buffer_heads can be released at any time from
|
|
* here on.
|
|
*/
|
|
}
|
|
return err;
|
|
|
|
recover:
|
|
/*
|
|
* ENOSPC, or some other error. We may already have added some
|
|
* blocks to the file, so we need to write these out to avoid
|
|
* exposing stale data.
|
|
* The folio is currently locked and not marked for writeback
|
|
*/
|
|
bh = head;
|
|
/* Recovery: lock and submit the mapped buffers */
|
|
do {
|
|
if (buffer_mapped(bh) && buffer_dirty(bh) &&
|
|
!buffer_delay(bh)) {
|
|
lock_buffer(bh);
|
|
mark_buffer_async_write_endio(bh,
|
|
end_buffer_async_write);
|
|
} else {
|
|
/*
|
|
* The buffer may have been set dirty during
|
|
* attachment to a dirty folio.
|
|
*/
|
|
clear_buffer_dirty(bh);
|
|
}
|
|
} while ((bh = bh->b_this_page) != head);
|
|
BUG_ON(folio_test_writeback(folio));
|
|
mapping_set_error(folio->mapping, err);
|
|
folio_start_writeback(folio);
|
|
do {
|
|
struct buffer_head *next = bh->b_this_page;
|
|
if (buffer_async_write(bh)) {
|
|
clear_buffer_dirty(bh);
|
|
submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
|
|
inode->i_write_hint, wbc);
|
|
nr_underway++;
|
|
}
|
|
bh = next;
|
|
} while (bh != head);
|
|
folio_unlock(folio);
|
|
goto done;
|
|
}
|
|
EXPORT_SYMBOL(__block_write_full_folio);
|
|
|
|
/*
|
|
* If a folio has any new buffers, zero them out here, and mark them uptodate
|
|
* and dirty so they'll be written out (in order to prevent uninitialised
|
|
* block data from leaking). And clear the new bit.
|
|
*/
|
|
void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
|
|
{
|
|
size_t block_start, block_end;
|
|
struct buffer_head *head, *bh;
|
|
|
|
BUG_ON(!folio_test_locked(folio));
|
|
head = folio_buffers(folio);
|
|
if (!head)
|
|
return;
|
|
|
|
bh = head;
|
|
block_start = 0;
|
|
do {
|
|
block_end = block_start + bh->b_size;
|
|
|
|
if (buffer_new(bh)) {
|
|
if (block_end > from && block_start < to) {
|
|
if (!folio_test_uptodate(folio)) {
|
|
size_t start, xend;
|
|
|
|
start = max(from, block_start);
|
|
xend = min(to, block_end);
|
|
|
|
folio_zero_segment(folio, start, xend);
|
|
set_buffer_uptodate(bh);
|
|
}
|
|
|
|
clear_buffer_new(bh);
|
|
mark_buffer_dirty(bh);
|
|
}
|
|
}
|
|
|
|
block_start = block_end;
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
}
|
|
EXPORT_SYMBOL(folio_zero_new_buffers);
|
|
|
|
static int
|
|
iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
|
|
const struct iomap *iomap)
|
|
{
|
|
loff_t offset = (loff_t)block << inode->i_blkbits;
|
|
|
|
bh->b_bdev = iomap->bdev;
|
|
|
|
/*
|
|
* Block points to offset in file we need to map, iomap contains
|
|
* the offset at which the map starts. If the map ends before the
|
|
* current block, then do not map the buffer and let the caller
|
|
* handle it.
|
|
*/
|
|
if (offset >= iomap->offset + iomap->length)
|
|
return -EIO;
|
|
|
|
switch (iomap->type) {
|
|
case IOMAP_HOLE:
|
|
/*
|
|
* If the buffer is not up to date or beyond the current EOF,
|
|
* we need to mark it as new to ensure sub-block zeroing is
|
|
* executed if necessary.
|
|
*/
|
|
if (!buffer_uptodate(bh) ||
|
|
(offset >= i_size_read(inode)))
|
|
set_buffer_new(bh);
|
|
return 0;
|
|
case IOMAP_DELALLOC:
|
|
if (!buffer_uptodate(bh) ||
|
|
(offset >= i_size_read(inode)))
|
|
set_buffer_new(bh);
|
|
set_buffer_uptodate(bh);
|
|
set_buffer_mapped(bh);
|
|
set_buffer_delay(bh);
|
|
return 0;
|
|
case IOMAP_UNWRITTEN:
|
|
/*
|
|
* For unwritten regions, we always need to ensure that regions
|
|
* in the block we are not writing to are zeroed. Mark the
|
|
* buffer as new to ensure this.
|
|
*/
|
|
set_buffer_new(bh);
|
|
set_buffer_unwritten(bh);
|
|
fallthrough;
|
|
case IOMAP_MAPPED:
|
|
if ((iomap->flags & IOMAP_F_NEW) ||
|
|
offset >= i_size_read(inode)) {
|
|
/*
|
|
* This can happen if truncating the block device races
|
|
* with the check in the caller as i_size updates on
|
|
* block devices aren't synchronized by i_rwsem for
|
|
* block devices.
