mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-08 14:54:23 +08:00
1daf2f3876
This has no real functional change, as crng_pre_init_inject() (and before that, crng_slow_init()) always checks for == 0, not >= 2. So correct the outer unlocked change to reflect that. Before this used crng_ready(), which was not correct. Cc: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net> Reviewed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
1726 lines
48 KiB
C
1726 lines
48 KiB
C
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
|
|
/*
|
|
* Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
|
|
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
|
|
*
|
|
* This driver produces cryptographically secure pseudorandom data. It is divided
|
|
* into roughly six sections, each with a section header:
|
|
*
|
|
* - Initialization and readiness waiting.
|
|
* - Fast key erasure RNG, the "crng".
|
|
* - Entropy accumulation and extraction routines.
|
|
* - Entropy collection routines.
|
|
* - Userspace reader/writer interfaces.
|
|
* - Sysctl interface.
|
|
*
|
|
* The high level overview is that there is one input pool, into which
|
|
* various pieces of data are hashed. Some of that data is then "credited" as
|
|
* having a certain number of bits of entropy. When enough bits of entropy are
|
|
* available, the hash is finalized and handed as a key to a stream cipher that
|
|
* expands it indefinitely for various consumers. This key is periodically
|
|
* refreshed as the various entropy collectors, described below, add data to the
|
|
* input pool and credit it. There is currently no Fortuna-like scheduler
|
|
* involved, which can lead to malicious entropy sources causing a premature
|
|
* reseed, and the entropy estimates are, at best, conservative guesses.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/utsname.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/major.h>
|
|
#include <linux/string.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/random.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/uaccess.h>
|
|
#include <crypto/chacha.h>
|
|
#include <crypto/blake2s.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/io.h>
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialization and readiness waiting.
|
|
*
|
|
* Much of the RNG infrastructure is devoted to various dependencies
|
|
* being able to wait until the RNG has collected enough entropy and
|
|
* is ready for safe consumption.
|
|
*
|
|
*********************************************************************/
|
|
|
|
/*
|
|
* crng_init = 0 --> Uninitialized
|
|
* 1 --> Initialized
|
|
* 2 --> Initialized from input_pool
|
|
*
|
|
* crng_init is protected by base_crng->lock, and only increases
|
|
* its value (from 0->1->2).
|
|
*/
|
|
static int crng_init = 0;
|
|
#define crng_ready() (likely(crng_init > 1))
|
|
/* Various types of waiters for crng_init->2 transition. */
|
|
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
|
|
static struct fasync_struct *fasync;
|
|
static DEFINE_SPINLOCK(random_ready_list_lock);
|
|
static LIST_HEAD(random_ready_list);
|
|
|
|
/* Control how we warn userspace. */
|
|
static struct ratelimit_state unseeded_warning =
|
|
RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
|
|
static struct ratelimit_state urandom_warning =
|
|
RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
|
|
static int ratelimit_disable __read_mostly;
|
|
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
|
|
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
|
|
|
|
/*
|
|
* Returns whether or not the input pool has been seeded and thus guaranteed
|
|
* to supply cryptographically secure random numbers. This applies to: the
|
|
* /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
|
|
* ,u64,int,long} family of functions.
|
|
*
|
|
* Returns: true if the input pool has been seeded.
|
|
* false if the input pool has not been seeded.
|
|
*/
|
|
bool rng_is_initialized(void)
|
|
{
|
|
return crng_ready();
|
|
}
|
|
EXPORT_SYMBOL(rng_is_initialized);
|
|
|
|
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
|
|
static void try_to_generate_entropy(void);
|
|
|
|
/*
|
|
* Wait for the input pool to be seeded and thus guaranteed to supply
|
|
* cryptographically secure random numbers. This applies to: the /dev/urandom
|
|
* device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
|
|
* family of functions. Using any of these functions without first calling
|
|
* this function forfeits the guarantee of security.
|
|
*
|
|
* Returns: 0 if the input pool has been seeded.
|
|
* -ERESTARTSYS if the function was interrupted by a signal.
|
|
*/
|
|
int wait_for_random_bytes(void)
|
|
{
|
|
if (likely(crng_ready()))
|
|
return 0;
|
|
|
|
do {
|
|
int ret;
|
|
ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
|
|
if (ret)
|
|
return ret > 0 ? 0 : ret;
|
|
|
|
try_to_generate_entropy();
|
|
} while (!crng_ready());
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wait_for_random_bytes);
|
|
|
|
/*
|
|
* Add a callback function that will be invoked when the input
|
|
* pool is initialised.
|
|
*
|
|
* returns: 0 if callback is successfully added
|
|
* -EALREADY if pool is already initialised (callback not called)
|
|
* -ENOENT if module for callback is not alive
|
|
*/
|
|
int add_random_ready_callback(struct random_ready_callback *rdy)
|
|
{
|
|
struct module *owner;
|
|
unsigned long flags;
|
|
int err = -EALREADY;
|
|
|
|
if (crng_ready())
|
|
return err;
|
|
|
|
owner = rdy->owner;
|
|
if (!try_module_get(owner))
|
|
return -ENOENT;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
if (crng_ready())
|
|
goto out;
|
|
|
|
owner = NULL;
|
|
|
|
list_add(&rdy->list, &random_ready_list);
|
|
err = 0;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
|
|
module_put(owner);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(add_random_ready_callback);
|
|
|
|
/*
|
|
* Delete a previously registered readiness callback function.
|
|
*/
|
|
void del_random_ready_callback(struct random_ready_callback *rdy)
|
|
{
|
|
unsigned long flags;
|
|
struct module *owner = NULL;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
if (!list_empty(&rdy->list)) {
|
|
list_del_init(&rdy->list);
|
|
owner = rdy->owner;
|
|
}
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
|
|
module_put(owner);
|
|
}
|
|
EXPORT_SYMBOL(del_random_ready_callback);
|
|
|
|
static void process_random_ready_list(void)
|
|
{
|
|
unsigned long flags;
|
|
struct random_ready_callback *rdy, *tmp;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
|
|
struct module *owner = rdy->owner;
|
|
|
|
list_del_init(&rdy->list);
|
|
rdy->func(rdy);
|
|
module_put(owner);
|
|
}
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
}
|
|
|
|
#define warn_unseeded_randomness(previous) \
|
|
_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
|
|
|
|
static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
|
|
{
|
|
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
|
|
const bool print_once = false;
|
|
#else
|
|
static bool print_once __read_mostly;
|
|
#endif
|
|
|
|
if (print_once || crng_ready() ||
|
|
(previous && (caller == READ_ONCE(*previous))))
|
|
return;
|
|
WRITE_ONCE(*previous, caller);
|
|
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
|
|
print_once = true;
|
|
#endif
|
|
if (__ratelimit(&unseeded_warning))
|
|
printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
|
|
func_name, caller, crng_init);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Fast key erasure RNG, the "crng".
