linux/fs/btrfs/fs.h
Qu Wenruo 5dc96f8d5d btrfs: scrub: remove scrub_parity structure
The structure scrub_parity is used to indicate that some extents are
scrubbed for the purpose of RAID56 P/Q scrubbing.

Since the whole RAID56 P/Q scrubbing path has been replaced with new
scrub_stripe infrastructure, and we no longer need to use scrub_parity
to modify the behavior of data stripes, we can remove it completely.

This removal involves:

- scrub_parity_workers
  Now only one worker would be utilized, scrub_workers, to do the read
  and repair.
  All writeback would happen at the main scrub thread.

- scrub_block::sparity member
- scrub_parity structure
- function scrub_parity_get()
- function scrub_parity_put()
- function scrub_free_parity()

- function __scrub_mark_bitmap()
- function scrub_parity_mark_sectors_error()
- function scrub_parity_mark_sectors_data()
  These helpers are no longer needed, scrub_stripe has its bitmaps and
  we can use bitmap helpers to get the error/data status.

- scrub_parity_bio_endio()
- scrub_parity_check_and_repair()
- function scrub_sectors_for_parity()
- function scrub_extent_for_parity()
- function scrub_raid56_data_stripe_for_parity()
- function scrub_raid56_parity()
  The new code would reuse the scrub read-repair and writeback path.
  Just skip the dev-replace phase.
  And scrub_stripe infrastructure allows us to submit and wait for those
  data stripes before scrubbing P/Q, without extra infrastructure.

The following two functions are temporarily exported for later cleanup:

- scrub_find_csum()
- scrub_add_sector_to_rd_bio()

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17 18:01:24 +02:00

994 lines
29 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef BTRFS_FS_H
#define BTRFS_FS_H
#include <linux/blkdev.h>
#include <linux/fs.h>
#include <linux/btrfs_tree.h>
#include <linux/sizes.h>
#include "extent-io-tree.h"
#include "extent_map.h"
#include "async-thread.h"
#include "block-rsv.h"
#define BTRFS_MAX_EXTENT_SIZE SZ_128M
#define BTRFS_OLDEST_GENERATION 0ULL
#define BTRFS_EMPTY_DIR_SIZE 0
#define BTRFS_DIRTY_METADATA_THRESH SZ_32M
#define BTRFS_SUPER_INFO_OFFSET SZ_64K
#define BTRFS_SUPER_INFO_SIZE 4096
static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
/*
* Number of metadata items necessary for an unlink operation:
*
* 1 for the possible orphan item
* 1 for the dir item
* 1 for the dir index
* 1 for the inode ref
* 1 for the inode
* 1 for the parent inode
*/
#define BTRFS_UNLINK_METADATA_UNITS 6
/*
* The reserved space at the beginning of each device. It covers the primary
* super block and leaves space for potential use by other tools like
* bootloaders or to lower potential damage of accidental overwrite.
*/
#define BTRFS_DEVICE_RANGE_RESERVED (SZ_1M)
/*
* Runtime (in-memory) states of filesystem
*/
enum {
/* Global indicator of serious filesystem errors */
BTRFS_FS_STATE_ERROR,
/*
* Filesystem is being remounted, allow to skip some operations, like
* defrag
*/
BTRFS_FS_STATE_REMOUNTING,
/* Filesystem in RO mode */
BTRFS_FS_STATE_RO,
/* Track if a transaction abort has been reported on this filesystem */
BTRFS_FS_STATE_TRANS_ABORTED,
/*
* Bio operations should be blocked on this filesystem because a source
* or target device is being destroyed as part of a device replace
*/
BTRFS_FS_STATE_DEV_REPLACING,
/* The btrfs_fs_info created for self-tests */
BTRFS_FS_STATE_DUMMY_FS_INFO,
BTRFS_FS_STATE_NO_CSUMS,
/* Indicates there was an error cleaning up a log tree. */
BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
BTRFS_FS_STATE_COUNT
};
enum {
BTRFS_FS_CLOSING_START,
BTRFS_FS_CLOSING_DONE,
BTRFS_FS_LOG_RECOVERING,
BTRFS_FS_OPEN,
BTRFS_FS_QUOTA_ENABLED,
BTRFS_FS_UPDATE_UUID_TREE_GEN,
BTRFS_FS_CREATING_FREE_SPACE_TREE,
BTRFS_FS_BTREE_ERR,
BTRFS_FS_LOG1_ERR,
BTRFS_FS_LOG2_ERR,
BTRFS_FS_QUOTA_OVERRIDE,
/* Used to record internally whether fs has been frozen */
BTRFS_FS_FROZEN,
/*
* Indicate that balance has been set up from the ioctl and is in the
* main phase. The fs_info::balance_ctl is initialized.