|
|
*/
|
|
if (S_ISBLK(inode->i_mode))
|
|
return -EIO;
|
|
set_buffer_new(bh);
|
|
}
|
|
bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
|
|
inode->i_blkbits;
|
|
set_buffer_mapped(bh);
|
|
return 0;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
|
|
get_block_t *get_block, const struct iomap *iomap)
|
|
{
|
|
size_t from = offset_in_folio(folio, pos);
|
|
size_t to = from + len;
|
|
struct inode *inode = folio->mapping->host;
|
|
size_t block_start, block_end;
|
|
sector_t block;
|
|
int err = 0;
|
|
size_t blocksize;
|
|
struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
|
|
|
|
BUG_ON(!folio_test_locked(folio));
|
|
BUG_ON(to > folio_size(folio));
|
|
BUG_ON(from > to);
|
|
|
|
head = folio_create_buffers(folio, inode, 0);
|
|
blocksize = head->b_size;
|
|
block = div_u64(folio_pos(folio), blocksize);
|
|
|
|
for (bh = head, block_start = 0; bh != head || !block_start;
|
|
block++, block_start=block_end, bh = bh->b_this_page) {
|
|
block_end = block_start + blocksize;
|
|
if (block_end <= from || block_start >= to) {
|
|
if (folio_test_uptodate(folio)) {
|
|
if (!buffer_uptodate(bh))
|
|
set_buffer_uptodate(bh);
|
|
}
|
|
continue;
|
|
}
|
|
if (buffer_new(bh))
|
|
clear_buffer_new(bh);
|
|
if (!buffer_mapped(bh)) {
|
|
WARN_ON(bh->b_size != blocksize);
|
|
if (get_block)
|
|
err = get_block(inode, block, bh, 1);
|
|
else
|
|
err = iomap_to_bh(inode, block, bh, iomap);
|
|
if (err)
|
|
break;
|
|
|
|
if (buffer_new(bh)) {
|
|
clean_bdev_bh_alias(bh);
|
|
if (folio_test_uptodate(folio)) {
|
|
clear_buffer_new(bh);
|
|
set_buffer_uptodate(bh);
|
|
mark_buffer_dirty(bh);
|
|
continue;
|
|
}
|
|
if (block_end > to || block_start < from)
|
|
folio_zero_segments(folio,
|
|
to, block_end,
|
|
block_start, from);
|
|
continue;
|
|
}
|
|
}
|
|
if (folio_test_uptodate(folio)) {
|
|
if (!buffer_uptodate(bh))
|
|
set_buffer_uptodate(bh);
|
|
continue;
|
|
}
|
|
if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
|
|
!buffer_unwritten(bh) &&
|
|
(block_start < from || block_end > to)) {
|
|
bh_read_nowait(bh, 0);
|
|
*wait_bh++=bh;
|
|
}
|
|
}
|
|
/*
|
|
* If we issued read requests - let them complete.
|
|
*/
|
|
while(wait_bh > wait) {
|
|
wait_on_buffer(*--wait_bh);
|
|
if (!buffer_uptodate(*wait_bh))
|
|
err = -EIO;
|
|
}
|
|
if (unlikely(err))
|
|
folio_zero_new_buffers(folio, from, to);
|
|
return err;
|
|
}
|
|
|
|
int __block_write_begin(struct folio *folio, loff_t pos, unsigned len,
|
|
get_block_t *get_block)
|
|
{
|
|
return __block_write_begin_int(folio, pos, len, get_block, NULL);
|
|
}
|
|
EXPORT_SYMBOL(__block_write_begin);
|
|
|
|
static void __block_commit_write(struct folio *folio, size_t from, size_t to)
|
|
{
|
|
size_t block_start, block_end;
|
|
bool partial = false;
|
|
unsigned blocksize;
|
|
struct buffer_head *bh, *head;
|
|
|
|
bh = head = folio_buffers(folio);
|
|
if (!bh)
|
|
return;
|
|
blocksize = bh->b_size;
|
|
|
|
block_start = 0;
|
|
do {
|
|
block_end = block_start + blocksize;
|
|
if (block_end <= from || block_start >= to) {
|
|
if (!buffer_uptodate(bh))
|
|
partial = true;
|
|
} else {
|
|
set_buffer_uptodate(bh);
|
|
mark_buffer_dirty(bh);
|
|
}
|
|
if (buffer_new(bh))
|
|
clear_buffer_new(bh);
|
|
|
|
block_start = block_end;
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
|
|
/*
|
|
* If this is a partial write which happened to make all buffers
|
|
* uptodate then we can optimize away a bogus read_folio() for
|
|
* the next read(). Here we 'discover' whether the folio went
|
|
* uptodate as a result of this (potentially partial) write.
|
|
*/
|
|
if (!partial)
|
|
folio_mark_uptodate(folio);
|
|
}
|
|
|
|
/*
|
|
* block_write_begin takes care of the basic task of block allocation and
|
|
* bringing partial write blocks uptodate first.
|
|
*
|
|
* The filesystem needs to handle block truncation upon failure.