|
|
*
|
|
* These functions expand entropy from the entropy extractor into
|
|
* long streams for external consumption using the "fast key erasure"
|
|
* RNG described at <https://blog.cr.yp.to/20170723-random.html>.
|
|
*
|
|
* There are a few exported interfaces for use by other drivers:
|
|
*
|
|
* void get_random_bytes(void *buf, size_t nbytes)
|
|
* u32 get_random_u32()
|
|
* u64 get_random_u64()
|
|
* unsigned int get_random_int()
|
|
* unsigned long get_random_long()
|
|
*
|
|
* These interfaces will return the requested number of random bytes
|
|
* into the given buffer or as a return value. This is equivalent to
|
|
* a read from /dev/urandom. The integer family of functions may be
|
|
* higher performance for one-off random integers, because they do a
|
|
* bit of buffering.
|
|
*
|
|
*********************************************************************/
|
|
|
|
enum {
|
|
CRNG_RESEED_INTERVAL = 300 * HZ,
|
|
CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
|
|
};
|
|
|
|
static struct {
|
|
u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
|
|
unsigned long birth;
|
|
unsigned long generation;
|
|
spinlock_t lock;
|
|
} base_crng = {
|
|
.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
|
|
};
|
|
|
|
struct crng {
|
|
u8 key[CHACHA_KEY_SIZE];
|
|
unsigned long generation;
|
|
local_lock_t lock;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct crng, crngs) = {
|
|
.generation = ULONG_MAX,
|
|
.lock = INIT_LOCAL_LOCK(crngs.lock),
|
|
};
|
|
|
|
/* Used by crng_reseed() to extract a new seed from the input pool. */
|
|
static bool drain_entropy(void *buf, size_t nbytes);
|
|
|
|
/*
|
|
* This extracts a new crng key from the input pool, but only if there is a
|
|
* sufficient amount of entropy available, in order to mitigate bruteforcing
|
|
* of newly added bits.
|
|
*/
|
|
static void crng_reseed(void)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long next_gen;
|
|
u8 key[CHACHA_KEY_SIZE];
|
|
bool finalize_init = false;
|
|
|
|
/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
|
|
if (!drain_entropy(key, sizeof(key)))
|
|
return;
|
|
|
|
/*
|
|
* We copy the new key into the base_crng, overwriting the old one,
|
|
* and update the generation counter. We avoid hitting ULONG_MAX,
|
|
* because the per-cpu crngs are initialized to ULONG_MAX, so this
|
|
* forces new CPUs that come online to always initialize.
|
|
*/
|
|
spin_lock_irqsave(&base_crng.lock, flags);
|
|
memcpy(base_crng.key, key, sizeof(base_crng.key));
|
|
next_gen = base_crng.generation + 1;
|
|
if (next_gen == ULONG_MAX)
|
|
++next_gen;
|
|
WRITE_ONCE(base_crng.generation, next_gen);
|
|
WRITE_ONCE(base_crng.birth, jiffies);
|
|
if (crng_init < 2) {
|
|
crng_init = 2;
|
|
finalize_init = true;
|
|
}
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
memzero_explicit(key, sizeof(key));
|
|
if (finalize_init) {
|
|
process_random_ready_list();
|
|
wake_up_interruptible(&crng_init_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_IN);
|
|
pr_notice("crng init done\n");
|
|
if (unseeded_warning.missed) {
|
|
pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
|
|
unseeded_warning.missed);
|
|
unseeded_warning.missed = 0;
|
|
}
|
|
if (urandom_warning.missed) {
|
|
pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
|
|
urandom_warning.missed);
|
|
urandom_warning.missed = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This generates a ChaCha block using the provided key, and then
|
|
* immediately overwites that key with half the block. It returns
|
|
* the resultant ChaCha state to the user, along with the second
|
|
* half of the block containing 32 bytes of random data that may
|
|
* be used; random_data_len may not be greater than 32.
|
|
*/
|
|
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
|
|
u32 chacha_state[CHACHA_STATE_WORDS],
|
|
u8 *random_data, size_t random_data_len)
|
|
{
|
|
u8 first_block[CHACHA_BLOCK_SIZE];
|
|
|
|
BUG_ON(random_data_len > 32);
|
|
|
|
chacha_init_consts(chacha_state);
|
|
memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
|
|
memset(&chacha_state[12], 0, sizeof(u32) * 4);
|
|
chacha20_block(chacha_state, first_block);
|
|
|
|
memcpy(key, first_block, CHACHA_KEY_SIZE);
|
|
memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
|
|
memzero_explicit(first_block, sizeof(first_block));
|
|
}
|
|
|
|
/*
|
|
* This function returns a ChaCha state that you may use for generating
|
|
* random data. It also returns up to 32 bytes on its own of random data
|
|
* that may be used; random_data_len may not be greater than 32.
|
|
*/
|
|
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
|
|
u8 *random_data, size_t random_data_len)
|
|
{
|
|
unsigned long flags;
|
|
struct crng *crng;
|
|
|
|
BUG_ON(random_data_len > 32);
|
|
|
|
/*
|
|
* For the fast path, we check whether we're ready, unlocked first, and
|
|
* then re-check once locked later. In the case where we're really not
|
|
* ready, we do fast key erasure with the base_crng directly, because
|
|
* this is what crng_pre_init_inject() mutates during early init.
|
|
*/
|
|
if (unlikely(!crng_ready())) {
|
|
bool ready;
|
|
|
|
spin_lock_irqsave(&base_crng.lock, flags);
|
|
ready = crng_ready();
|
|
if (!ready)
|
|
crng_fast_key_erasure(base_crng.key, chacha_state,
|
|
random_data, random_data_len);
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
if (!ready)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the base_crng is more than 5 minutes old, we reseed, which
|
|
* in turn bumps the generation counter that we check below.
|
|
*/
|
|
if (unlikely(time_after(jiffies, READ_ONCE(base_crng.birth) + CRNG_RESEED_INTERVAL)))
|
|
crng_reseed();
|
|
|
|
local_lock_irqsave(&crngs.lock, flags);
|
|
crng = raw_cpu_ptr(&crngs);
|
|
|
|
/*
|
|
* If our per-cpu crng is older than the base_crng, then it means
|
|
* somebody reseeded the base_crng. In that case, we do fast key
|
|
* erasure on the base_crng, and use its output as the new key
|
|
* for our per-cpu crng. This brings us up to date with base_crng.
|
|
*/
|
|
if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
|
|
spin_lock(&base_crng.lock);
|
|
crng_fast_key_erasure(base_crng.key, chacha_state,
|
|
crng->key, sizeof(crng->key));
|
|
crng->generation = base_crng.generation;
|
|
spin_unlock(&base_crng.lock);
|
|
}
|
|
|
|
/*
|
|
* Finally, when we've made it this far, our per-cpu crng has an up
|
|
* to date key, and we can do fast key erasure with it to produce
|
|
* some random data and a ChaCha state for the caller. All other
|
|
* branches of this function are "unlikely", so most of the time we
|
|
* should wind up here immediately.
