linux/security/keys/key.c
David Howells f7e47677e3 watch_queue: Add a key/keyring notification facility
Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

	pipe2(fds, O_NOTIFICATION_PIPE);
	ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

	struct watch_notification_filter filter = {
		.nr_filters = 1,
		.filters = {
			[0] = {
				.type = WATCH_TYPE_KEY_NOTIFY,
				.subtype_filter[0] = UINT_MAX,
			},
		},
	};
	ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
	keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way.  Records are of the following format:

	struct key_notification {
		struct watch_notification watch;
		__u32	key_id;
		__u32	aux;
	} *n;

Where:

	n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

	n->watch.subtype will indicate the type of event, such as
	NOTIFY_KEY_REVOKED.

	n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
	record.

	n->watch.info & WATCH_INFO_ID will be the second argument to
	keyctl_watch_key(), shifted.

	n->key will be the ID of the affected key.

	n->aux will hold subtype-dependent information, such as the key
	being linked into the keyring specified by n->key in the case of
	NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype.  Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
2020-05-19 15:19:06 +01:00

1217 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* Basic authentication token and access key management
*
* Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#include <linux/export.h>
#include <linux/init.h>
#include <linux/poison.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/workqueue.h>
#include <linux/random.h>
#include <linux/ima.h>
#include <linux/err.h>
#include "internal.h"
struct kmem_cache *key_jar;
struct rb_root key_serial_tree; /* tree of keys indexed by serial */
DEFINE_SPINLOCK(key_serial_lock);
struct rb_root key_user_tree; /* tree of quota records indexed by UID */
DEFINE_SPINLOCK(key_user_lock);
unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
unsigned int key_quota_maxkeys = 200; /* general key count quota */
unsigned int key_quota_maxbytes = 20000; /* general key space quota */
static LIST_HEAD(key_types_list);
static DECLARE_RWSEM(key_types_sem);
/* We serialise key instantiation and link */
DEFINE_MUTEX(key_construction_mutex);
#ifdef KEY_DEBUGGING
void __key_check(const struct key *key)
{
printk("__key_check: key %p {%08x} should be {%08x}\n",
key, key->magic, KEY_DEBUG_MAGIC);
BUG();
}
#endif
/*
* Get the key quota record for a user, allocating a new record if one doesn't
* already exist.
*/
struct key_user *key_user_lookup(kuid_t uid)
{
struct key_user *candidate = NULL, *user;
struct rb_node *parent, **p;
try_again:
parent = NULL;
p = &key_user_tree.rb_node;
spin_lock(&key_user_lock);
/* search the tree for a user record with a matching UID */
while (*p) {
parent = *p;
user = rb_entry(parent, struct key_user, node);
if (uid_lt(uid, user->uid))
p = &(*p)->rb_left;
else if (uid_gt(uid, user->uid))
p = &(*p)->rb_right;
else
goto found;
}
/* if we get here, we failed to find a match in the tree */
if (!candidate) {
/* allocate a candidate user record if we don't already have
* one */
spin_unlock(&key_user_lock);
user = NULL;
candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
if (unlikely(!candidate))
goto out;
/* the allocation may have scheduled, so we need to repeat the
* search lest someone else added the record whilst we were
* asleep */
goto try_again;
}
/* if we get here, then the user record still hadn't appeared on the
* second pass - so we use the candidate record */
refcount_set(&candidate->usage, 1);
atomic_set(&candidate->nkeys, 0);
atomic_set(&candidate->nikeys, 0);
candidate->uid = uid;
candidate->qnkeys = 0;
candidate->qnbytes = 0;
spin_lock_init(&candidate->lock);
mutex_init(&candidate->cons_lock);
rb_link_node(&candidate->node, parent, p);
rb_insert_color(&candidate->node, &key_user_tree);
spin_unlock(&key_user_lock);
user = candidate;
goto out;
/* okay - we found a user record for this UID */
found:
refcount_inc(&user->usage);
spin_unlock(&key_user_lock);
kfree(candidate);
out:
return user;
}
/*
* Dispose of a user structure
*/
void key_user_put(struct key_user *user)
{
if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
rb_erase(&user->node, &key_user_tree);
spin_unlock(&key_user_lock);
kfree(user);
}
}
/*
* Allocate a serial number for a key. These are assigned randomly to avoid
* security issues through covert channel problems.