*/
BTRFS_FS_BALANCE_RUNNING,
/*
* Indicate that relocation of a chunk has started, it's set per chunk
* and is toggled between chunks.
*/
BTRFS_FS_RELOC_RUNNING,
/* Indicate that the cleaner thread is awake and doing something. */
BTRFS_FS_CLEANER_RUNNING,
/*
* The checksumming has an optimized version and is considered fast,
* so we don't need to offload checksums to workqueues.
*/
BTRFS_FS_CSUM_IMPL_FAST,
/* Indicate that the discard workqueue can service discards. */
BTRFS_FS_DISCARD_RUNNING,
/* Indicate that we need to cleanup space cache v1 */
BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
/* Indicate that we can't trust the free space tree for caching yet */
BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
/* Indicate whether there are any tree modification log users */
BTRFS_FS_TREE_MOD_LOG_USERS,
/* Indicate that we want the transaction kthread to commit right now. */
BTRFS_FS_COMMIT_TRANS,
/* Indicate we have half completed snapshot deletions pending. */
BTRFS_FS_UNFINISHED_DROPS,
/* Indicate we have to finish a zone to do next allocation. */
BTRFS_FS_NEED_ZONE_FINISH,
/* Indicate that we want to commit the transaction. */
BTRFS_FS_NEED_TRANS_COMMIT,
/* This is set when active zone tracking is needed. */
BTRFS_FS_ACTIVE_ZONE_TRACKING,
/*
* Indicate if we have some features changed, this is mostly for
* cleaner thread to update the sysfs interface.
*/
BTRFS_FS_FEATURE_CHANGED,
#if BITS_PER_LONG == 32
/* Indicate if we have error/warn message printed on 32bit systems */
BTRFS_FS_32BIT_ERROR,
BTRFS_FS_32BIT_WARN,
#endif
};
/*
* Flags for mount options.
*
* Note: don't forget to add new options to btrfs_show_options()
*/
enum {
BTRFS_MOUNT_NODATASUM = (1UL << 0),
BTRFS_MOUNT_NODATACOW = (1UL << 1),
BTRFS_MOUNT_NOBARRIER = (1UL << 2),
BTRFS_MOUNT_SSD = (1UL << 3),
BTRFS_MOUNT_DEGRADED = (1UL << 4),
BTRFS_MOUNT_COMPRESS = (1UL << 5),
BTRFS_MOUNT_NOTREELOG = (1UL << 6),
BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7),
BTRFS_MOUNT_SSD_SPREAD = (1UL << 8),
BTRFS_MOUNT_NOSSD = (1UL << 9),
BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10),
BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11),
BTRFS_MOUNT_SPACE_CACHE = (1UL << 12),
BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13),
BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14),
BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15),
BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16),
BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17),
BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18),
BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19),
BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20),
BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21),
BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22),
BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23),
BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24),
BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25),
BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26),
BTRFS_MOUNT_REF_VERIFY = (1UL << 27),
BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28),
BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29),
BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30),
BTRFS_MOUNT_NODISCARD = (1UL << 31),
};
/*
* Compat flags that we support. If any incompat flags are set other than the
* ones specified below then we will fail to mount
*/
#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
#define BTRFS_FEATURE_COMPAT_RO_SUPP \
(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
BTRFS_FEATURE_COMPAT_RO_VERITY | \
BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE)
#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
#define BTRFS_FEATURE_INCOMPAT_SUPP_STABLE \
(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
BTRFS_FEATURE_INCOMPAT_RAID56 | \
BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
BTRFS_FEATURE_INCOMPAT_ZONED)
#ifdef CONFIG_BTRFS_DEBUG
/*
* Features under developmen like Extent tree v2 support is enabled
* only under CONFIG_BTRFS_DEBUG.