|
|
*/
|
|
crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
|
|
local_unlock_irqrestore(&crngs.lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This function is for crng_init == 0 only. It loads entropy directly
|
|
* into the crng's key, without going through the input pool. It is,
|
|
* generally speaking, not very safe, but we use this only at early
|
|
* boot time when it's better to have something there rather than
|
|
* nothing.
|
|
*
|
|
* There are two paths, a slow one and a fast one. The slow one
|
|
* hashes the input along with the current key. The fast one simply
|
|
* xors it in, and should only be used from interrupt context.
|
|
*
|
|
* If account is set, then the crng_init_cnt counter is incremented.
|
|
* This shouldn't be set by functions like add_device_randomness(),
|
|
* where we can't trust the buffer passed to it is guaranteed to be
|
|
* unpredictable (so it might not have any entropy at all).
|
|
*
|
|
* Returns the number of bytes processed from input, which is bounded
|
|
* by CRNG_INIT_CNT_THRESH if account is true.
|
|
*/
|
|
static size_t crng_pre_init_inject(const void *input, size_t len,
|
|
bool fast, bool account)
|
|
{
|
|
static int crng_init_cnt = 0;
|
|
unsigned long flags;
|
|
|
|
if (fast) {
|
|
if (!spin_trylock_irqsave(&base_crng.lock, flags))
|
|
return 0;
|
|
} else {
|
|
spin_lock_irqsave(&base_crng.lock, flags);
|
|
}
|
|
|
|
if (crng_init != 0) {
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
if (account)
|
|
len = min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt);
|
|
|
|
if (fast) {
|
|
const u8 *src = input;
|
|
size_t i;
|
|
|
|
for (i = 0; i < len; ++i)
|
|
base_crng.key[(crng_init_cnt + i) %
|
|
sizeof(base_crng.key)] ^= src[i];
|
|
} else {
|
|
struct blake2s_state hash;
|
|
|
|
blake2s_init(&hash, sizeof(base_crng.key));
|
|
blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
|
|
blake2s_update(&hash, input, len);
|
|
blake2s_final(&hash, base_crng.key);
|
|
}
|
|
|
|
if (account) {
|
|
crng_init_cnt += len;
|
|
if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
|
|
++base_crng.generation;
|
|
crng_init = 1;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
|
|
if (crng_init == 1)
|
|
pr_notice("fast init done\n");
|
|
|
|
return len;
|
|
}
|
|
|
|
static void _get_random_bytes(void *buf, size_t nbytes)
|
|
{
|
|
u32 chacha_state[CHACHA_STATE_WORDS];
|
|
u8 tmp[CHACHA_BLOCK_SIZE];
|
|
size_t len;
|
|
|
|
if (!nbytes)
|
|
return;
|
|
|
|
len = min_t(size_t, 32, nbytes);
|
|
crng_make_state(chacha_state, buf, len);
|
|
nbytes -= len;
|
|
buf += len;
|
|
|
|
while (nbytes) {
|
|
if (nbytes < CHACHA_BLOCK_SIZE) {
|
|
chacha20_block(chacha_state, tmp);
|
|
memcpy(buf, tmp, nbytes);
|
|
memzero_explicit(tmp, sizeof(tmp));
|
|
break;
|
|
}
|
|
|
|
chacha20_block(chacha_state, buf);
|
|
if (unlikely(chacha_state[12] == 0))
|
|
++chacha_state[13];
|
|
nbytes -= CHACHA_BLOCK_SIZE;
|
|
buf += CHACHA_BLOCK_SIZE;
|
|
}
|
|
|
|
memzero_explicit(chacha_state, sizeof(chacha_state));
|
|
}
|
|
|
|
/*
|
|
* This function is the exported kernel interface. It returns some
|
|
* number of good random numbers, suitable for key generation, seeding
|
|
* TCP sequence numbers, etc. It does not rely on the hardware random
|
|
* number generator. For random bytes direct from the hardware RNG
|
|
* (when available), use get_random_bytes_arch(). In order to ensure
|
|
* that the randomness provided by this function is okay, the function
|
|
* wait_for_random_bytes() should be called and return 0 at least once
|
|
* at any point prior.
|
|
*/
|
|
void get_random_bytes(void *buf, size_t nbytes)
|
|
{
|
|
static void *previous;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
_get_random_bytes(buf, nbytes);
|
|
}
|
|
EXPORT_SYMBOL(get_random_bytes);
|
|
|
|
static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
|
|
{
|
|
bool large_request = nbytes > 256;
|
|
ssize_t ret = 0;
|
|
size_t len;
|
|
u32 chacha_state[CHACHA_STATE_WORDS];
|
|
u8 output[CHACHA_BLOCK_SIZE];
|
|
|
|
if (!nbytes)
|
|
return 0;
|
|
|
|
len = min_t(size_t, 32, nbytes);
|
|
crng_make_state(chacha_state, output, len);
|
|
|
|
if (copy_to_user(buf, output, len))
|
|
return -EFAULT;
|
|
nbytes -= len;
|
|
buf += len;
|
|
ret += len;
|
|
|
|
while (nbytes) {
|
|
if (large_request && need_resched()) {
|
|
if (signal_pending(current))
|
|
break;
|
|
schedule();
|
|
}
|
|
|
|
chacha20_block(chacha_state, output);
|
|
if (unlikely(chacha_state[12] == 0))
|
|
++chacha_state[13];
|
|
|
|
len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
|
|
if (copy_to_user(buf, output, len)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
nbytes -= len;
|
|
buf += len;
|
|
ret += len;
|
|
}
|
|
|
|
memzero_explicit(chacha_state, sizeof(chacha_state));
|
|
memzero_explicit(output, sizeof(output));
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Batched entropy returns random integers. The quality of the random
|
|
* number is good as /dev/urandom. In order to ensure that the randomness
|
|
* provided by this function is okay, the function wait_for_random_bytes()
|
|
* should be called and return 0 at least once at any point prior.