*/
static inline void key_alloc_serial(struct key *key)
{
struct rb_node *parent, **p;
struct key *xkey;
/* propose a random serial number and look for a hole for it in the
* serial number tree */
do {
get_random_bytes(&key->serial, sizeof(key->serial));
key->serial >>= 1; /* negative numbers are not permitted */
} while (key->serial < 3);
spin_lock(&key_serial_lock);
attempt_insertion:
parent = NULL;
p = &key_serial_tree.rb_node;
while (*p) {
parent = *p;
xkey = rb_entry(parent, struct key, serial_node);
if (key->serial < xkey->serial)
p = &(*p)->rb_left;
else if (key->serial > xkey->serial)
p = &(*p)->rb_right;
else
goto serial_exists;
}
/* we've found a suitable hole - arrange for this key to occupy it */
rb_link_node(&key->serial_node, parent, p);
rb_insert_color(&key->serial_node, &key_serial_tree);
spin_unlock(&key_serial_lock);
return;
/* we found a key with the proposed serial number - walk the tree from
* that point looking for the next unused serial number */
serial_exists:
for (;;) {
key->serial++;
if (key->serial < 3) {
key->serial = 3;
goto attempt_insertion;
}
parent = rb_next(parent);
if (!parent)
goto attempt_insertion;
xkey = rb_entry(parent, struct key, serial_node);
if (key->serial < xkey->serial)
goto attempt_insertion;
}
}
/**
* key_alloc - Allocate a key of the specified type.
* @type: The type of key to allocate.
* @desc: The key description to allow the key to be searched out.
* @uid: The owner of the new key.
* @gid: The group ID for the new key's group permissions.
* @cred: The credentials specifying UID namespace.
* @perm: The permissions mask of the new key.
* @flags: Flags specifying quota properties.
* @restrict_link: Optional link restriction for new keyrings.
*
* Allocate a key of the specified type with the attributes given. The key is
* returned in an uninstantiated state and the caller needs to instantiate the
* key before returning.
*
* The restrict_link structure (if not NULL) will be freed when the
* keyring is destroyed, so it must be dynamically allocated.
*
* The user's key count quota is updated to reflect the creation of the key and
* the user's key data quota has the default for the key type reserved. The
* instantiation function should amend this as necessary. If insufficient
* quota is available, -EDQUOT will be returned.
*
* The LSM security modules can prevent a key being created, in which case
* -EACCES will be returned.
*
* Returns a pointer to the new key if successful and an error code otherwise.
*
* Note that the caller needs to ensure the key type isn't uninstantiated.
* Internally this can be done by locking key_types_sem. Externally, this can
* be done by either never unregistering the key type, or making sure
* key_alloc() calls don't race with module unloading.