|
|
*/
|
|
int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
|
|
struct folio **foliop, get_block_t *get_block)
|
|
{
|
|
pgoff_t index = pos >> PAGE_SHIFT;
|
|
struct folio *folio;
|
|
int status;
|
|
|
|
folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
|
|
mapping_gfp_mask(mapping));
|
|
if (IS_ERR(folio))
|
|
return PTR_ERR(folio);
|
|
|
|
status = __block_write_begin_int(folio, pos, len, get_block, NULL);
|
|
if (unlikely(status)) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
folio = NULL;
|
|
}
|
|
|
|
*foliop = folio;
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL(block_write_begin);
|
|
|
|
int block_write_end(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct folio *folio, void *fsdata)
|
|
{
|
|
size_t start = pos - folio_pos(folio);
|
|
|
|
if (unlikely(copied < len)) {
|
|
/*
|
|
* The buffers that were written will now be uptodate, so
|
|
* we don't have to worry about a read_folio reading them
|
|
* and overwriting a partial write. However if we have
|
|
* encountered a short write and only partially written
|
|
* into a buffer, it will not be marked uptodate, so a
|
|
* read_folio might come in and destroy our partial write.
|
|
*
|
|
* Do the simplest thing, and just treat any short write to a
|
|
* non uptodate folio as a zero-length write, and force the
|
|
* caller to redo the whole thing.
|
|
*/
|
|
if (!folio_test_uptodate(folio))
|
|
copied = 0;
|
|
|
|
folio_zero_new_buffers(folio, start+copied, start+len);
|
|
}
|
|
flush_dcache_folio(folio);
|
|
|
|
/* This could be a short (even 0-length) commit */
|
|
__block_commit_write(folio, start, start + copied);
|
|
|
|
return copied;
|
|
}
|
|
EXPORT_SYMBOL(block_write_end);
|
|
|
|
int generic_write_end(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct folio *folio, void *fsdata)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
loff_t old_size = inode->i_size;
|
|
bool i_size_changed = false;
|
|
|
|
copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
|
|
|
|
/*
|
|
* No need to use i_size_read() here, the i_size cannot change under us
|
|
* because we hold i_rwsem.
|
|
*
|
|
* But it's important to update i_size while still holding folio lock:
|
|
* page writeout could otherwise come in and zero beyond i_size.
|
|
*/
|
|
if (pos + copied > inode->i_size) {
|
|
i_size_write(inode, pos + copied);
|
|
i_size_changed = true;
|
|
}
|
|
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
|
|
if (old_size < pos)
|
|
pagecache_isize_extended(inode, old_size, pos);
|
|
/*
|
|
* Don't mark the inode dirty under page lock. First, it unnecessarily
|
|
* makes the holding time of page lock longer. Second, it forces lock
|
|
* ordering of page lock and transaction start for journaling
|
|
* filesystems.
|
|
*/
|
|
if (i_size_changed)
|
|
mark_inode_dirty(inode);
|
|
return copied;
|
|
}
|
|
EXPORT_SYMBOL(generic_write_end);
|
|
|
|
/*
|
|
* block_is_partially_uptodate checks whether buffers within a folio are
|
|
* uptodate or not.
|
|
*
|
|
* Returns true if all buffers which correspond to the specified part
|
|
* of the folio are uptodate.
|
|
*/
|
|
bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
|
|
{
|
|
unsigned block_start, block_end, blocksize;
|
|
unsigned to;
|
|
struct buffer_head *bh, *head;
|
|
bool ret = true;
|
|
|
|
head = folio_buffers(folio);
|
|
if (!head)
|
|
return false;
|
|
blocksize = head->b_size;
|
|
to = min_t(unsigned, folio_size(folio) - from, count);
|
|
to = from + to;
|
|
if (from < blocksize && to > folio_size(folio) - blocksize)
|
|
return false;
|
|
|
|
bh = head;
|
|
block_start = 0;
|
|
do {
|
|
block_end = block_start + blocksize;
|
|
if (block_end > from && block_start < to) {
|
|
if (!buffer_uptodate(bh)) {
|
|
ret = false;
|
|
break;
|
|
}
|
|
if (block_end >= to)
|
|
break;
|
|
}
|
|
block_start = block_end;
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(block_is_partially_uptodate);
|
|
|
|
/*
|
|
* Generic "read_folio" function for block devices that have the normal
|
|
* get_block functionality. This is most of the block device filesystems.
|
|
* Reads the folio asynchronously --- the unlock_buffer() and
|
|
* set/clear_buffer_uptodate() functions propagate buffer state into the
|
|
* folio once IO has completed.