*/
#define BTRFS_FEATURE_INCOMPAT_SUPP \
(BTRFS_FEATURE_INCOMPAT_SUPP_STABLE | \
BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
#else
#define BTRFS_FEATURE_INCOMPAT_SUPP \
(BTRFS_FEATURE_INCOMPAT_SUPP_STABLE)
#endif
#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
#define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
#define BTRFS_DEFAULT_MAX_INLINE (2048)
struct btrfs_dev_replace {
/* See #define above */
u64 replace_state;
/* Seconds since 1-Jan-1970 */
time64_t time_started;
/* Seconds since 1-Jan-1970 */
time64_t time_stopped;
atomic64_t num_write_errors;
atomic64_t num_uncorrectable_read_errors;
u64 cursor_left;
u64 committed_cursor_left;
u64 cursor_left_last_write_of_item;
u64 cursor_right;
/* See #define above */
u64 cont_reading_from_srcdev_mode;
int is_valid;
int item_needs_writeback;
struct btrfs_device *srcdev;
struct btrfs_device *tgtdev;
struct mutex lock_finishing_cancel_unmount;
struct rw_semaphore rwsem;
struct btrfs_scrub_progress scrub_progress;
struct percpu_counter bio_counter;
wait_queue_head_t replace_wait;
};
/*
* Free clusters are used to claim free space in relatively large chunks,
* allowing us to do less seeky writes. They are used for all metadata
* allocations. In ssd_spread mode they are also used for data allocations.
*/
struct btrfs_free_cluster {
spinlock_t lock;
spinlock_t refill_lock;
struct rb_root root;
/* Largest extent in this cluster */
u64 max_size;
/* First extent starting offset */
u64 window_start;
/* We did a full search and couldn't create a cluster */
bool fragmented;
struct btrfs_block_group *block_group;
/*
* When a cluster is allocated from a block group, we put the cluster
* onto a list in the block group so that it can be freed before the
* block group is freed.
*/
struct list_head block_group_list;
};
/* Discard control. */
/*
* Async discard uses multiple lists to differentiate the discard filter
* parameters. Index 0 is for completely free block groups where we need to
* ensure the entire block group is trimmed without being lossy. Indices
* afterwards represent monotonically decreasing discard filter sizes to
* prioritize what should be discarded next.
*/
#define BTRFS_NR_DISCARD_LISTS 3
#define BTRFS_DISCARD_INDEX_UNUSED 0
#define BTRFS_DISCARD_INDEX_START 1
struct btrfs_discard_ctl {
struct workqueue_struct *discard_workers;
struct delayed_work work;
spinlock_t lock;
struct btrfs_block_group *block_group;
struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
u64 prev_discard;
u64 prev_discard_time;
atomic_t discardable_extents;
atomic64_t discardable_bytes;
u64 max_discard_size;
u64 delay_ms;
u32 iops_limit;
u32 kbps_limit;
u64 discard_extent_bytes;
u64 discard_bitmap_bytes;
atomic64_t discard_bytes_saved;
};
/*
* Exclusive operations (device replace, resize, device add/remove, balance)
*/
enum btrfs_exclusive_operation {
BTRFS_EXCLOP_NONE,
BTRFS_EXCLOP_BALANCE_PAUSED,
BTRFS_EXCLOP_BALANCE,
BTRFS_EXCLOP_DEV_ADD,
BTRFS_EXCLOP_DEV_REMOVE,
BTRFS_EXCLOP_DEV_REPLACE,
BTRFS_EXCLOP_RESIZE,
BTRFS_EXCLOP_SWAP_ACTIVATE,
};
/* Store data about transaction commits, exported via sysfs. */
struct btrfs_commit_stats {
/* Total number of commits */
u64 commit_count;
/* The maximum commit duration so far in ns */
u64 max_commit_dur;
/* The last commit duration in ns */
u64 last_commit_dur;
/* The total commit duration in ns */
u64 total_commit_dur;
};
struct btrfs_fs_info {
u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
unsigned long flags;
struct btrfs_root *tree_root;
struct btrfs_root *chunk_root;
struct btrfs_root *dev_root;
struct btrfs_root *fs_root;
struct btrfs_root *quota_root;
struct btrfs_root *uuid_root;
struct btrfs_root *data_reloc_root;
struct btrfs_root *block_group_root;
/* The log root tree is a directory of all the other log roots */
struct btrfs_root *log_root_tree;
/* The tree that holds the global roots (csum, extent, etc) */
rwlock_t global_root_lock;
struct rb_root global_root_tree;
spinlock_t fs_roots_radix_lock;
struct radix_tree_root fs_roots_radix;
/* Block group cache stuff */
rwlock_t block_group_cache_lock;
struct rb_root_cached block_group_cache_tree;
/* Keep track of unallocated space */
atomic64_t free_chunk_space;
/* Track ranges which are used by log trees blocks/logged data extents */
struct extent_io_tree excluded_extents;
/* logical->physical extent mapping */
struct extent_map_tree mapping_tree;
/*
* Block reservation for extent, checksum, root tree and delayed dir
* index item.