*/
struct key *key_alloc(struct key_type *type, const char *desc,
kuid_t uid, kgid_t gid, const struct cred *cred,
key_perm_t perm, unsigned long flags,
struct key_restriction *restrict_link)
{
struct key_user *user = NULL;
struct key *key;
size_t desclen, quotalen;
int ret;
key = ERR_PTR(-EINVAL);
if (!desc || !*desc)
goto error;
if (type->vet_description) {
ret = type->vet_description(desc);
if (ret < 0) {
key = ERR_PTR(ret);
goto error;
}
}
desclen = strlen(desc);
quotalen = desclen + 1 + type->def_datalen;
/* get hold of the key tracking for this user */
user = key_user_lookup(uid);
if (!user)
goto no_memory_1;
/* check that the user's quota permits allocation of another key and
* its description */
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
key_quota_root_maxkeys : key_quota_maxkeys;
unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
key_quota_root_maxbytes : key_quota_maxbytes;
spin_lock(&user->lock);
if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
if (user->qnkeys + 1 > maxkeys ||
user->qnbytes + quotalen > maxbytes ||
user->qnbytes + quotalen < user->qnbytes)
goto no_quota;
}
user->qnkeys++;
user->qnbytes += quotalen;
spin_unlock(&user->lock);
}
/* allocate and initialise the key and its description */
key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
if (!key)
goto no_memory_2;
key->index_key.desc_len = desclen;
key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
if (!key->index_key.description)
goto no_memory_3;
key->index_key.type = type;
key_set_index_key(&key->index_key);
refcount_set(&key->usage, 1);
init_rwsem(&key->sem);
lockdep_set_class(&key->sem, &type->lock_class);
key->user = user;
key->quotalen = quotalen;
key->datalen = type->def_datalen;
key->uid = uid;
key->gid = gid;
key->perm = perm;
key->restrict_link = restrict_link;
key->last_used_at = ktime_get_real_seconds();
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
key->flags |= 1 << KEY_FLAG_IN_QUOTA;
if (flags & KEY_ALLOC_BUILT_IN)
key->flags |= 1 << KEY_FLAG_BUILTIN;
if (flags & KEY_ALLOC_UID_KEYRING)
key->flags |= 1 << KEY_FLAG_UID_KEYRING;
#ifdef KEY_DEBUGGING
key->magic = KEY_DEBUG_MAGIC;
#endif
/* let the security module know about the key */
ret = security_key_alloc(key, cred, flags);
if (ret < 0)
goto security_error;
/* publish the key by giving it a serial number */
refcount_inc(&key->domain_tag->usage);
atomic_inc(&user->nkeys);
key_alloc_serial(key);
error:
return key;
security_error:
kfree(key->description);
kmem_cache_free(key_jar, key);
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
spin_lock(&user->lock);
user->qnkeys--;
user->qnbytes -= quotalen;
spin_unlock(&user->lock);
}
key_user_put(user);
key = ERR_PTR(ret);
goto error;
no_memory_3:
kmem_cache_free(key_jar, key);
no_memory_2:
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
spin_lock(&user->lock);
user->qnkeys--;
user->qnbytes -= quotalen;
spin_unlock(&user->lock);
}
key_user_put(user);
no_memory_1:
key = ERR_PTR(-ENOMEM);
goto error;
no_quota:
spin_unlock(&user->lock);
key_user_put(user);
key = ERR_PTR(-EDQUOT);
goto error;
}
EXPORT_SYMBOL(key_alloc);
/**
* key_payload_reserve - Adjust data quota reservation for the key's payload
* @key: The key to make the reservation for.
* @datalen: The amount of data payload the caller now wants.
*
* Adjust the amount of the owning user's key data quota that a key reserves.
* If the amount is increased, then -EDQUOT may be returned if there isn't
* enough free quota available.
*
* If successful, 0 is returned.
*/
int key_payload_reserve(struct key *key, size_t datalen)
{
int delta = (int)datalen - key->datalen;
int ret = 0;
key_check(key);
/* contemplate the quota adjustment */
if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
key_quota_root_maxbytes : key_quota_maxbytes;
spin_lock(&key->user->lock);
if (delta > 0 &&
(key->user->qnbytes + delta > maxbytes ||
key->user->qnbytes + delta < key->user->qnbytes)) {
ret = -EDQUOT;
}
else {
key->user->qnbytes += delta;
key->quotalen += delta;
}
spin_unlock(&key->user->lock);
}
/* change the recorded data length if that didn't generate an error */
if (ret == 0)
key->datalen = datalen;
return ret;
}
EXPORT_SYMBOL(key_payload_reserve);
/*
* Change the key state to being instantiated.
*/
static void mark_key_instantiated(struct key *key, int reject_error)
{
/* Commit the payload before setting the state; barrier versus
* key_read_state().
*/
smp_store_release(&key->state,
(reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
}
/*
* Instantiate a key and link it into the target keyring atomically. Must be
* called with the target keyring's semaphore writelocked. The target key's
* semaphore need not be locked as instantiation is serialised by
* key_construction_mutex.