|
|
*/
|
|
int block_read_full_folio(struct folio *folio, get_block_t *get_block)
|
|
{
|
|
struct inode *inode = folio->mapping->host;
|
|
sector_t iblock, lblock;
|
|
struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
|
|
size_t blocksize;
|
|
int nr, i;
|
|
int fully_mapped = 1;
|
|
bool page_error = false;
|
|
loff_t limit = i_size_read(inode);
|
|
|
|
/* This is needed for ext4. */
|
|
if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
|
|
limit = inode->i_sb->s_maxbytes;
|
|
|
|
VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
|
|
|
|
head = folio_create_buffers(folio, inode, 0);
|
|
blocksize = head->b_size;
|
|
|
|
iblock = div_u64(folio_pos(folio), blocksize);
|
|
lblock = div_u64(limit + blocksize - 1, blocksize);
|
|
bh = head;
|
|
nr = 0;
|
|
i = 0;
|
|
|
|
do {
|
|
if (buffer_uptodate(bh))
|
|
continue;
|
|
|
|
if (!buffer_mapped(bh)) {
|
|
int err = 0;
|
|
|
|
fully_mapped = 0;
|
|
if (iblock < lblock) {
|
|
WARN_ON(bh->b_size != blocksize);
|
|
err = get_block(inode, iblock, bh, 0);
|
|
if (err)
|
|
page_error = true;
|
|
}
|
|
if (!buffer_mapped(bh)) {
|
|
folio_zero_range(folio, i * blocksize,
|
|
blocksize);
|
|
if (!err)
|
|
set_buffer_uptodate(bh);
|
|
continue;
|
|
}
|
|
/*
|
|
* get_block() might have updated the buffer
|
|
* synchronously
|
|
*/
|
|
if (buffer_uptodate(bh))
|
|
continue;
|
|
}
|
|
arr[nr++] = bh;
|
|
} while (i++, iblock++, (bh = bh->b_this_page) != head);
|
|
|
|
if (fully_mapped)
|
|
folio_set_mappedtodisk(folio);
|
|
|
|
if (!nr) {
|
|
/*
|
|
* All buffers are uptodate or get_block() returned an
|
|
* error when trying to map them - we can finish the read.
|
|
*/
|
|
folio_end_read(folio, !page_error);
|
|
return 0;
|
|
}
|
|
|
|
/* Stage two: lock the buffers */
|
|
for (i = 0; i < nr; i++) {
|
|
bh = arr[i];
|
|
lock_buffer(bh);
|
|
mark_buffer_async_read(bh);
|
|
}
|
|
|
|
/*
|
|
* Stage 3: start the IO. Check for uptodateness
|
|
* inside the buffer lock in case another process reading
|
|
* the underlying blockdev brought it uptodate (the sct fix).
|
|
*/
|
|
for (i = 0; i < nr; i++) {
|
|
bh = arr[i];
|
|
if (buffer_uptodate(bh))
|
|
end_buffer_async_read(bh, 1);
|
|
else
|
|
submit_bh(REQ_OP_READ, bh);
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(block_read_full_folio);
|
|
|
|
/* utility function for filesystems that need to do work on expanding
|
|
* truncates. Uses filesystem pagecache writes to allow the filesystem to
|
|
* deal with the hole.
|
|
*/
|
|
int generic_cont_expand_simple(struct inode *inode, loff_t size)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
const struct address_space_operations *aops = mapping->a_ops;
|
|
struct folio *folio;
|
|
void *fsdata = NULL;
|
|
int err;
|
|
|
|
err = inode_newsize_ok(inode, size);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata);
|
|
BUG_ON(err > 0);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(generic_cont_expand_simple);
|
|
|
|
static int cont_expand_zero(struct file *file, struct address_space *mapping,
|
|
loff_t pos, loff_t *bytes)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
const struct address_space_operations *aops = mapping->a_ops;
|
|
unsigned int blocksize = i_blocksize(inode);
|
|
struct folio *folio;
|
|
void *fsdata = NULL;
|
|
pgoff_t index, curidx;
|
|
loff_t curpos;
|
|
unsigned zerofrom, offset, len;
|
|
int err = 0;
|
|
|
|
index = pos >> PAGE_SHIFT;
|
|
offset = pos & ~PAGE_MASK;
|
|
|
|
while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
|
|
zerofrom = curpos & ~PAGE_MASK;
|
|
if (zerofrom & (blocksize-1)) {
|
|
*bytes |= (blocksize-1);
|
|
(*bytes)++;
|
|
}
|
|
len = PAGE_SIZE - zerofrom;
|
|
|
|
err = aops->write_begin(file, mapping, curpos, len,
|
|
&folio, &fsdata);
|
|
if (err)
|
|
goto out;
|
|
folio_zero_range(folio, offset_in_folio(folio, curpos), len);
|
|
err = aops->write_end(file, mapping, curpos, len, len,
|
|
folio, fsdata);
|
|
if (err < 0)
|
|
goto out;
|
|
BUG_ON(err != len);
|
|
err = 0;
|
|
|
|
balance_dirty_pages_ratelimited(mapping);
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
err = -EINTR;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* page covers the boundary, find the boundary offset */
|
|
if (index == curidx) {
|
|
zerofrom = curpos & ~PAGE_MASK;
|
|
/* if we will expand the thing last block will be filled */
|
|
if (offset <= zerofrom) {
|
|
goto out;
|
|
}
|
|
if (zerofrom & (blocksize-1)) {
|
|
*bytes |= (blocksize-1);
|
|
(*bytes)++;
|
|
}
|
|
len = offset - zerofrom;
|
|
|
|
err = aops->write_begin(file, mapping, curpos, len,
|
|
&folio, &fsdata);
|
|
if (err)
|
|
goto out;
|
|
folio_zero_range(folio, offset_in_folio(folio, curpos), len);
|
|
err = aops->write_end(file, mapping, curpos, len, len,
|
|
folio, fsdata);
|
|
if (err < 0)
|
|
goto out;
|
|
BUG_ON(err != len);
|
|
err = 0;
|
|
}
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* For moronic filesystems that do not allow holes in file.
