mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-16 08:44:21 +08:00
b9023b91dd
When a cpu requests broadcasting, before starting the tick broadcast
hrtimer, bc_set_next() checks if the timer callback (bc_handler) is active
using hrtimer_try_to_cancel(). But hrtimer_try_to_cancel() does not provide
the required synchronization when the callback is active on other core.
The callback could have already executed tick_handle_oneshot_broadcast()
and could have also returned. But still there is a small time window where
the hrtimer_try_to_cancel() returns -1. In that case bc_set_next() returns
without doing anything, but the next_event of the tick broadcast clock
device is already set to a timeout value.
In the race condition diagram below, CPU #1 is running the timer callback
and CPU #2 is entering idle state and so calls bc_set_next().
In the worst case, the next_event will contain an expiry time, but the
hrtimer will not be started which happens when the racing callback returns
HRTIMER_NORESTART. The hrtimer might never recover if all further requests
from the CPUs to subscribe to tick broadcast have timeout greater than the
next_event of tick broadcast clock device. This leads to cascading of
failures and finally noticed as rcu stall warnings
Here is a depiction of the race condition
CPU #1 (Running timer callback) CPU #2 (Enter idle
and subscribe to
tick broadcast)
--------------------- ---------------------
__run_hrtimer() tick_broadcast_enter()
bc_handler() __tick_broadcast_oneshot_control()
tick_handle_oneshot_broadcast()
raw_spin_lock(&tick_broadcast_lock);
dev->next_event = KTIME_MAX; //wait for tick_broadcast_lock
//next_event for tick broadcast clock
set to KTIME_MAX since no other cores
subscribed to tick broadcasting
raw_spin_unlock(&tick_broadcast_lock);
if (dev->next_event == KTIME_MAX)
return HRTIMER_NORESTART
// callback function exits without
restarting the hrtimer //tick_broadcast_lock acquired
raw_spin_lock(&tick_broadcast_lock);
tick_broadcast_set_event()
clockevents_program_event()
dev->next_event = expires;
bc_set_next()
hrtimer_try_to_cancel()
//returns -1 since the timer
callback is active. Exits without
restarting the timer
cpu_base->running = NULL;
The comment that hrtimer cannot be armed from within the callback is
wrong. It is fine to start the hrtimer from within the callback. Also it is
safe to start the hrtimer from the enter/exit idle code while the broadcast
handler is active. The enter/exit idle code and the broadcast handler are
synchronized using tick_broadcast_lock. So there is no need for the
existing try to cancel logic. All this can be removed which will eliminate
the race condition as well.
Fixes:
|
||
---|---|---|
.. | ||
alarmtimer.c | ||
clockevents.c | ||
clocksource.c | ||
hrtimer.c | ||
itimer.c | ||
jiffies.c | ||
Kconfig | ||
Makefile | ||
ntp_internal.h | ||
ntp.c | ||
posix-clock.c | ||
posix-cpu-timers.c | ||
posix-stubs.c | ||
posix-timers.c | ||
posix-timers.h | ||
sched_clock.c | ||
test_udelay.c | ||
tick-broadcast-hrtimer.c | ||
tick-broadcast.c | ||
tick-common.c | ||
tick-internal.h | ||
tick-oneshot.c | ||
tick-sched.c | ||
tick-sched.h | ||
time.c | ||
timeconst.bc | ||
timeconv.c | ||
timecounter.c | ||
timekeeping_debug.c | ||
timekeeping_internal.h | ||
timekeeping.c | ||
timekeeping.h | ||
timer_list.c | ||
timer.c | ||
vsyscall.c |