*/
struct btrfs_block_rsv global_block_rsv;
/* Block reservation for metadata operations */
struct btrfs_block_rsv trans_block_rsv;
/* Block reservation for chunk tree */
struct btrfs_block_rsv chunk_block_rsv;
/* Block reservation for delayed operations */
struct btrfs_block_rsv delayed_block_rsv;
/* Block reservation for delayed refs */
struct btrfs_block_rsv delayed_refs_rsv;
struct btrfs_block_rsv empty_block_rsv;
u64 generation;
u64 last_trans_committed;
/*
* Generation of the last transaction used for block group relocation
* since the filesystem was last mounted (or 0 if none happened yet).
* Must be written and read while holding btrfs_fs_info::commit_root_sem.
*/
u64 last_reloc_trans;
/*
* This is updated to the current trans every time a full commit is
* required instead of the faster short fsync log commits
*/
u64 last_trans_log_full_commit;
unsigned long mount_opt;
unsigned long compress_type:4;
unsigned int compress_level;
u32 commit_interval;
/*
* It is a suggestive number, the read side is safe even it gets a
* wrong number because we will write out the data into a regular
* extent. The write side(mount/remount) is under ->s_umount lock,
* so it is also safe.
*/
u64 max_inline;
struct btrfs_transaction *running_transaction;
wait_queue_head_t transaction_throttle;
wait_queue_head_t transaction_wait;
wait_queue_head_t transaction_blocked_wait;
wait_queue_head_t async_submit_wait;
/*
* Used to protect the incompat_flags, compat_flags, compat_ro_flags
* when they are updated.
*
* Because we do not clear the flags for ever, so we needn't use
* the lock on the read side.
*
* We also needn't use the lock when we mount the fs, because
* there is no other task which will update the flag.
*/
spinlock_t super_lock;
struct btrfs_super_block *super_copy;
struct btrfs_super_block *super_for_commit;
struct super_block *sb;
struct inode *btree_inode;
struct mutex tree_log_mutex;
struct mutex transaction_kthread_mutex;
struct mutex cleaner_mutex;
struct mutex chunk_mutex;
/*
* This is taken to make sure we don't set block groups ro after the
* free space cache has been allocated on them.
*/
struct mutex ro_block_group_mutex;
/*
* This is used during read/modify/write to make sure no two ios are
* trying to mod the same stripe at the same time.
*/
struct btrfs_stripe_hash_table *stripe_hash_table;
/*
* This protects the ordered operations list only while we are
* processing all of the entries on it. This way we make sure the
* commit code doesn't find the list temporarily empty because another
* function happens to be doing non-waiting preflush before jumping
* into the main commit.
*/
struct mutex ordered_operations_mutex;
struct rw_semaphore commit_root_sem;
struct rw_semaphore cleanup_work_sem;
struct rw_semaphore subvol_sem;
spinlock_t trans_lock;
/*
* The reloc mutex goes with the trans lock, it is taken during commit
* to protect us from the relocation code.
*/
struct mutex reloc_mutex;
struct list_head trans_list;
struct list_head dead_roots;
struct list_head caching_block_groups;
spinlock_t delayed_iput_lock;
struct list_head delayed_iputs;
atomic_t nr_delayed_iputs;
wait_queue_head_t delayed_iputs_wait;
atomic64_t tree_mod_seq;
/* This protects tree_mod_log and tree_mod_seq_list */
rwlock_t tree_mod_log_lock;
struct rb_root tree_mod_log;
struct list_head tree_mod_seq_list;
atomic_t async_delalloc_pages;
/* This is used to protect the following list -- ordered_roots. */
spinlock_t ordered_root_lock;
/*
* All fs/file tree roots in which there are data=ordered extents
* pending writeback are added into this list.