*/
static int __key_instantiate_and_link(struct key *key,
struct key_preparsed_payload *prep,
struct key *keyring,
struct key *authkey,
struct assoc_array_edit **_edit)
{
int ret, awaken;
key_check(key);
key_check(keyring);
awaken = 0;
ret = -EBUSY;
mutex_lock(&key_construction_mutex);
/* can't instantiate twice */
if (key->state == KEY_IS_UNINSTANTIATED) {
/* instantiate the key */
ret = key->type->instantiate(key, prep);
if (ret == 0) {
/* mark the key as being instantiated */
atomic_inc(&key->user->nikeys);
mark_key_instantiated(key, 0);
notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
awaken = 1;
/* and link it into the destination keyring */
if (keyring) {
if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
set_bit(KEY_FLAG_KEEP, &key->flags);
__key_link(keyring, key, _edit);
}
/* disable the authorisation key */
if (authkey)
key_invalidate(authkey);
if (prep->expiry != TIME64_MAX) {
key->expiry = prep->expiry;
key_schedule_gc(prep->expiry + key_gc_delay);
}
}
}
mutex_unlock(&key_construction_mutex);
/* wake up anyone waiting for a key to be constructed */
if (awaken)
wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
return ret;
}
/**
* key_instantiate_and_link - Instantiate a key and link it into the keyring.
* @key: The key to instantiate.
* @data: The data to use to instantiate the keyring.
* @datalen: The length of @data.
* @keyring: Keyring to create a link in on success (or NULL).
* @authkey: The authorisation token permitting instantiation.
*
* Instantiate a key that's in the uninstantiated state using the provided data
* and, if successful, link it in to the destination keyring if one is
* supplied.
*
* If successful, 0 is returned, the authorisation token is revoked and anyone
* waiting for the key is woken up. If the key was already instantiated,
* -EBUSY will be returned.
*/
int key_instantiate_and_link(struct key *key,
const void *data,
size_t datalen,
struct key *keyring,
struct key *authkey)
{
struct key_preparsed_payload prep;
struct assoc_array_edit *edit = NULL;
int ret;
memset(&prep, 0, sizeof(prep));
prep.data = data;
prep.datalen = datalen;
prep.quotalen = key->type->def_datalen;
prep.expiry = TIME64_MAX;
if (key->type->preparse) {
ret = key->type->preparse(&prep);
if (ret < 0)
goto error;
}
if (keyring) {
ret = __key_link_lock(keyring, &key->index_key);
if (ret < 0)
goto error;
ret = __key_link_begin(keyring, &key->index_key, &edit);
if (ret < 0)
goto error_link_end;
if (keyring->restrict_link && keyring->restrict_link->check) {
struct key_restriction *keyres = keyring->restrict_link;
ret = keyres->check(keyring, key->type, &prep.payload,
keyres->key);
if (ret < 0)
goto error_link_end;
}
}
ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
error_link_end:
if (keyring)
__key_link_end(keyring, &key->index_key, edit);
error:
if (key->type->preparse)
key->type->free_preparse(&prep);
return ret;
}
EXPORT_SYMBOL(key_instantiate_and_link);
/**
* key_reject_and_link - Negatively instantiate a key and link it into the keyring.
* @key: The key to instantiate.
* @timeout: The timeout on the negative key.
* @error: The error to return when the key is hit.
* @keyring: Keyring to create a link in on success (or NULL).
* @authkey: The authorisation token permitting instantiation.
*
* Negatively instantiate a key that's in the uninstantiated state and, if
* successful, set its timeout and stored error and link it in to the
* destination keyring if one is supplied. The key and any links to the key
* will be automatically garbage collected after the timeout expires.
*
* Negative keys are used to rate limit repeated request_key() calls by causing
* them to return the stored error code (typically ENOKEY) until the negative
* key expires.
*
* If successful, 0 is returned, the authorisation token is revoked and anyone
* waiting for the key is woken up. If the key was already instantiated,
* -EBUSY will be returned.