|
|
*/
|
|
struct batched_entropy {
|
|
union {
|
|
/*
|
|
* We make this 1.5x a ChaCha block, so that we get the
|
|
* remaining 32 bytes from fast key erasure, plus one full
|
|
* block from the detached ChaCha state. We can increase
|
|
* the size of this later if needed so long as we keep the
|
|
* formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
|
|
*/
|
|
u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
|
|
u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
|
|
};
|
|
local_lock_t lock;
|
|
unsigned long generation;
|
|
unsigned int position;
|
|
};
|
|
|
|
|
|
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
|
|
.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
|
|
.position = UINT_MAX
|
|
};
|
|
|
|
u64 get_random_u64(void)
|
|
{
|
|
u64 ret;
|
|
unsigned long flags;
|
|
struct batched_entropy *batch;
|
|
static void *previous;
|
|
unsigned long next_gen;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
|
|
local_lock_irqsave(&batched_entropy_u64.lock, flags);
|
|
batch = raw_cpu_ptr(&batched_entropy_u64);
|
|
|
|
next_gen = READ_ONCE(base_crng.generation);
|
|
if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
|
|
next_gen != batch->generation) {
|
|
_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
|
|
batch->position = 0;
|
|
batch->generation = next_gen;
|
|
}
|
|
|
|
ret = batch->entropy_u64[batch->position];
|
|
batch->entropy_u64[batch->position] = 0;
|
|
++batch->position;
|
|
local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_random_u64);
|
|
|
|
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
|
|
.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
|
|
.position = UINT_MAX
|
|
};
|
|
|
|
u32 get_random_u32(void)
|
|
{
|
|
u32 ret;
|
|
unsigned long flags;
|
|
struct batched_entropy *batch;
|
|
static void *previous;
|
|
unsigned long next_gen;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
|
|
local_lock_irqsave(&batched_entropy_u32.lock, flags);
|
|
batch = raw_cpu_ptr(&batched_entropy_u32);
|
|
|
|
next_gen = READ_ONCE(base_crng.generation);
|
|
if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
|
|
next_gen != batch->generation) {
|
|
_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
|
|
batch->position = 0;
|
|
batch->generation = next_gen;
|
|
}
|
|
|
|
ret = batch->entropy_u32[batch->position];
|
|
batch->entropy_u32[batch->position] = 0;
|
|
++batch->position;
|
|
local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_random_u32);
|
|
|
|
/**
|
|
* randomize_page - Generate a random, page aligned address
|
|
* @start: The smallest acceptable address the caller will take.
|
|
* @range: The size of the area, starting at @start, within which the
|
|
* random address must fall.
|
|
*
|
|
* If @start + @range would overflow, @range is capped.
|
|
*
|
|
* NOTE: Historical use of randomize_range, which this replaces, presumed that
|
|
* @start was already page aligned. We now align it regardless.
|
|
*
|
|
* Return: A page aligned address within [start, start + range). On error,
|
|
* @start is returned.
|
|
*/
|
|
unsigned long randomize_page(unsigned long start, unsigned long range)
|
|
{
|
|
if (!PAGE_ALIGNED(start)) {
|
|
range -= PAGE_ALIGN(start) - start;
|
|
start = PAGE_ALIGN(start);
|
|
}
|
|
|
|
if (start > ULONG_MAX - range)
|
|
range = ULONG_MAX - start;
|
|
|
|
range >>= PAGE_SHIFT;
|
|
|
|
if (range == 0)
|
|
return start;
|
|
|
|
return start + (get_random_long() % range << PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* This function will use the architecture-specific hardware random
|
|
* number generator if it is available. It is not recommended for
|
|
* use. Use get_random_bytes() instead. It returns the number of
|
|
* bytes filled in.
|
|
*/
|
|
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
|
|
{
|
|
size_t left = nbytes;
|
|
u8 *p = buf;
|
|
|
|
while (left) {
|
|
unsigned long v;
|
|
size_t chunk = min_t(size_t, left, sizeof(unsigned long));
|
|
|
|
if (!arch_get_random_long(&v))
|
|
break;
|
|
|
|
memcpy(p, &v, chunk);
|
|
p += chunk;
|
|
left -= chunk;
|
|
}
|
|
|
|
return nbytes - left;
|
|
}
|
|
EXPORT_SYMBOL(get_random_bytes_arch);
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Entropy accumulation and extraction routines.
|
|
*
|
|
* Callers may add entropy via:
|
|
*
|
|
* static void mix_pool_bytes(const void *in, size_t nbytes)
|
|
*
|
|
* After which, if added entropy should be credited:
|
|
*
|
|
* static void credit_entropy_bits(size_t nbits)
|
|
*
|
|
* Finally, extract entropy via these two, with the latter one
|
|
* setting the entropy count to zero and extracting only if there
|
|
* is POOL_MIN_BITS entropy credited prior:
|
|
*
|
|
* static void extract_entropy(void *buf, size_t nbytes)
|
|
* static bool drain_entropy(void *buf, size_t nbytes)
|
|
*
|
|
**********************************************************************/
|
|
|
|
enum {
|
|
POOL_BITS = BLAKE2S_HASH_SIZE * 8,
|
|
POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
|
|
};
|
|
|
|
/* For notifying userspace should write into /dev/random. */
|
|
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
|
|
|
|
static struct {
|
|
struct blake2s_state hash;
|
|
spinlock_t lock;
|
|
unsigned int entropy_count;
|
|
} input_pool = {
|
|
.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
|
|
BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
|
|
BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
|
|
.hash.outlen = BLAKE2S_HASH_SIZE,
|
|
.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
|
|
};
|
|
|
|
static void _mix_pool_bytes(const void *in, size_t nbytes)
|
|
{
|
|
blake2s_update(&input_pool.hash, in, nbytes);
|
|
}
|
|
|
|
/*
|
|
* This function adds bytes into the entropy "pool". It does not
|
|
* update the entropy estimate. The caller should call
|
|
* credit_entropy_bits if this is appropriate.
|
|
*/
|
|
static void mix_pool_bytes(const void *in, size_t nbytes)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
_mix_pool_bytes(in, nbytes);
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
}
|
|
|
|
static void credit_entropy_bits(size_t nbits)
|
|
{
|
|
unsigned int entropy_count, orig, add;
|
|
|
|
if (!nbits)
|
|
return;
|
|
|
|
add = min_t(size_t, nbits, POOL_BITS);
|
|
|
|
do {
|
|
orig = READ_ONCE(input_pool.entropy_count);
|
|
entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
|
|
} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);
|
|
|
|
if (crng_init < 2 && entropy_count >= POOL_MIN_BITS)
|
|
crng_reseed();
|
|
}
|
|
|
|
/*
|
|
* This is an HKDF-like construction for using the hashed collected entropy
|
|
* as a PRF key, that's then expanded block-by-block.
|
|
*/
|
|
static void extract_entropy(void *buf, size_t nbytes)
|
|
{
|
|
unsigned long flags;
|
|
u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
|
|
struct {
|
|
unsigned long rdseed[32 / sizeof(long)];
|
|
size_t counter;
|
|
} block;
|
|
size_t i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
|
|
if (!arch_get_random_seed_long(&block.rdseed[i]) &&
|
|
!arch_get_random_long(&block.rdseed[i]))
|
|
block.rdseed[i] = random_get_entropy();
|
|
}
|
|
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
|
|
/* seed = HASHPRF(last_key, entropy_input) */
|
|
blake2s_final(&input_pool.hash, seed);
|
|
|
|
/* next_key = HASHPRF(seed, RDSEED || 0) */
|
|
block.counter = 0;
|
|
blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
|
|
blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
|
|
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
memzero_explicit(next_key, sizeof(next_key));
|
|
|
|
while (nbytes) {
|
|
i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
|
|
/* output = HASHPRF(seed, RDSEED || ++counter) */
|
|
++block.counter;
|
|
blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
|
|
nbytes -= i;
|
|
buf += i;
|
|
}
|
|
|
|
memzero_explicit(seed, sizeof(seed));
|
|
memzero_explicit(&block, sizeof(block));
|
|
}
|
|
|
|
/*
|
|
* First we make sure we have POOL_MIN_BITS of entropy in the pool, and then we
|
|
* set the entropy count to zero (but don't actually touch any data). Only then
|
|
* can we extract a new key with extract_entropy().