|
|
* We may have to extend the file.
|
|
*/
|
|
int cont_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len,
|
|
struct folio **foliop, void **fsdata,
|
|
get_block_t *get_block, loff_t *bytes)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
unsigned int blocksize = i_blocksize(inode);
|
|
unsigned int zerofrom;
|
|
int err;
|
|
|
|
err = cont_expand_zero(file, mapping, pos, bytes);
|
|
if (err)
|
|
return err;
|
|
|
|
zerofrom = *bytes & ~PAGE_MASK;
|
|
if (pos+len > *bytes && zerofrom & (blocksize-1)) {
|
|
*bytes |= (blocksize-1);
|
|
(*bytes)++;
|
|
}
|
|
|
|
return block_write_begin(mapping, pos, len, foliop, get_block);
|
|
}
|
|
EXPORT_SYMBOL(cont_write_begin);
|
|
|
|
void block_commit_write(struct page *page, unsigned from, unsigned to)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
__block_commit_write(folio, from, to);
|
|
}
|
|
EXPORT_SYMBOL(block_commit_write);
|
|
|
|
/*
|
|
* block_page_mkwrite() is not allowed to change the file size as it gets
|
|
* called from a page fault handler when a page is first dirtied. Hence we must
|
|
* be careful to check for EOF conditions here. We set the page up correctly
|
|
* for a written page which means we get ENOSPC checking when writing into
|
|
* holes and correct delalloc and unwritten extent mapping on filesystems that
|
|
* support these features.
|
|
*
|
|
* We are not allowed to take the i_mutex here so we have to play games to
|
|
* protect against truncate races as the page could now be beyond EOF. Because
|
|
* truncate writes the inode size before removing pages, once we have the
|
|
* page lock we can determine safely if the page is beyond EOF. If it is not
|
|
* beyond EOF, then the page is guaranteed safe against truncation until we
|
|
* unlock the page.
|
|
*
|
|
* Direct callers of this function should protect against filesystem freezing
|
|
* using sb_start_pagefault() - sb_end_pagefault() functions.
|
|
*/
|
|
int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
|
|
get_block_t get_block)
|
|
{
|
|
struct folio *folio = page_folio(vmf->page);
|
|
struct inode *inode = file_inode(vma->vm_file);
|
|
unsigned long end;
|
|
loff_t size;
|
|
int ret;
|
|
|
|
folio_lock(folio);
|
|
size = i_size_read(inode);
|
|
if ((folio->mapping != inode->i_mapping) ||
|
|
(folio_pos(folio) >= size)) {
|
|
/* We overload EFAULT to mean page got truncated */
|
|
ret = -EFAULT;
|
|
goto out_unlock;
|
|
}
|
|
|
|
end = folio_size(folio);
|
|
/* folio is wholly or partially inside EOF */
|
|
if (folio_pos(folio) + end > size)
|
|
end = size - folio_pos(folio);
|
|
|
|
ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
|
|
if (unlikely(ret))
|
|
goto out_unlock;
|
|
|
|
__block_commit_write(folio, 0, end);
|
|
|
|
folio_mark_dirty(folio);
|
|
folio_wait_stable(folio);
|
|
return 0;
|
|
out_unlock:
|
|
folio_unlock(folio);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(block_page_mkwrite);
|
|
|
|
int block_truncate_page(struct address_space *mapping,
|
|
loff_t from, get_block_t *get_block)
|
|
{
|
|
pgoff_t index = from >> PAGE_SHIFT;
|
|
unsigned blocksize;
|
|
sector_t iblock;
|
|
size_t offset, length, pos;
|
|
struct inode *inode = mapping->host;
|
|
struct folio *folio;
|
|
struct buffer_head *bh;
|
|
int err = 0;
|
|
|
|
blocksize = i_blocksize(inode);
|
|
length = from & (blocksize - 1);
|
|
|
|
/* Block boundary? Nothing to do */
|
|
if (!length)
|
|
return 0;
|
|
|
|
length = blocksize - length;
|
|
iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
|
|
|
|
folio = filemap_grab_folio(mapping, index);
|
|
if (IS_ERR(folio))
|
|
return PTR_ERR(folio);
|
|
|
|
bh = folio_buffers(folio);
|
|
if (!bh)
|
|
bh = create_empty_buffers(folio, blocksize, 0);
|
|
|
|
/* Find the buffer that contains "offset" */
|
|
offset = offset_in_folio(folio, from);
|
|
pos = blocksize;
|
|
while (offset >= pos) {
|
|
bh = bh->b_this_page;
|
|
iblock++;
|
|
pos += blocksize;
|
|
}
|
|
|
|
if (!buffer_mapped(bh)) {
|
|
WARN_ON(bh->b_size != blocksize);
|
|
err = get_block(inode, iblock, bh, 0);
|
|
if (err)
|
|
goto unlock;
|
|
/* unmapped? It's a hole - nothing to do */