*/
int key_reject_and_link(struct key *key,
unsigned timeout,
unsigned error,
struct key *keyring,
struct key *authkey)
{
struct assoc_array_edit *edit = NULL;
int ret, awaken, link_ret = 0;
key_check(key);
key_check(keyring);
awaken = 0;
ret = -EBUSY;
if (keyring) {
if (keyring->restrict_link)
return -EPERM;
link_ret = __key_link_lock(keyring, &key->index_key);
if (link_ret == 0) {
link_ret = __key_link_begin(keyring, &key->index_key, &edit);
if (link_ret < 0)
__key_link_end(keyring, &key->index_key, edit);
}
}
mutex_lock(&key_construction_mutex);
/* can't instantiate twice */
if (key->state == KEY_IS_UNINSTANTIATED) {
/* mark the key as being negatively instantiated */
atomic_inc(&key->user->nikeys);
mark_key_instantiated(key, -error);
notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
key->expiry = ktime_get_real_seconds() + timeout;
key_schedule_gc(key->expiry + key_gc_delay);
if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
awaken = 1;
ret = 0;
/* and link it into the destination keyring */
if (keyring && link_ret == 0)
__key_link(keyring, key, &edit);
/* disable the authorisation key */
if (authkey)
key_invalidate(authkey);
}
mutex_unlock(&key_construction_mutex);
if (keyring && link_ret == 0)
__key_link_end(keyring, &key->index_key, edit);
/* wake up anyone waiting for a key to be constructed */
if (awaken)
wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
return ret == 0 ? link_ret : ret;
}
EXPORT_SYMBOL(key_reject_and_link);
/**
* key_put - Discard a reference to a key.
* @key: The key to discard a reference from.
*
* Discard a reference to a key, and when all the references are gone, we
* schedule the cleanup task to come and pull it out of the tree in process
* context at some later time.
*/
void key_put(struct key *key)
{
if (key) {
key_check(key);
if (refcount_dec_and_test(&key->usage))
schedule_work(&key_gc_work);
}
}
EXPORT_SYMBOL(key_put);
/*
* Find a key by its serial number.
*/
struct key *key_lookup(key_serial_t id)
{
struct rb_node *n;
struct key *key;
spin_lock(&key_serial_lock);
/* search the tree for the specified key */
n = key_serial_tree.rb_node;
while (n) {
key = rb_entry(n, struct key, serial_node);
if (id < key->serial)
n = n->rb_left;
else if (id > key->serial)
n = n->rb_right;
else
goto found;
}
not_found:
key = ERR_PTR(-ENOKEY);
goto error;
found:
/* A key is allowed to be looked up only if someone still owns a
* reference to it - otherwise it's awaiting the gc.
*/
if (!refcount_inc_not_zero(&key->usage))
goto not_found;
error:
spin_unlock(&key_serial_lock);
return key;
}
/*
* Find and lock the specified key type against removal.
*
* We return with the sem read-locked if successful. If the type wasn't
* available -ENOKEY is returned instead.
*/
struct key_type *key_type_lookup(const char *type)
{
struct key_type *ktype;
down_read(&key_types_sem);
/* look up the key type to see if it's one of the registered kernel
* types */
list_for_each_entry(ktype, &key_types_list, link) {
if (strcmp(ktype->name, type) == 0)
goto found_kernel_type;
}
up_read(&key_types_sem);
ktype = ERR_PTR(-ENOKEY);
found_kernel_type:
return ktype;
}
void key_set_timeout(struct key *key, unsigned timeout)
{
time64_t expiry = 0;
/* make the changes with the locks held to prevent races */
down_write(&key->sem);
if (timeout > 0)
expiry = ktime_get_real_seconds() + timeout;
key->expiry = expiry;
key_schedule_gc(key->expiry + key_gc_delay);
up_write(&key->sem);
}
EXPORT_SYMBOL_GPL(key_set_timeout);
/*
* Unlock a key type locked by key_type_lookup().