|
|
*/
|
|
static bool drain_entropy(void *buf, size_t nbytes)
|
|
{
|
|
unsigned int entropy_count;
|
|
do {
|
|
entropy_count = READ_ONCE(input_pool.entropy_count);
|
|
if (entropy_count < POOL_MIN_BITS)
|
|
return false;
|
|
} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
|
|
extract_entropy(buf, nbytes);
|
|
wake_up_interruptible(&random_write_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_OUT);
|
|
return true;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Entropy collection routines.
|
|
*
|
|
* The following exported functions are used for pushing entropy into
|
|
* the above entropy accumulation routines:
|
|
*
|
|
* void add_device_randomness(const void *buf, size_t size);
|
|
* void add_input_randomness(unsigned int type, unsigned int code,
|
|
* unsigned int value);
|
|
* void add_disk_randomness(struct gendisk *disk);
|
|
* void add_hwgenerator_randomness(const void *buffer, size_t count,
|
|
* size_t entropy);
|
|
* void add_bootloader_randomness(const void *buf, size_t size);
|
|
* void add_interrupt_randomness(int irq);
|
|
*
|
|
* add_device_randomness() adds data to the input pool that
|
|
* is likely to differ between two devices (or possibly even per boot).
|
|
* This would be things like MAC addresses or serial numbers, or the
|
|
* read-out of the RTC. This does *not* credit any actual entropy to
|
|
* the pool, but it initializes the pool to different values for devices
|
|
* that might otherwise be identical and have very little entropy
|
|
* available to them (particularly common in the embedded world).
|
|
*
|
|
* add_input_randomness() uses the input layer interrupt timing, as well
|
|
* as the event type information from the hardware.
|
|
*
|
|
* add_disk_randomness() uses what amounts to the seek time of block
|
|
* layer request events, on a per-disk_devt basis, as input to the
|
|
* entropy pool. Note that high-speed solid state drives with very low
|
|
* seek times do not make for good sources of entropy, as their seek
|
|
* times are usually fairly consistent.
|
|
*
|
|
* The above two routines try to estimate how many bits of entropy
|
|
* to credit. They do this by keeping track of the first and second
|
|
* order deltas of the event timings.
|
|
*
|
|
* add_hwgenerator_randomness() is for true hardware RNGs, and will credit
|
|
* entropy as specified by the caller. If the entropy pool is full it will
|
|
* block until more entropy is needed.
|
|
*
|
|
* add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
|
|
* add_device_randomness(), depending on whether or not the configuration
|
|
* option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
|
|
*
|
|
* add_interrupt_randomness() uses the interrupt timing as random
|
|
* inputs to the entropy pool. Using the cycle counters and the irq source
|
|
* as inputs, it feeds the input pool roughly once a second or after 64
|
|
* interrupts, crediting 1 bit of entropy for whichever comes first.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
|
|
static int __init parse_trust_cpu(char *arg)
|
|
{
|
|
return kstrtobool(arg, &trust_cpu);
|
|
}
|
|
early_param("random.trust_cpu", parse_trust_cpu);
|
|
|
|
/*
|
|
* The first collection of entropy occurs at system boot while interrupts
|
|
* are still turned off. Here we push in RDSEED, a timestamp, and utsname().
|
|
* Depending on the above configuration knob, RDSEED may be considered
|
|
* sufficient for initialization. Note that much earlier setup may already
|
|
* have pushed entropy into the input pool by the time we get here.
|
|
*/
|
|
int __init rand_initialize(void)
|
|
{
|
|
size_t i;
|
|
ktime_t now = ktime_get_real();
|
|
bool arch_init = true;
|
|
unsigned long rv;
|
|
|
|
for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
|
|
if (!arch_get_random_seed_long_early(&rv) &&
|
|
!arch_get_random_long_early(&rv)) {
|
|
rv = random_get_entropy();
|
|
arch_init = false;
|
|
}
|
|
_mix_pool_bytes(&rv, sizeof(rv));
|
|
}
|
|
_mix_pool_bytes(&now, sizeof(now));
|
|
_mix_pool_bytes(utsname(), sizeof(*(utsname())));
|
|
|
|
extract_entropy(base_crng.key, sizeof(base_crng.key));
|
|
++base_crng.generation;
|
|
|
|
if (arch_init && trust_cpu && crng_init < 2) {
|
|
crng_init = 2;
|
|
pr_notice("crng init done (trusting CPU's manufacturer)\n");
|
|
}
|
|
|
|
if (ratelimit_disable) {
|
|
urandom_warning.interval = 0;
|
|
unseeded_warning.interval = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* There is one of these per entropy source */
|
|
struct timer_rand_state {
|
|
cycles_t last_time;
|
|
long last_delta, last_delta2;
|
|
};
|
|
|
|
/*
|
|
* Add device- or boot-specific data to the input pool to help
|
|
* initialize it.
|
|
*
|
|
* None of this adds any entropy; it is meant to avoid the problem of
|
|
* the entropy pool having similar initial state across largely
|
|
* identical devices.
|
|
*/
|
|
void add_device_randomness(const void *buf, size_t size)
|
|
{
|
|
unsigned long time = random_get_entropy() ^ jiffies;
|
|
unsigned long flags;
|
|
|
|
if (crng_init == 0 && size)
|
|
crng_pre_init_inject(buf, size, false, false);
|
|
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
_mix_pool_bytes(buf, size);
|
|
_mix_pool_bytes(&time, sizeof(time));
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(add_device_randomness);
|
|
|
|
/*
|
|
* This function adds entropy to the entropy "pool" by using timing
|
|
* delays. It uses the timer_rand_state structure to make an estimate
|
|
* of how many bits of entropy this call has added to the pool.
|
|
*
|
|
* The number "num" is also added to the pool - it should somehow describe
|
|
* the type of event which just happened. This is currently 0-255 for
|
|
* keyboard scan codes, and 256 upwards for interrupts.
|
|
*
|
|
*/
|
|
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
|
|
{
|
|
struct {
|
|
long jiffies;
|
|
unsigned int cycles;
|
|
unsigned int num;
|
|
} sample;
|
|
long delta, delta2, delta3;
|
|
|
|
sample.jiffies = jiffies;
|
|
sample.cycles = random_get_entropy();
|
|
sample.num = num;
|
|
mix_pool_bytes(&sample, sizeof(sample));
|
|
|
|
/*
|
|
* Calculate number of bits of randomness we probably added.