|
|
if (!buffer_mapped(bh))
|
|
goto unlock;
|
|
}
|
|
|
|
/* Ok, it's mapped. Make sure it's up-to-date */
|
|
if (folio_test_uptodate(folio))
|
|
set_buffer_uptodate(bh);
|
|
|
|
if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
|
|
err = bh_read(bh, 0);
|
|
/* Uhhuh. Read error. Complain and punt. */
|
|
if (err < 0)
|
|
goto unlock;
|
|
}
|
|
|
|
folio_zero_range(folio, offset, length);
|
|
mark_buffer_dirty(bh);
|
|
|
|
unlock:
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(block_truncate_page);
|
|
|
|
/*
|
|
* The generic ->writepage function for buffer-backed address_spaces
|
|
*/
|
|
int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
|
|
void *get_block)
|
|
{
|
|
struct inode * const inode = folio->mapping->host;
|
|
loff_t i_size = i_size_read(inode);
|
|
|
|
/* Is the folio fully inside i_size? */
|
|
if (folio_pos(folio) + folio_size(folio) <= i_size)
|
|
return __block_write_full_folio(inode, folio, get_block, wbc);
|
|
|
|
/* Is the folio fully outside i_size? (truncate in progress) */
|
|
if (folio_pos(folio) >= i_size) {
|
|
folio_unlock(folio);
|
|
return 0; /* don't care */
|
|
}
|
|
|
|
/*
|
|
* The folio straddles i_size. It must be zeroed out on each and every
|
|
* writepage invocation because it may be mmapped. "A file is mapped
|
|
* in multiples of the page size. For a file that is not a multiple of
|
|
* the page size, the remaining memory is zeroed when mapped, and
|
|
* writes to that region are not written out to the file."
|
|
*/
|
|
folio_zero_segment(folio, offset_in_folio(folio, i_size),
|
|
folio_size(folio));
|
|
return __block_write_full_folio(inode, folio, get_block, wbc);
|
|
}
|
|
|
|
sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
|
|
get_block_t *get_block)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct buffer_head tmp = {
|
|
.b_size = i_blocksize(inode),
|
|
};
|
|
|
|
get_block(inode, block, &tmp, 0);
|
|
return tmp.b_blocknr;
|
|
}
|
|
EXPORT_SYMBOL(generic_block_bmap);
|
|
|
|
static void end_bio_bh_io_sync(struct bio *bio)
|
|
{
|
|
struct buffer_head *bh = bio->bi_private;
|
|
|
|
if (unlikely(bio_flagged(bio, BIO_QUIET)))
|
|
set_bit(BH_Quiet, &bh->b_state);
|
|
|
|
bh->b_end_io(bh, !bio->bi_status);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
|
|
enum rw_hint write_hint,
|
|
struct writeback_control *wbc)
|
|
{
|
|
const enum req_op op = opf & REQ_OP_MASK;
|
|
struct bio *bio;
|
|
|
|
BUG_ON(!buffer_locked(bh));
|
|
BUG_ON(!buffer_mapped(bh));
|
|
BUG_ON(!bh->b_end_io);
|
|
BUG_ON(buffer_delay(bh));
|
|
BUG_ON(buffer_unwritten(bh));
|
|
|
|
/*
|
|
* Only clear out a write error when rewriting
|
|
*/
|
|
if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
|
|
clear_buffer_write_io_error(bh);
|
|
|
|
if (buffer_meta(bh))
|
|
opf |= REQ_META;
|
|
if (buffer_prio(bh))
|
|
opf |= REQ_PRIO;
|
|
|
|
bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
|
|
|
|
fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
|
|
|
|
bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
|
|
bio->bi_write_hint = write_hint;
|
|
|
|
__bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
|
|
|
|
bio->bi_end_io = end_bio_bh_io_sync;
|
|
bio->bi_private = bh;
|
|
|
|
/* Take care of bh's that straddle the end of the device */
|
|
guard_bio_eod(bio);
|
|
|
|
if (wbc) {
|
|
wbc_init_bio(wbc, bio);
|
|
wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
|
|
}
|
|
|
|
submit_bio(bio);
|
|
}
|
|
|
|
void submit_bh(blk_opf_t opf, struct buffer_head *bh)
|
|
{
|
|
submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
|
|
}
|
|
EXPORT_SYMBOL(submit_bh);
|
|
|
|
void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
|
|
{
|
|
lock_buffer(bh);
|
|
if (!test_clear_buffer_dirty(bh)) {
|
|
unlock_buffer(bh);
|
|
return;
|
|
}
|
|
bh->b_end_io = end_buffer_write_sync;
|
|
get_bh(bh);
|
|
submit_bh(REQ_OP_WRITE | op_flags, bh);
|
|
}
|
|
EXPORT_SYMBOL(write_dirty_buffer);
|
|
|
|
/*
|
|
* For a data-integrity writeout, we need to wait upon any in-progress I/O
|
|
* and then start new I/O and then wait upon it. The caller must have a ref on
|
|
* the buffer_head.