*
* These can span multiple transactions and basically include every
* dirty data page that isn't from nodatacow.
*/
struct list_head ordered_roots;
struct mutex delalloc_root_mutex;
spinlock_t delalloc_root_lock;
/* All fs/file tree roots that have delalloc inodes. */
struct list_head delalloc_roots;
/*
* There is a pool of worker threads for checksumming during writes and
* a pool for checksumming after reads. This is because readers can
* run with FS locks held, and the writers may be waiting for those
* locks. We don't want ordering in the pending list to cause
* deadlocks, and so the two are serviced separately.
*
* A third pool does submit_bio to avoid deadlocking with the other two.
*/
struct btrfs_workqueue *workers;
struct btrfs_workqueue *hipri_workers;
struct btrfs_workqueue *delalloc_workers;
struct btrfs_workqueue *flush_workers;
struct workqueue_struct *endio_workers;
struct workqueue_struct *endio_meta_workers;
struct workqueue_struct *rmw_workers;
struct workqueue_struct *compressed_write_workers;
struct btrfs_workqueue *endio_write_workers;
struct btrfs_workqueue *endio_freespace_worker;
struct btrfs_workqueue *caching_workers;
/*
* Fixup workers take dirty pages that didn't properly go through the
* cow mechanism and make them safe to write. It happens for the
* sys_munmap function call path.
*/
struct btrfs_workqueue *fixup_workers;
struct btrfs_workqueue *delayed_workers;
struct task_struct *transaction_kthread;
struct task_struct *cleaner_kthread;
u32 thread_pool_size;
struct kobject *space_info_kobj;
struct kobject *qgroups_kobj;
struct kobject *discard_kobj;
/* Used to keep from writing metadata until there is a nice batch */
struct percpu_counter dirty_metadata_bytes;
struct percpu_counter delalloc_bytes;
struct percpu_counter ordered_bytes;
s32 dirty_metadata_batch;
s32 delalloc_batch;
struct list_head dirty_cowonly_roots;
struct btrfs_fs_devices *fs_devices;
/*
* The space_info list is effectively read only after initial setup.
* It is populated at mount time and cleaned up after all block groups
* are removed. RCU is used to protect it.
*/
struct list_head space_info;
struct btrfs_space_info *data_sinfo;
struct reloc_control *reloc_ctl;
/* data_alloc_cluster is only used in ssd_spread mode */
struct btrfs_free_cluster data_alloc_cluster;
/* All metadata allocations go through this cluster. */
struct btrfs_free_cluster meta_alloc_cluster;
/* Auto defrag inodes go here. */
spinlock_t defrag_inodes_lock;
struct rb_root defrag_inodes;
atomic_t defrag_running;
/* Used to protect avail_{data, metadata, system}_alloc_bits */
seqlock_t profiles_lock;
/*
* These three are in extended format (availability of single chunks is
* denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other types are denoted
* by corresponding BTRFS_BLOCK_GROUP_* bits)
*/
u64 avail_data_alloc_bits;
u64 avail_metadata_alloc_bits;
u64 avail_system_alloc_bits;
/* Balance state */
spinlock_t balance_lock;
struct mutex balance_mutex;
atomic_t balance_pause_req;
atomic_t balance_cancel_req;
struct btrfs_balance_control *balance_ctl;
wait_queue_head_t balance_wait_q;
/* Cancellation requests for chunk relocation */
atomic_t reloc_cancel_req;
u32 data_chunk_allocations;
u32 metadata_ratio;
void *bdev_holder;
/* Private scrub information */
struct mutex scrub_lock;
atomic_t scrubs_running;
atomic_t scrub_pause_req;
atomic_t scrubs_paused;
atomic_t scrub_cancel_req;
wait_queue_head_t scrub_pause_wait;
/*
* The worker pointers are NULL iff the refcount is 0, ie. scrub is not
* running.