|
|
* We take into account the first, second and third-order deltas
|
|
* in order to make our estimate.
|
|
*/
|
|
delta = sample.jiffies - READ_ONCE(state->last_time);
|
|
WRITE_ONCE(state->last_time, sample.jiffies);
|
|
|
|
delta2 = delta - READ_ONCE(state->last_delta);
|
|
WRITE_ONCE(state->last_delta, delta);
|
|
|
|
delta3 = delta2 - READ_ONCE(state->last_delta2);
|
|
WRITE_ONCE(state->last_delta2, delta2);
|
|
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (delta2 < 0)
|
|
delta2 = -delta2;
|
|
if (delta3 < 0)
|
|
delta3 = -delta3;
|
|
if (delta > delta2)
|
|
delta = delta2;
|
|
if (delta > delta3)
|
|
delta = delta3;
|
|
|
|
/*
|
|
* delta is now minimum absolute delta.
|
|
* Round down by 1 bit on general principles,
|
|
* and limit entropy estimate to 12 bits.
|
|
*/
|
|
credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
|
|
}
|
|
|
|
void add_input_randomness(unsigned int type, unsigned int code,
|
|
unsigned int value)
|
|
{
|
|
static unsigned char last_value;
|
|
static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
|
|
|
|
/* Ignore autorepeat and the like. */
|
|
if (value == last_value)
|
|
return;
|
|
|
|
last_value = value;
|
|
add_timer_randomness(&input_timer_state,
|
|
(type << 4) ^ code ^ (code >> 4) ^ value);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_input_randomness);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
void add_disk_randomness(struct gendisk *disk)
|
|
{
|
|
if (!disk || !disk->random)
|
|
return;
|
|
/* First major is 1, so we get >= 0x200 here. */
|
|
add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_disk_randomness);
|
|
|
|
void rand_initialize_disk(struct gendisk *disk)
|
|
{
|
|
struct timer_rand_state *state;
|
|
|
|
/*
|
|
* If kzalloc returns null, we just won't use that entropy
|
|
* source.
|
|
*/
|
|
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
|
|
if (state) {
|
|
state->last_time = INITIAL_JIFFIES;
|
|
disk->random = state;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Interface for in-kernel drivers of true hardware RNGs.
|
|
* Those devices may produce endless random bits and will be throttled
|
|
* when our pool is full.
|
|
*/
|
|
void add_hwgenerator_randomness(const void *buffer, size_t count,
|
|
size_t entropy)
|
|
{
|
|
if (unlikely(crng_init == 0)) {
|
|
size_t ret = crng_pre_init_inject(buffer, count, false, true);
|
|
mix_pool_bytes(buffer, ret);
|
|
count -= ret;
|
|
buffer += ret;
|
|
if (!count || crng_init == 0)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Throttle writing if we're above the trickle threshold.
|
|
* We'll be woken up again once below POOL_MIN_BITS, when
|
|
* the calling thread is about to terminate, or once
|
|
* CRNG_RESEED_INTERVAL has elapsed.
|
|
*/
|
|
wait_event_interruptible_timeout(random_write_wait,
|
|
!system_wq || kthread_should_stop() ||
|
|
input_pool.entropy_count < POOL_MIN_BITS,
|
|
CRNG_RESEED_INTERVAL);
|
|
mix_pool_bytes(buffer, count);
|
|
credit_entropy_bits(entropy);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
|
|
|
|
/*
|
|
* Handle random seed passed by bootloader.
|
|
* If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
|
|
* it would be regarded as device data.
|
|
* The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
|
|
*/
|
|
void add_bootloader_randomness(const void *buf, size_t size)
|
|
{
|
|
if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
|
|
add_hwgenerator_randomness(buf, size, size * 8);
|
|
else
|
|
add_device_randomness(buf, size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_bootloader_randomness);
|
|
|
|
struct fast_pool {
|
|
union {
|
|
u32 pool32[4];
|
|
u64 pool64[2];
|
|
};
|
|
struct work_struct mix;
|
|
unsigned long last;
|
|
atomic_t count;
|
|
u16 reg_idx;
|
|
};
|
|
|
|
/*
|
|
* This is a fast mixing routine used by the interrupt randomness
|
|
* collector. It's hardcoded for an 128 bit pool and assumes that any
|
|
* locks that might be needed are taken by the caller.
|
|
*/
|
|
static void fast_mix(u32 pool[4])
|
|
{
|
|
u32 a = pool[0], b = pool[1];
|
|
u32 c = pool[2], d = pool[3];
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 6); d = rol32(d, 27);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 16); d = rol32(d, 14);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 6); d = rol32(d, 27);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 16); d = rol32(d, 14);
|
|
d ^= a; b ^= c;
|
|
|
|
pool[0] = a; pool[1] = b;
|
|
pool[2] = c; pool[3] = d;
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
|
|
|
|
static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
|
|
{
|
|
u32 *ptr = (u32 *)regs;
|
|
unsigned int idx;
|
|
|
|
if (regs == NULL)
|
|
return 0;
|
|
idx = READ_ONCE(f->reg_idx);
|
|
if (idx >= sizeof(struct pt_regs) / sizeof(u32))
|
|
idx = 0;
|
|
ptr += idx++;
|
|
WRITE_ONCE(f->reg_idx, idx);
|
|
return *ptr;
|
|
}
|
|
|
|
static void mix_interrupt_randomness(struct work_struct *work)
|
|
{
|
|
struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
|
|
u32 pool[4];
|
|
|
|
/* Check to see if we're running on the wrong CPU due to hotplug. */
|
|
local_irq_disable();
|
|
if (fast_pool != this_cpu_ptr(&irq_randomness)) {
|
|
local_irq_enable();
|
|
/*
|
|
* If we are unlucky enough to have been moved to another CPU,
|
|
* during CPU hotplug while the CPU was shutdown then we set
|
|
* our count to zero atomically so that when the CPU comes
|
|
* back online, it can enqueue work again. The _release here
|
|
* pairs with the atomic_inc_return_acquire in
|
|
* add_interrupt_randomness().
|
|
*/
|
|
atomic_set_release(&fast_pool->count, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Copy the pool to the stack so that the mixer always has a
|
|
* consistent view, before we reenable irqs again.