|
|
*/
|
|
int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
|
|
{
|
|
WARN_ON(atomic_read(&bh->b_count) < 1);
|
|
lock_buffer(bh);
|
|
if (test_clear_buffer_dirty(bh)) {
|
|
/*
|
|
* The bh should be mapped, but it might not be if the
|
|
* device was hot-removed. Not much we can do but fail the I/O.
|
|
*/
|
|
if (!buffer_mapped(bh)) {
|
|
unlock_buffer(bh);
|
|
return -EIO;
|
|
}
|
|
|
|
get_bh(bh);
|
|
bh->b_end_io = end_buffer_write_sync;
|
|
submit_bh(REQ_OP_WRITE | op_flags, bh);
|
|
wait_on_buffer(bh);
|
|
if (!buffer_uptodate(bh))
|
|
return -EIO;
|
|
} else {
|
|
unlock_buffer(bh);
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(__sync_dirty_buffer);
|
|
|
|
int sync_dirty_buffer(struct buffer_head *bh)
|
|
{
|
|
return __sync_dirty_buffer(bh, REQ_SYNC);
|
|
}
|
|
EXPORT_SYMBOL(sync_dirty_buffer);
|
|
|
|
static inline int buffer_busy(struct buffer_head *bh)
|
|
{
|
|
return atomic_read(&bh->b_count) |
|
|
(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
|
|
}
|
|
|
|
static bool
|
|
drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
|
|
{
|
|
struct buffer_head *head = folio_buffers(folio);
|
|
struct buffer_head *bh;
|
|
|
|
bh = head;
|
|
do {
|
|
if (buffer_busy(bh))
|
|
goto failed;
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
|
|
do {
|
|
struct buffer_head *next = bh->b_this_page;
|
|
|
|
if (bh->b_assoc_map)
|
|
__remove_assoc_queue(bh);
|
|
bh = next;
|
|
} while (bh != head);
|
|
*buffers_to_free = head;
|
|
folio_detach_private(folio);
|
|
return true;
|
|
failed:
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* try_to_free_buffers - Release buffers attached to this folio.
|
|
* @folio: The folio.
|
|
*
|
|
* If any buffers are in use (dirty, under writeback, elevated refcount),
|
|
* no buffers will be freed.
|
|
*
|
|
* If the folio is dirty but all the buffers are clean then we need to
|
|
* be sure to mark the folio clean as well. This is because the folio
|
|
* may be against a block device, and a later reattachment of buffers
|
|
* to a dirty folio will set *all* buffers dirty. Which would corrupt
|
|
* filesystem data on the same device.
|
|
*
|
|
* The same applies to regular filesystem folios: if all the buffers are
|
|
* clean then we set the folio clean and proceed. To do that, we require
|
|
* total exclusion from block_dirty_folio(). That is obtained with
|
|
* i_private_lock.
|
|
*
|
|
* Exclusion against try_to_free_buffers may be obtained by either
|
|
* locking the folio or by holding its mapping's i_private_lock.
|
|
*
|
|
* Context: Process context. @folio must be locked. Will not sleep.
|
|
* Return: true if all buffers attached to this folio were freed.
|
|
*/
|
|
bool try_to_free_buffers(struct folio *folio)
|
|
{
|
|
struct address_space * const mapping = folio->mapping;
|
|
struct buffer_head *buffers_to_free = NULL;
|
|
bool ret = 0;
|
|
|
|
BUG_ON(!folio_test_locked(folio));
|
|
if (folio_test_writeback(folio))
|
|
return false;
|
|
|
|
if (mapping == NULL) { /* can this still happen? */
|
|
ret = drop_buffers(folio, &buffers_to_free);
|
|
goto out;
|
|
}
|
|
|
|
spin_lock(&mapping->i_private_lock);
|
|
ret = drop_buffers(folio, &buffers_to_free);
|
|
|
|
/*
|
|
* If the filesystem writes its buffers by hand (eg ext3)
|
|
* then we can have clean buffers against a dirty folio. We
|
|
* clean the folio here; otherwise the VM will never notice
|
|
* that the filesystem did any IO at all.
|
|
*
|
|
* Also, during truncate, discard_buffer will have marked all
|
|
* the folio's buffers clean. We discover that here and clean
|
|
* the folio also.
|
|
*
|
|
* i_private_lock must be held over this entire operation in order
|
|
* to synchronise against block_dirty_folio and prevent the
|
|
* dirty bit from being lost.
|
|
*/
|
|
if (ret)
|
|
folio_cancel_dirty(folio);
|
|
spin_unlock(&mapping->i_private_lock);
|
|
out:
|
|
if (buffers_to_free) {
|
|
struct buffer_head *bh = buffers_to_free;
|
|
|
|
do {
|
|
struct buffer_head *next = bh->b_this_page;
|
|
free_buffer_head(bh);
|
|
bh = next;
|
|
} while (bh != buffers_to_free);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(try_to_free_buffers);
|
|
|
|
/*
|
|
* Buffer-head allocation
|
|
*/
|
|
static struct kmem_cache *bh_cachep __ro_after_init;
|
|
|
|
/*
|
|
* Once the number of bh's in the machine exceeds this level, we start
|
|
* stripping them in writeback.