*/
void key_type_put(struct key_type *ktype)
{
up_read(&key_types_sem);
}
/*
* Attempt to update an existing key.
*
* The key is given to us with an incremented refcount that we need to discard
* if we get an error.
*/
static inline key_ref_t __key_update(key_ref_t key_ref,
struct key_preparsed_payload *prep)
{
struct key *key = key_ref_to_ptr(key_ref);
int ret;
/* need write permission on the key to update it */
ret = key_permission(key_ref, KEY_NEED_WRITE);
if (ret < 0)
goto error;
ret = -EEXIST;
if (!key->type->update)
goto error;
down_write(&key->sem);
ret = key->type->update(key, prep);
if (ret == 0) {
/* Updating a negative key positively instantiates it */
mark_key_instantiated(key, 0);
notify_key(key, NOTIFY_KEY_UPDATED, 0);
}
up_write(&key->sem);
if (ret < 0)
goto error;
out:
return key_ref;
error:
key_put(key);
key_ref = ERR_PTR(ret);
goto out;
}
/**
* key_create_or_update - Update or create and instantiate a key.
* @keyring_ref: A pointer to the destination keyring with possession flag.
* @type: The type of key.
* @description: The searchable description for the key.
* @payload: The data to use to instantiate or update the key.
* @plen: The length of @payload.
* @perm: The permissions mask for a new key.
* @flags: The quota flags for a new key.
*
* Search the destination keyring for a key of the same description and if one
* is found, update it, otherwise create and instantiate a new one and create a
* link to it from that keyring.
*
* If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
* concocted.
*
* Returns a pointer to the new key if successful, -ENODEV if the key type
* wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
* caller isn't permitted to modify the keyring or the LSM did not permit
* creation of the key.
*
* On success, the possession flag from the keyring ref will be tacked on to
* the key ref before it is returned.
*/
key_ref_t key_create_or_update(key_ref_t keyring_ref,
const char *type,
const char *description,
const void *payload,
size_t plen,
key_perm_t perm,
unsigned long flags)
{
struct keyring_index_key index_key = {
.description = description,
};
struct key_preparsed_payload prep;
struct assoc_array_edit *edit = NULL;
const struct cred *cred = current_cred();
struct key *keyring, *key = NULL;
key_ref_t key_ref;
int ret;
struct key_restriction *restrict_link = NULL;
/* look up the key type to see if it's one of the registered kernel
* types */
index_key.type = key_type_lookup(type);
if (IS_ERR(index_key.type)) {
key_ref = ERR_PTR(-ENODEV);
goto error;
}
key_ref = ERR_PTR(-EINVAL);
if (!index_key.type->instantiate ||
(!index_key.description && !index_key.type->preparse))
goto error_put_type;
keyring = key_ref_to_ptr(keyring_ref);
key_check(keyring);
if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
restrict_link = keyring->restrict_link;
key_ref = ERR_PTR(-ENOTDIR);
if (keyring->type != &key_type_keyring)
goto error_put_type;
memset(&prep, 0, sizeof(prep));
prep.data = payload;
prep.datalen = plen;
prep.quotalen = index_key.type->def_datalen;
prep.expiry = TIME64_MAX;
if (index_key.type->preparse) {
ret = index_key.type->preparse(&prep);
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error_free_prep;
}
if (!index_key.description)
index_key.description = prep.description;
key_ref = ERR_PTR(-EINVAL);
if (!index_key.description)
goto error_free_prep;
}
index_key.desc_len = strlen(index_key.description);
key_set_index_key(&index_key);
ret = __key_link_lock(keyring, &index_key);
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error_free_prep;
}
ret = __key_link_begin(keyring, &index_key, &edit);
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error_link_end;
}
if (restrict_link && restrict_link->check) {
ret = restrict_link->check(keyring, index_key.type,
&prep.payload, restrict_link->key);
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error_link_end;
}
}