|
|
*/
|
|
memcpy(pool, fast_pool->pool32, sizeof(pool));
|
|
atomic_set(&fast_pool->count, 0);
|
|
fast_pool->last = jiffies;
|
|
local_irq_enable();
|
|
|
|
mix_pool_bytes(pool, sizeof(pool));
|
|
credit_entropy_bits(1);
|
|
memzero_explicit(pool, sizeof(pool));
|
|
}
|
|
|
|
void add_interrupt_randomness(int irq)
|
|
{
|
|
enum { MIX_INFLIGHT = 1U << 31 };
|
|
struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
unsigned long now = jiffies;
|
|
cycles_t cycles = random_get_entropy();
|
|
unsigned int new_count;
|
|
|
|
if (cycles == 0)
|
|
cycles = get_reg(fast_pool, regs);
|
|
|
|
if (sizeof(cycles) == 8)
|
|
fast_pool->pool64[0] ^= cycles ^ rol64(now, 32) ^ irq;
|
|
else {
|
|
fast_pool->pool32[0] ^= cycles ^ irq;
|
|
fast_pool->pool32[1] ^= now;
|
|
}
|
|
|
|
if (sizeof(unsigned long) == 8)
|
|
fast_pool->pool64[1] ^= regs ? instruction_pointer(regs) : _RET_IP_;
|
|
else {
|
|
fast_pool->pool32[2] ^= regs ? instruction_pointer(regs) : _RET_IP_;
|
|
fast_pool->pool32[3] ^= get_reg(fast_pool, regs);
|
|
}
|
|
|
|
fast_mix(fast_pool->pool32);
|
|
/* The _acquire here pairs with the atomic_set_release in mix_interrupt_randomness(). */
|
|
new_count = (unsigned int)atomic_inc_return_acquire(&fast_pool->count);
|
|
|
|
if (unlikely(crng_init == 0)) {
|
|
if (new_count >= 64 &&
|
|
crng_pre_init_inject(fast_pool->pool32, sizeof(fast_pool->pool32),
|
|
true, true) > 0) {
|
|
atomic_set(&fast_pool->count, 0);
|
|
fast_pool->last = now;
|
|
if (spin_trylock(&input_pool.lock)) {
|
|
_mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32));
|
|
spin_unlock(&input_pool.lock);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (new_count & MIX_INFLIGHT)
|
|
return;
|
|
|
|
if (new_count < 64 && !time_after(now, fast_pool->last + HZ))
|
|
return;
|
|
|
|
if (unlikely(!fast_pool->mix.func))
|
|
INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
|
|
atomic_or(MIX_INFLIGHT, &fast_pool->count);
|
|
queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
|
|
|
|
/*
|
|
* Each time the timer fires, we expect that we got an unpredictable
|
|
* jump in the cycle counter. Even if the timer is running on another
|
|
* CPU, the timer activity will be touching the stack of the CPU that is
|
|
* generating entropy..
|
|
*
|
|
* Note that we don't re-arm the timer in the timer itself - we are
|
|
* happy to be scheduled away, since that just makes the load more
|
|
* complex, but we do not want the timer to keep ticking unless the
|
|
* entropy loop is running.
|
|
*
|
|
* So the re-arming always happens in the entropy loop itself.
|
|
*/
|
|
static void entropy_timer(struct timer_list *t)
|
|
{
|
|
credit_entropy_bits(1);
|
|
}
|
|
|
|
/*
|
|
* If we have an actual cycle counter, see if we can
|
|
* generate enough entropy with timing noise
|
|
*/
|
|
static void try_to_generate_entropy(void)
|
|
{
|
|
struct {
|
|
unsigned long now;
|
|
struct timer_list timer;
|
|
} stack;
|
|
|
|
stack.now = random_get_entropy();
|
|
|
|
/* Slow counter - or none. Don't even bother */
|
|
if (stack.now == random_get_entropy())
|
|
return;
|
|
|
|
timer_setup_on_stack(&stack.timer, entropy_timer, 0);
|
|
while (!crng_ready()) {
|
|
if (!timer_pending(&stack.timer))
|
|
mod_timer(&stack.timer, jiffies + 1);
|
|
mix_pool_bytes(&stack.now, sizeof(stack.now));
|
|
schedule();
|
|
stack.now = random_get_entropy();
|
|
}
|
|
|
|
del_timer_sync(&stack.timer);
|
|
destroy_timer_on_stack(&stack.timer);
|
|
mix_pool_bytes(&stack.now, sizeof(stack.now));
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Userspace reader/writer interfaces.
|
|
*
|
|
* getrandom(2) is the primary modern interface into the RNG and should
|
|
* be used in preference to anything else.
|
|
*
|
|
* Reading from /dev/random has the same functionality as calling
|
|
* getrandom(2) with flags=0. In earlier versions, however, it had
|
|
* vastly different semantics and should therefore be avoided, to
|
|
* prevent backwards compatibility issues.
|
|
*
|
|
* Reading from /dev/urandom has the same functionality as calling
|
|
* getrandom(2) with flags=GRND_INSECURE. Because it does not block
|
|
* waiting for the RNG to be ready, it should not be used.
|
|
*
|
|
* Writing to either /dev/random or /dev/urandom adds entropy to
|
|
* the input pool but does not credit it.
|
|
*
|
|
* Polling on /dev/random indicates when the RNG is initialized, on
|
|
* the read side, and when it wants new entropy, on the write side.
|
|
*
|
|
* Both /dev/random and /dev/urandom have the same set of ioctls for
|
|
* adding entropy, getting the entropy count, zeroing the count, and
|
|
* reseeding the crng.
|
|
*
|
|
**********************************************************************/
|
|
|
|
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
|
|
flags)
|
|
{
|
|
if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Requesting insecure and blocking randomness at the same time makes
|
|
* no sense.