|
|
*/
|
|
static unsigned long max_buffer_heads __ro_after_init;
|
|
|
|
int buffer_heads_over_limit;
|
|
|
|
struct bh_accounting {
|
|
int nr; /* Number of live bh's */
|
|
int ratelimit; /* Limit cacheline bouncing */
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
|
|
|
|
static void recalc_bh_state(void)
|
|
{
|
|
int i;
|
|
int tot = 0;
|
|
|
|
if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
|
|
return;
|
|
__this_cpu_write(bh_accounting.ratelimit, 0);
|
|
for_each_online_cpu(i)
|
|
tot += per_cpu(bh_accounting, i).nr;
|
|
buffer_heads_over_limit = (tot > max_buffer_heads);
|
|
}
|
|
|
|
struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
|
|
{
|
|
struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
|
|
if (ret) {
|
|
INIT_LIST_HEAD(&ret->b_assoc_buffers);
|
|
spin_lock_init(&ret->b_uptodate_lock);
|
|
preempt_disable();
|
|
__this_cpu_inc(bh_accounting.nr);
|
|
recalc_bh_state();
|
|
preempt_enable();
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(alloc_buffer_head);
|
|
|
|
void free_buffer_head(struct buffer_head *bh)
|
|
{
|
|
BUG_ON(!list_empty(&bh->b_assoc_buffers));
|
|
kmem_cache_free(bh_cachep, bh);
|
|
preempt_disable();
|
|
__this_cpu_dec(bh_accounting.nr);
|
|
recalc_bh_state();
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL(free_buffer_head);
|
|
|
|
static int buffer_exit_cpu_dead(unsigned int cpu)
|
|
{
|
|
int i;
|
|
struct bh_lru *b = &per_cpu(bh_lrus, cpu);
|
|
|
|
for (i = 0; i < BH_LRU_SIZE; i++) {
|
|
brelse(b->bhs[i]);
|
|
b->bhs[i] = NULL;
|
|
}
|
|
this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
|
|
per_cpu(bh_accounting, cpu).nr = 0;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bh_uptodate_or_lock - Test whether the buffer is uptodate
|
|
* @bh: struct buffer_head
|
|
*
|
|
* Return true if the buffer is up-to-date and false,
|
|
* with the buffer locked, if not.
|
|
*/
|
|
int bh_uptodate_or_lock(struct buffer_head *bh)
|
|
{
|
|
if (!buffer_uptodate(bh)) {
|
|
lock_buffer(bh);
|
|
if (!buffer_uptodate(bh))
|
|
return 0;
|
|
unlock_buffer(bh);
|
|
}
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(bh_uptodate_or_lock);
|
|
|
|
/**
|
|
* __bh_read - Submit read for a locked buffer
|
|
* @bh: struct buffer_head
|
|
* @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
|
|
* @wait: wait until reading finish
|
|
*
|
|
* Returns zero on success or don't wait, and -EIO on error.
|
|
*/
|
|
int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
|
|
{
|
|
int ret = 0;
|
|
|
|
BUG_ON(!buffer_locked(bh));
|
|
|
|
get_bh(bh);
|
|
bh->b_end_io = end_buffer_read_sync;
|
|
submit_bh(REQ_OP_READ | op_flags, bh);
|
|
if (wait) {
|
|
wait_on_buffer(bh);
|
|
if (!buffer_uptodate(bh))
|
|
ret = -EIO;
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__bh_read);
|
|
|
|
/**
|
|
* __bh_read_batch - Submit read for a batch of unlocked buffers
|
|
* @nr: entry number of the buffer batch
|
|
* @bhs: a batch of struct buffer_head
|
|
* @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
|
|
* @force_lock: force to get a lock on the buffer if set, otherwise drops any
|
|
* buffer that cannot lock.
|
|
*
|
|
* Returns zero on success or don't wait, and -EIO on error.
|
|
*/
|
|
void __bh_read_batch(int nr, struct buffer_head *bhs[],
|
|
blk_opf_t op_flags, bool force_lock)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
struct buffer_head *bh = bhs[i];
|
|
|
|
if (buffer_uptodate(bh))
|
|
continue;
|
|
|
|
if (force_lock)
|
|
lock_buffer(bh);
|
|
else
|
|
if (!trylock_buffer(bh))
|
|
continue;
|
|
|
|
if (buffer_uptodate(bh)) {
|
|
unlock_buffer(bh);
|
|
continue;
|
|
}
|
|
|
|
bh->b_end_io = end_buffer_read_sync;
|
|
get_bh(bh);
|
|
submit_bh(REQ_OP_READ | op_flags, bh);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__bh_read_batch);
|
|
|
|
void __init buffer_init(void)
|
|
{
|
|
unsigned long nrpages;
|
|
int ret;
|
|
|
|
bh_cachep = KMEM_CACHE(buffer_head,
|
|
SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
|
|
/*
|
|
* Limit the bh occupancy to 10% of ZONE_NORMAL
|
|
*/
|
|
nrpages = (nr_free_buffer_pages() * 10) / 100;
|
|
max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
|
|
ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
|
|
NULL, buffer_exit_cpu_dead);
|
|
WARN_ON(ret < 0);
|
|
}
|