*/
refcount_t scrub_workers_refcnt;
struct workqueue_struct *scrub_workers;
struct workqueue_struct *scrub_wr_completion_workers;
struct btrfs_subpage_info *subpage_info;
struct btrfs_discard_ctl discard_ctl;
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
u32 check_integrity_print_mask;
#endif
/* Is qgroup tracking in a consistent state? */
u64 qgroup_flags;
/* Holds configuration and tracking. Protected by qgroup_lock. */
struct rb_root qgroup_tree;
spinlock_t qgroup_lock;
/*
* Used to avoid frequently calling ulist_alloc()/ulist_free()
* when doing qgroup accounting, it must be protected by qgroup_lock.
*/
struct ulist *qgroup_ulist;
/*
* Protect user change for quota operations. If a transaction is needed,
* it must be started before locking this lock.
*/
struct mutex qgroup_ioctl_lock;
/* List of dirty qgroups to be written at next commit. */
struct list_head dirty_qgroups;
/* Used by qgroup for an efficient tree traversal. */
u64 qgroup_seq;
/* Qgroup rescan items. */
/* Protects the progress item */
struct mutex qgroup_rescan_lock;
struct btrfs_key qgroup_rescan_progress;
struct btrfs_workqueue *qgroup_rescan_workers;
struct completion qgroup_rescan_completion;
struct btrfs_work qgroup_rescan_work;
/* Protected by qgroup_rescan_lock */
bool qgroup_rescan_running;
u8 qgroup_drop_subtree_thres;
/* Filesystem state */
unsigned long fs_state;
struct btrfs_delayed_root *delayed_root;
/* Extent buffer radix tree */
spinlock_t buffer_lock;
/* Entries are eb->start / sectorsize */
struct radix_tree_root buffer_radix;
/* Next backup root to be overwritten */
int backup_root_index;
/* Device replace state */
struct btrfs_dev_replace dev_replace;
struct semaphore uuid_tree_rescan_sem;
/* Used to reclaim the metadata space in the background. */
struct work_struct async_reclaim_work;
struct work_struct async_data_reclaim_work;
struct work_struct preempt_reclaim_work;
/* Reclaim partially filled block groups in the background */
struct work_struct reclaim_bgs_work;
struct list_head reclaim_bgs;
int bg_reclaim_threshold;
spinlock_t unused_bgs_lock;
struct list_head unused_bgs;
struct mutex unused_bg_unpin_mutex;
/* Protect block groups that are going to be deleted */
struct mutex reclaim_bgs_lock;
/* Cached block sizes */
u32 nodesize;
u32 sectorsize;
/* ilog2 of sectorsize, use to avoid 64bit division */
u32 sectorsize_bits;
u32 csum_size;
u32 csums_per_leaf;
u32 stripesize;
/*
* Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
* filesystem, on zoned it depends on the device constraints.
*/
u64 max_extent_size;
/* Block groups and devices containing active swapfiles. */
spinlock_t swapfile_pins_lock;
struct rb_root swapfile_pins;
struct crypto_shash *csum_shash;
/* Type of exclusive operation running, protected by super_lock */
enum btrfs_exclusive_operation exclusive_operation;
/*
* Zone size > 0 when in ZONED mode, otherwise it's used for a check
* if the mode is enabled
*/
u64 zone_size;
/* Constraints for ZONE_APPEND commands: */
struct queue_limits limits;
u64 max_zone_append_size;
struct mutex zoned_meta_io_lock;
spinlock_t treelog_bg_lock;
u64 treelog_bg;
/*
* Start of the dedicated data relocation block group, protected by
* relocation_bg_lock.
*/
spinlock_t relocation_bg_lock;
u64 data_reloc_bg;
struct mutex zoned_data_reloc_io_lock;
u64 nr_global_roots;
spinlock_t zone_active_bgs_lock;
struct list_head zone_active_bgs;
/* Updates are not protected by any lock */
struct btrfs_commit_stats commit_stats;
/*
* Last generation where we dropped a non-relocation root.
* Use btrfs_set_last_root_drop_gen() and btrfs_get_last_root_drop_gen()
* to change it and to read it, respectively.
*/
u64 last_root_drop_gen;
/*
* Annotations for transaction events (structures are empty when
* compiled without lockdep).