|
|
*/
|
|
if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
|
|
return -EINVAL;
|
|
|
|
if (count > INT_MAX)
|
|
count = INT_MAX;
|
|
|
|
if (!(flags & GRND_INSECURE) && !crng_ready()) {
|
|
int ret;
|
|
|
|
if (flags & GRND_NONBLOCK)
|
|
return -EAGAIN;
|
|
ret = wait_for_random_bytes();
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
return get_random_bytes_user(buf, count);
|
|
}
|
|
|
|
static __poll_t random_poll(struct file *file, poll_table *wait)
|
|
{
|
|
__poll_t mask;
|
|
|
|
poll_wait(file, &crng_init_wait, wait);
|
|
poll_wait(file, &random_write_wait, wait);
|
|
mask = 0;
|
|
if (crng_ready())
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
if (input_pool.entropy_count < POOL_MIN_BITS)
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
return mask;
|
|
}
|
|
|
|
static int write_pool(const char __user *ubuf, size_t count)
|
|
{
|
|
size_t len;
|
|
int ret = 0;
|
|
u8 block[BLAKE2S_BLOCK_SIZE];
|
|
|
|
while (count) {
|
|
len = min(count, sizeof(block));
|
|
if (copy_from_user(block, ubuf, len)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
count -= len;
|
|
ubuf += len;
|
|
mix_pool_bytes(block, len);
|
|
cond_resched();
|
|
}
|
|
|
|
out:
|
|
memzero_explicit(block, sizeof(block));
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t random_write(struct file *file, const char __user *buffer,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = write_pool(buffer, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return (ssize_t)count;
|
|
}
|
|
|
|
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
|
|
loff_t *ppos)
|
|
{
|
|
static int maxwarn = 10;
|
|
|
|
if (!crng_ready() && maxwarn > 0) {
|
|
maxwarn--;
|
|
if (__ratelimit(&urandom_warning))
|
|
pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
|
|
current->comm, nbytes);
|
|
}
|
|
|
|
return get_random_bytes_user(buf, nbytes);
|
|
}
|
|
|
|
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = wait_for_random_bytes();
|
|
if (ret != 0)
|
|
return ret;
|
|
return get_random_bytes_user(buf, nbytes);
|
|
}
|
|
|
|
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
|
|
{
|
|
int size, ent_count;
|
|
int __user *p = (int __user *)arg;
|
|
int retval;
|
|
|
|
switch (cmd) {
|
|
case RNDGETENTCNT:
|
|
/* Inherently racy, no point locking. */
|
|
if (put_user(input_pool.entropy_count, p))
|
|
return -EFAULT;
|
|
return 0;
|
|
case RNDADDTOENTCNT:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (get_user(ent_count, p))
|
|
return -EFAULT;
|
|
if (ent_count < 0)
|
|
return -EINVAL;
|
|
credit_entropy_bits(ent_count);
|
|
return 0;
|
|
case RNDADDENTROPY:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (get_user(ent_count, p++))
|
|
return -EFAULT;
|
|
if (ent_count < 0)
|
|
return -EINVAL;
|
|
if (get_user(size, p++))
|
|
return -EFAULT;
|
|
retval = write_pool((const char __user *)p, size);
|
|
if (retval < 0)
|
|
return retval;
|
|
credit_entropy_bits(ent_count);
|
|
return 0;
|
|
case RNDZAPENTCNT:
|
|
case RNDCLEARPOOL:
|
|
/*
|
|
* Clear the entropy pool counters. We no longer clear
|
|
* the entropy pool, as that's silly.
|
|
*/
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (xchg(&input_pool.entropy_count, 0)) {
|
|
wake_up_interruptible(&random_write_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_OUT);
|
|
}
|
|
return 0;
|
|
case RNDRESEEDCRNG:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (crng_init < 2)
|
|
return -ENODATA;
|
|
crng_reseed();
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int random_fasync(int fd, struct file *filp, int on)
|
|
{
|
|
return fasync_helper(fd, filp, on, &fasync);
|
|
}
|
|
|
|
const struct file_operations random_fops = {
|
|
.read = random_read,
|
|
.write = random_write,
|
|
.poll = random_poll,
|
|
.unlocked_ioctl = random_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.fasync = random_fasync,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
const struct file_operations urandom_fops = {
|
|
.read = urandom_read,
|
|
.write = random_write,
|
|
.unlocked_ioctl = random_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.fasync = random_fasync,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
|
|
/********************************************************************
|
|
*
|
|
* Sysctl interface.
|
|
*
|
|
* These are partly unused legacy knobs with dummy values to not break
|
|
* userspace and partly still useful things. They are usually accessible
|
|
* in /proc/sys/kernel/random/ and are as follows:
|
|
*
|
|
* - boot_id - a UUID representing the current boot.
|
|
*
|
|
* - uuid - a random UUID, different each time the file is read.
|
|
*
|
|
* - poolsize - the number of bits of entropy that the input pool can
|
|
* hold, tied to the POOL_BITS constant.
|
|
*
|
|
* - entropy_avail - the number of bits of entropy currently in the
|
|
* input pool. Always <= poolsize.
|
|
*
|
|
* - write_wakeup_threshold - the amount of entropy in the input pool
|
|
* below which write polls to /dev/random will unblock, requesting
|
|
* more entropy, tied to the POOL_MIN_BITS constant. It is writable
|
|
* to avoid breaking old userspaces, but writing to it does not
|
|
* change any behavior of the RNG.
|
|
*
|
|
* - urandom_min_reseed_secs - fixed to the meaningless value "60".
|
|
* It is writable to avoid breaking old userspaces, but writing
|
|
* to it does not change any behavior of the RNG.
|
|
*
|
|
********************************************************************/
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
|
|
#include <linux/sysctl.h>
|
|
|
|
static int sysctl_random_min_urandom_seed = 60;
|
|
static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
|
|
static int sysctl_poolsize = POOL_BITS;
|
|
static char sysctl_bootid[16];
|
|
|
|
/*
|
|
* This function is used to return both the bootid UUID, and random
|
|
* UUID. The difference is in whether table->data is NULL; if it is,
|
|
* then a new UUID is generated and returned to the user.
|
|
*
|
|
* If the user accesses this via the proc interface, the UUID will be
|
|
* returned as an ASCII string in the standard UUID format; if via the
|
|
* sysctl system call, as 16 bytes of binary data.
|
|
*/
|
|
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct ctl_table fake_table;
|
|
unsigned char buf[64], tmp_uuid[16], *uuid;
|
|
|
|
uuid = table->data;
|
|
if (!uuid) {
|
|
uuid = tmp_uuid;
|
|
generate_random_uuid(uuid);
|
|
} else {
|
|
static DEFINE_SPINLOCK(bootid_spinlock);
|
|
|
|
spin_lock(&bootid_spinlock);
|
|
if (!uuid[8])
|
|
generate_random_uuid(uuid);
|
|
spin_unlock(&bootid_spinlock);
|
|
}
|
|
|
|
sprintf(buf, "%pU", uuid);
|
|
|
|
fake_table.data = buf;
|
|
fake_table.maxlen = sizeof(buf);
|
|
|
|
return proc_dostring(&fake_table, write, buffer, lenp, ppos);
|
|
}
|
|
|
|
static struct ctl_table random_table[] = {
|
|
{
|
|
.procname = "poolsize",
|
|
.data = &sysctl_poolsize,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0444,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "entropy_avail",
|
|
.data = &input_pool.entropy_count,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0444,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "write_wakeup_threshold",
|
|
.data = &sysctl_random_write_wakeup_bits,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "urandom_min_reseed_secs",
|
|
.data = &sysctl_random_min_urandom_seed,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "boot_id",
|
|
.data = &sysctl_bootid,
|
|
.maxlen = 16,
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_uuid,
|
|
},
|
|
{
|
|
.procname = "uuid",
|
|
.maxlen = 16,
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_uuid,
|
|
},
|
|
{ }
|
|
};
|
|
|
|
/*
|
|
* rand_initialize() is called before sysctl_init(),
|
|
* so we cannot call register_sysctl_init() in rand_initialize()
|
|
*/
|
|
static int __init random_sysctls_init(void)
|
|
{
|
|
register_sysctl_init("kernel/random", random_table);
|
|
return 0;
|
|
}
|
|
device_initcall(random_sysctls_init);
|
|
#endif
|