/* if we're going to allocate a new key, we're going to have
* to modify the keyring */
ret = key_permission(keyring_ref, KEY_NEED_WRITE);
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error_link_end;
}
/* if it's possible to update this type of key, search for an existing
* key of the same type and description in the destination keyring and
* update that instead if possible
*/
if (index_key.type->update) {
key_ref = find_key_to_update(keyring_ref, &index_key);
if (key_ref)
goto found_matching_key;
}
/* if the client doesn't provide, decide on the permissions we want */
if (perm == KEY_PERM_UNDEF) {
perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
perm |= KEY_USR_VIEW;
if (index_key.type->read)
perm |= KEY_POS_READ;
if (index_key.type == &key_type_keyring ||
index_key.type->update)
perm |= KEY_POS_WRITE;
}
/* allocate a new key */
key = key_alloc(index_key.type, index_key.description,
cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
if (IS_ERR(key)) {
key_ref = ERR_CAST(key);
goto error_link_end;
}
/* instantiate it and link it into the target keyring */
ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
if (ret < 0) {
key_put(key);
key_ref = ERR_PTR(ret);
goto error_link_end;
}
ima_post_key_create_or_update(keyring, key, payload, plen,
flags, true);
key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
error_link_end:
__key_link_end(keyring, &index_key, edit);
error_free_prep:
if (index_key.type->preparse)
index_key.type->free_preparse(&prep);
error_put_type:
key_type_put(index_key.type);
error:
return key_ref;
found_matching_key:
/* we found a matching key, so we're going to try to update it
* - we can drop the locks first as we have the key pinned
*/
__key_link_end(keyring, &index_key, edit);
key = key_ref_to_ptr(key_ref);
if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
ret = wait_for_key_construction(key, true);
if (ret < 0) {
key_ref_put(key_ref);
key_ref = ERR_PTR(ret);
goto error_free_prep;
}
}
key_ref = __key_update(key_ref, &prep);
if (!IS_ERR(key_ref))
ima_post_key_create_or_update(keyring, key,
payload, plen,
flags, false);
goto error_free_prep;
}
EXPORT_SYMBOL(key_create_or_update);
/**
* key_update - Update a key's contents.
* @key_ref: The pointer (plus possession flag) to the key.
* @payload: The data to be used to update the key.
* @plen: The length of @payload.
*
* Attempt to update the contents of a key with the given payload data. The
* caller must be granted Write permission on the key. Negative keys can be
* instantiated by this method.
*
* Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
* type does not support updating. The key type may return other errors.
*/
int key_update(key_ref_t key_ref, const void *payload, size_t plen)
{
struct key_preparsed_payload prep;
struct key *key = key_ref_to_ptr(key_ref);
int ret;
key_check(key);
/* the key must be writable */
ret = key_permission(key_ref, KEY_NEED_WRITE);
if (ret < 0)
return ret;
/* attempt to update it if supported */
if (!key->type->update)
return -EOPNOTSUPP;
memset(&prep, 0, sizeof(prep));
prep.data = payload;
prep.datalen = plen;
prep.quotalen = key->type->def_datalen;
prep.expiry = TIME64_MAX;
if (key->type->preparse) {
ret = key->type->preparse(&prep);
if (ret < 0)
goto error;
}
down_write(&key->sem);
ret = key->type->update(key, &prep);
if (ret == 0) {
/* Updating a negative key positively instantiates it */
mark_key_instantiated(key, 0);
notify_key(key, NOTIFY_KEY_UPDATED, 0);
}
up_write(&key->sem);
error:
if (key->type->preparse)
key->type->free_preparse(&prep);
return ret;
}
EXPORT_SYMBOL(key_update);
/**
* key_revoke - Revoke a key.
* @key: The key to be revoked.
*
* Mark a key as being revoked and ask the type to free up its resources. The
* revocation timeout is set and the key and all its links will be
* automatically garbage collected after key_gc_delay amount of time if they
* are not manually dealt with first.