*/
struct lockdep_map btrfs_trans_num_writers_map;
struct lockdep_map btrfs_trans_num_extwriters_map;
struct lockdep_map btrfs_state_change_map[4];
struct lockdep_map btrfs_trans_pending_ordered_map;
struct lockdep_map btrfs_ordered_extent_map;
#ifdef CONFIG_BTRFS_FS_REF_VERIFY
spinlock_t ref_verify_lock;
struct rb_root block_tree;
#endif
#ifdef CONFIG_BTRFS_DEBUG
struct kobject *debug_kobj;
struct list_head allocated_roots;
spinlock_t eb_leak_lock;
struct list_head allocated_ebs;
#endif
};
static inline void btrfs_set_last_root_drop_gen(struct btrfs_fs_info *fs_info,
u64 gen)
{
WRITE_ONCE(fs_info->last_root_drop_gen, gen);
}
static inline u64 btrfs_get_last_root_drop_gen(const struct btrfs_fs_info *fs_info)
{
return READ_ONCE(fs_info->last_root_drop_gen);
}
/*
* Take the number of bytes to be checksummed and figure out how many leaves
* it would require to store the csums for that many bytes.
*/
static inline u64 btrfs_csum_bytes_to_leaves(
const struct btrfs_fs_info *fs_info, u64 csum_bytes)
{
const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
}
/*
* Use this if we would be adding new items, as we could split nodes as we cow
* down the tree.
*/
static inline u64 btrfs_calc_insert_metadata_size(const struct btrfs_fs_info *fs_info,
unsigned num_items)
{
return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
}
/*
* Doing a truncate or a modification won't result in new nodes or leaves, just
* what we need for COW.
*/
static inline u64 btrfs_calc_metadata_size(const struct btrfs_fs_info *fs_info,
unsigned num_items)
{
return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
}
#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
sizeof(struct btrfs_item))
static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
{
return fs_info->zone_size > 0;
}
/*
* Count how many fs_info->max_extent_size cover the @size
*/
static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size)
{
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
if (!fs_info)
return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
#endif
return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
}
bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation type);
bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation type);
void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation op);
/* Compatibility and incompatibility defines */
void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag,
const char *name);
void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag,
const char *name);
void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag,
const char *name);
void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag,
const char *name);
#define __btrfs_fs_incompat(fs_info, flags) \
(!!(btrfs_super_incompat_flags((fs_info)->super_copy) & (flags)))
#define __btrfs_fs_compat_ro(fs_info, flags) \
(!!(btrfs_super_compat_ro_flags((fs_info)->super_copy) & (flags)))
#define btrfs_set_fs_incompat(__fs_info, opt) \
__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, #opt)
#define btrfs_clear_fs_incompat(__fs_info, opt) \
__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, #opt)
#define btrfs_fs_incompat(fs_info, opt) \
__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
#define btrfs_set_fs_compat_ro(__fs_info, opt) \
__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, #opt)
#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, #opt)
#define btrfs_fs_compat_ro(fs_info, opt) \
__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
#define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
#define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
BTRFS_MOUNT_##opt)
#define btrfs_set_and_info(fs_info, opt, fmt, args...) \
do { \
if (!btrfs_test_opt(fs_info, opt)) \
btrfs_info(fs_info, fmt, ##args); \
btrfs_set_opt(fs_info->mount_opt, opt); \
} while (0)
#define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
do { \
if (btrfs_test_opt(fs_info, opt)) \
btrfs_info(fs_info, fmt, ##args); \
btrfs_clear_opt(fs_info->mount_opt, opt); \
} while (0)
static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
{
/* Do it this way so we only ever do one test_bit in the normal case. */
if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
return 2;
return 1;
}
return 0;
}
/*
* If we remount the fs to be R/O or umount the fs, the cleaner needn't do
* anything except sleeping. This function is used to check the status of
* the fs.
* We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
* since setting and checking for SB_RDONLY in the superblock's flags is not
* atomic.
*/
static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
{
return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
btrfs_fs_closing(fs_info);
}
static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
{
clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
}
#define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
&(fs_info)->fs_state)))
#define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \
(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \
&(fs_info)->fs_state)))
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
#define EXPORT_FOR_TESTS
static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
{
return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
}
void btrfs_test_destroy_inode(struct inode *inode);
#else
#define EXPORT_FOR_TESTS static
static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
{
return 0;
}
#endif
#endif