*/
void key_revoke(struct key *key)
{
time64_t time;
key_check(key);
/* make sure no one's trying to change or use the key when we mark it
* - we tell lockdep that we might nest because we might be revoking an
* authorisation key whilst holding the sem on a key we've just
* instantiated
*/
down_write_nested(&key->sem, 1);
if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
notify_key(key, NOTIFY_KEY_REVOKED, 0);
if (key->type->revoke)
key->type->revoke(key);
/* set the death time to no more than the expiry time */
time = ktime_get_real_seconds();
if (key->revoked_at == 0 || key->revoked_at > time) {
key->revoked_at = time;
key_schedule_gc(key->revoked_at + key_gc_delay);
}
}
up_write(&key->sem);
}
EXPORT_SYMBOL(key_revoke);
/**
* key_invalidate - Invalidate a key.
* @key: The key to be invalidated.
*
* Mark a key as being invalidated and have it cleaned up immediately. The key
* is ignored by all searches and other operations from this point.
*/
void key_invalidate(struct key *key)
{
kenter("%d", key_serial(key));
key_check(key);
if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
down_write_nested(&key->sem, 1);
if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
key_schedule_gc_links();
}
up_write(&key->sem);
}
}
EXPORT_SYMBOL(key_invalidate);
/**
* generic_key_instantiate - Simple instantiation of a key from preparsed data
* @key: The key to be instantiated
* @prep: The preparsed data to load.
*
* Instantiate a key from preparsed data. We assume we can just copy the data
* in directly and clear the old pointers.
*
* This can be pointed to directly by the key type instantiate op pointer.
*/
int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
{
int ret;
pr_devel("==>%s()\n", __func__);
ret = key_payload_reserve(key, prep->quotalen);
if (ret == 0) {
rcu_assign_keypointer(key, prep->payload.data[0]);
key->payload.data[1] = prep->payload.data[1];
key->payload.data[2] = prep->payload.data[2];
key->payload.data[3] = prep->payload.data[3];
prep->payload.data[0] = NULL;
prep->payload.data[1] = NULL;
prep->payload.data[2] = NULL;
prep->payload.data[3] = NULL;
}
pr_devel("<==%s() = %d\n", __func__, ret);
return ret;
}
EXPORT_SYMBOL(generic_key_instantiate);
/**
* register_key_type - Register a type of key.
* @ktype: The new key type.
*
* Register a new key type.
*
* Returns 0 on success or -EEXIST if a type of this name already exists.
*/
int register_key_type(struct key_type *ktype)
{
struct key_type *p;
int ret;
memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
ret = -EEXIST;
down_write(&key_types_sem);
/* disallow key types with the same name */
list_for_each_entry(p, &key_types_list, link) {
if (strcmp(p->name, ktype->name) == 0)
goto out;
}
/* store the type */
list_add(&ktype->link, &key_types_list);
pr_notice("Key type %s registered\n", ktype->name);
ret = 0;
out:
up_write(&key_types_sem);
return ret;
}
EXPORT_SYMBOL(register_key_type);
/**
* unregister_key_type - Unregister a type of key.
* @ktype: The key type.
*
* Unregister a key type and mark all the extant keys of this type as dead.
* Those keys of this type are then destroyed to get rid of their payloads and
* they and their links will be garbage collected as soon as possible.
*/
void unregister_key_type(struct key_type *ktype)
{
down_write(&key_types_sem);
list_del_init(&ktype->link);
downgrade_write(&key_types_sem);
key_gc_keytype(ktype);
pr_notice("Key type %s unregistered\n", ktype->name);
up_read(&key_types_sem);
}
EXPORT_SYMBOL(unregister_key_type);
/*
* Initialise the key management state.
*/
void __init key_init(void)
{
/* allocate a slab in which we can store keys */
key_jar = kmem_cache_create("key_jar", sizeof(struct key),
0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
/* add the special key types */
list_add_tail(&key_type_keyring.link, &key_types_list);
list_add_tail(&key_type_dead.link, &key_types_list);
list_add_tail(&key_type_user.link, &key_types_list);
list_add_tail(&key_type_logon.link, &key_types_list);
/* record the root user tracking */
rb_link_node(&root_key_user.node,
NULL,
&key_user_tree.rb_node);
rb_insert_color(&root_key_user.node,
&key_user_tree);
}